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Abstract

In this paper, we study the problem of nonparametric adaptive estimation of the covariance
function of a stationary Gaussian process. For this purpose, we consider a wavelet-based method
which combines the ideas of wavelet approximation and estimation by information projection in
order to warrants the positive semidefiniteness property of the solution. The spectral density of
the process is estimated by projecting the wavelet thresholding expansion of the periodogram onto
a family of exponential functions. This ensures that the spectral density estimator is a strictly
positive function. Then, by Bochner theorem, we obtain a semidefinite positive estimator of the
covariance function. The theoretical behavior of the estimator is established in terms of rate of
convergence of the Kullback-Leibler discrepancy over Besov classes. We also show the excellent
practical performance of the estimator in some numerical experiments.
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1 Introduction

The estimation of covariance functions is a fundamental problem in inference for stationary stochastic
processes. It has many applications in the geosciences, ecology, demography, financial series and
other fields (e.g. Journel and Huijbregts [19], Christakos [7] and Stein [28]). In order to preserve the
property of positive semidefiniteness enjoyed by a true covariance function, statisticians commonly
resort to fitting parametric models, which are numerous in the literature (see Cressie [9] for a detailed
account of parametric covariance estimation). In the nonparametric approaches, one difficulty lies
in imposing this property to the estimator. For example, Shapiro and Botha [27] suggested an
estimator of the covariance function that has the property on a discrete set, but does not produce
a smooth covariance function which is positive semidefinite in the continuum. In the non stationary
case and for spatio-temporal data, Sampson and Guttorp [25] proposed an approach based on a
covariance representation due to Schoenberg [26], which ensures that the resulting estimator is a
positive semidefinite function. Hall, Fisher and Hoffman [18] enforce the positive semidefiniteness
property on a kernel type estimator of the covariance function using Bochner theorem [3], which
characterizes the class of continuous positive semidefinite functions by the behavior of their Fourier



transform. One drawback of this approach is that it involves the choice of three parameters, including
the optimal selection of the bandwidth of the kernel function. More recently Elogne, Perrin and
Thomas-Agnan [15] proposed a nonparametric estimator of smooth stationary covariance functions
using interpolation methods. Their estimator has the difficulty that involves the computation of a
convolution integral, but it is a positive semidefinite function by construction.

The Bochner theorem mentioned before states that a continuous function on R
d is positive

semidefinite if and only if it is the Fourier transform of a bounded nonnegative measure called the
spectral measure. If the spectral measure has a density, this density is called the spectral density.
Hence, the estimation of the covariance function is strongly related to the estimation of the spectral
density of the process. Typically, inference in the spectral domain uses the periodogram of the data.
The periodogram is an inconsistent estimator and needs to be smoothed to achieve consistency. For
highly regular spectral densities, linear smoothing techniques such as kernel smoothing are appropri-
ate (see Brillinger [4]). However, linear smoothing methods are incapable of achieving the optimal
mean-square rate of convergence for spectra whose smoothness is distributed inhomogeneously over
the domain of interest, and a need for nonlinear methods arises. One nonlinear method for adaptive
spectral density estimation of a stationary Gaussian sequence was proposed by Comte [8]. It is based
on model selection techniques. Others nonlinear smoothing procedures are the wavelet thresholding
methods, first proposed by Donoho and Johnstone [14]. In this context, different thresholding rules
have been proposed by Neumann [23] and Fryzlewics, Nason and von Sachs [16] to name but a few.

Neumann’s approach [23] consists in pre-estimating the variance of the periodogram via kernel
smoothing, so that it can be supplied to the wavelet estimation procedure. Kernel pre-estimation
may not be appropriate in cases where the underlying spectral density is of low regularity. One
way to avoid this problem is proposed in Fryzlewics, Nason and von Sachs [16], where the empirical
wavelet coefficient thresholds are built as appropriate local weighted l1 norms of the periodogram.
Their method does not produce a positive spectral density estimator, therefore the corresponding
estimator of the covariance function is not semidefinite positive.

To overcome the drawbacks of the above estimators, in this paper we propose a new wavelet-
based method for the estimation of the spectral density of a Gaussian process and its corresponding
covariance function. As a solution to ensure positiveness of the spectral density estimator, our method
combines the ideas of wavelet thresholding and estimation by information projection. We estimate
the spectral density by a projection of the nonlinear wavelet approximation of the periodogram onto a
family of exponential functions. Therefore, the estimator is strictly positive by construction. Then,
by Bochner theorem, the corresponding estimator of the covariance function satisfies the positive
semidefiniteness property. This technique was studied by Barron and Sheu [2] for the approximation
of density functions by sequences of exponential families, by Loubes and Yan [21] for penalized
maximum likelihood estimation with l1 penalty, by Antoniadis and Bigot [1] for the study of Poisson
inverse problems, and by Bigot and Van Bellegem [5] for log-density deconvolution.

The theoretical optimality of the estimators for the spectral density of a stationary process is
generally studied using risk bounds in L2-norm. This is the case in the papers of Neumann [23],
Comte [8] and Fryzlewics, Nason and von Sachs [16] mentioned before. In this work, the behavior
of the proposed estimator is established in terms of the rate of convergence of the Kullback-Leibler
discrepancy over Besov classes, which is a more natural loss function for the estimation of a spectral
density function than the L2-norm. Moreover, the thresholding rules that we use to derive adaptive
estimators differ from previous approaches based on wavelet decomposition and are quite simple to
compute. Finally, the practical performance of our estimator is showed to be excellent compared
with other estimators.
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The paper is organized as follows. Section 2 presents the statistical framework under which
we work. We define the model, the wavelet-based exponential family and the linear and nonlinear
wavelet estimators by information projection. We also recall the definition of the Kullback-Leibler
divergence and some results on Besov spaces. The rate of convergence of the proposed estimators
are stated in Section 3. Some numerical experiments are described in Section 4. Technical lemmas
and proofs of the main theorems are gathered in the Appendix.

Throughout this paper C denotes a constant that may vary from line to line. The notation C(.)
specifies the dependency of C on some quantities.

2 Statistical framework

2.1 The model

We aim at providing a nonparametric adaptive estimation of the spectral density which satisfies
the property of being positive in order to guarantee that the covariance estimator is a semidefinite
positive function. We consider the sequence (Xt)t∈N

that satisfies the following assumptions:

Assumption 1 The sequence (X1, ...Xn) is an n-sample drawn from a stationary sequence of Gaus-
sian random variables.

Let ρ be the covariance function of the process, i.e. ρ (h) = cov (Xt,Xt+h) with h ∈ Z. The
spectral density f is defined as:

f (ω) =
1

2π

∑

h∈Z

ρ (h) ei2πωh, ω ∈ [0, 1] .

We need the following standard assumption on ρ:

Assumption 2 The covariance function ρ is semidefinite positive, such that there exists two con-
stants 0 < C1, C2 < +∞ such that

∑
h∈Z

|ρ (h)| = C1 and
∑
h∈Z

∣∣hρ2 (h)
∣∣ = C2.

Assumption 2 implies in particular that the spectral density f is bounded by the constant C1.
As a consequence, it is also square integrable. As in Comte [8], the data consist on a number of
observations X1, ...Xn at regularly spaced points. We want to obtain a positive estimator for the
spectral density function f without parametric assumptions on the basis of these observations. For
this, we combine the ideas of wavelet thresholding and estimation by information projection.

2.2 Estimation by information projection

2.2.1 Wavelet-based exponential family

Let φ (ω) and ψ (ω), respectively, be the scaling and the wavelet functions generated by an orthonor-
mal multiresolution decomposition of L2 ([0, 1]), see Mallat [22] for a detailed exposition on wavelet
analysis. Throughout the paper, the functions φ and ψ are supposed to be compactly supported and
such that ‖φ‖∞ < +∞, ‖ψ‖∞ < +∞. Then, for any integer j0 ≥ 0, any function g ∈ L2 ([0, 1]) has
the following representation:

g (ω) =

2j0−1∑

k=0

〈g, φj0,k〉φj0,k (ω) +

+∞∑

j=j0

2j−1∑

k=0

〈g, ψj,k〉ψj,k (ω) ,
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where φj0,k (ω) = 2
j0
2 φ
(
2j0ω − k

)
and ψj,k (ω) = 2

j
2ψ
(
2jω − k

)
. The main idea of this paper is to

expand the spectral density f onto this wavelet basis and to find an estimator of this expansion
that is then modified to impose the positivity property. The scaling and wavelet coefficients of the
spectral density function f are denoted by aj0,k = 〈f, φj0,k〉 and bj,k = 〈f, ψj,k〉.

To simplify the notations, we write (ψj,k)j=j0−1 for the scaling functions (φj,k)j=j0
. Let j1 ≥ j0

and define the set

Λj1 =
{
(j, k) : j0 − 1 ≤ j < j1, 0 ≤ k ≤ 2j − 1

}
.

Note that #Λj1 = 2j1 , where #Λj1 denotes the cardinal of Λj1 . Let θ denotes a vector in R
#Λj1 , the

wavelet-based exponential family Ej1 at scale j1 is defined as the set of functions:

Ej1 =



fj1,θ (.) = exp




∑

(j,k)∈Λj1

θj,kψj,k (.)


 , θ = (θj,k)(j,k)∈Λj1

∈ R
#Λj1



 . (2.1)

We will enforce our estimator of the spectral density to belong to the family Ej1 of exponential
functions, which are positive by definition.

2.2.2 Information projection

Following Csiszár [10], it is possible to define the projection of a function f onto Ej1. If this projection
exists, it is defined as the function fj1,θ∗j1

in the exponential family Ej1 that is the closest to the true

function f in the Kullback-Leibler sense, and is characterized as the unique function in the family
Ej1 for which

〈
fj1,θ∗j1

, ψj,k

〉
= 〈f, ψj,k〉 := βj,k for all (j, k) ∈ Λj1 .

Note that the notation βj,k is used to denote both the the scaling coefficients aj0,k and the wavelet
coefficients bj,k.

Let

In (ω) =
1

2πn

n∑

t=1

n∑

t′=1

(
Xt −X

) (
Xt′ −X

)∗
ei2πω(t−t′),

be the classical periodogram, where
(
Xt′ −X

)∗
denotes the conjugate transpose of

(
Xt −X

)
and

X = 1
n

n∑
t=1

Xt. The expansion of In (ω) onto the wavelet basis allows to obtain estimators of aj0,k

and bj,k given by

âj0,k =

1∫

0

In (ω)φj0,k (ω) dω and b̂j,k =

1∫

0

In (ω)ψj,k (ω) dω. (2.2)

It seems therefore natural to estimate the function f by searching for some θ̂n ∈ R
#Λj1 such that

〈
f

j1,bθn
, ψj,k

〉
=

1∫

0

In (ω)ψj,k (ω) dω := β̂j,k for all (j, k) ∈ Λj1, (2.3)
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where β̂j,k denotes both the estimation of the scaling coefficients âj0,k and the wavelet coefficients

b̂j,k. The function f
j1,bθn

is the spectral density positive linear estimator.

Similarly, the positive nonlinear estimator with hard thresholding is defined as the function fHT
j1,bθn,ξ

(with θ̂n ∈ R
#Λj1 ) such that

〈
fHT

j1,bθn,ξ
, ψj,k

〉
= δξ

(
β̂j,k

)
for all (j, k) ∈ Λj1, (2.4)

where δξ denotes the hard thresholding rule defined by

δξ (x) = xI (|x| ≥ ξ) for x ∈ R,

where ξ > 0 is an appropriate threshold whose choice is discussed later on.
The existence of these estimators is questionable. Moreover, there is no way to obtain an explicit

expression for θ̂n. In our simulations, we use a numerical approximation of θ̂n that is obtained
via a gradient-descent algorithm with an adaptive step. Proving that such estimators exist with
probability one is a difficult task. For the related problem of estimating a density from an independent
and identically distributed random variable, it is even shown in Barron and Sheu [2] that for some
exponential family (e.g. based on a spline basis), the vector θ̂n may not exist with a small positive
probability. Thus, in the next sections, some sufficient conditions are given for the existence of f

j1,bθn

and fHT
j1,bθn,ξ

with probability tending to one as n→ +∞.

2.3 Kullback-Leibler divergence

To assess the quality of the estimators, we will measure the discrepancy between an estimator f̂ and
the true function f in the sense of relative entropy (Kullback-Leibler divergence) defined by:

∆
(
f ; f̂

)
=

∫ 1

0

(
f log

(
f

f̂

)
− f + f̂

)
dµ,

where µ denotes the Lebesgue measure on [0, 1]. It can be shown that ∆
(
f ; f̂

)
is nonnegative and

equals zero if and only if f̂ = f .

2.4 Besov spaces

It is well known that Besov spaces for periodic functions in L2([0, 1]) can be characterized in terms
of wavelet coefficients (see e.g. Mallat [22]). Assume that ψ has m vanishing moments, and let
0 < s < m denote the usual smoothness parameter. Then, for a Besov ball Bs

p,q(A) of radius A > 0
with 1 ≤ p, q ≤ ∞, one has that for s∗ = s+ 1/2 − 1/p ≥ 0:

Bs
p,q (A) :=




g ∈ L2([0, 1] : ‖g‖s,p,q :=




2j0−1∑

k=0

|aj0,k|p



1
p

+




∞∑

j=j0

2js∗q




2j−1∑

k=0

|bj,k|p



q
p




1
q

≤ A




,

with the respective above sums replaced by maximum if p = ∞ or q = ∞ and where aj0,k = 〈g, φj0,k〉
and bj,k = 〈g, ψj,k〉.
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The condition that s+1/2−1/p ≥ 0 is imposed to ensure that Bs
p,q(A) is a subspace of L2([0, 1]),

and we shall restrict ourselves to this case in this paper (although not always stated, it is clear that
all our results hold for s < m). Besov spaces allow for more local variability in local smoothness
than is typical for functions in the usual Hölder or Sobolev spaces. For instance, a real function f
on [0, 1] that is piecewise continuous, but for which each piece is locally in Cs, can be an element of
Bs

p,p(A) with 1 ≤ p < 2, despite the possibility of discontinuities at the transition from one piece to
the next (see e.g. Proposition 9.2 in Mallat [22]). Note that if s > 1 is not an integer, then Bs

2,2(A)
is equivalent to a Sobolev ball of order s. Moreover, the space Bs

p,q(A) with 1 ≤ p < 2 contains
piecewise smooth functions with local irregularities such as discontinuities.

Let M > 0 and denote by F s
p,q(M) the set of functions such that

F s
p,q(M) = {f = exp (g) : ‖g‖s,p,q ≤M} ,

where ‖g‖s,p,q denotes the norm in the Besov space Bs
p,q. Note that assuming that f ∈ F s

p,q(M)
implies that f is strictly positive. In the next section we establish the rate of convergence of our
estimators in terms of the Kullback-Leibler discrepancy over Besov classes.

3 Asymptotic behavior of the estimators

We make the following assumption on the wavelet basis that guarantees that Assumption 2 holds
uniformly over F s

p,q(M).

Assumption 3 Let M > 0, 1 ≤ p ≤ 2 and s > 1/p. For f ∈ F s
p,q(M) and h ∈ Z, let ρ(h) =∫ 1

0 f(ω)e−i2πωhdω, C1(f) :=
∑
h∈Z

|ρ (h)| and C2(f) :=
∑
h∈Z

∣∣hρ2 (h)
∣∣. Then, the wavelet basis is such

that there exists a constant M∗ such that for all f ∈ F s
p,q(M),

C1(f) ≤M∗ and C2(f) ≤M∗.

3.1 Linear estimation

The following theorem is the general result on the linear information projection estimator of the
spectral density function. Note that the choice of the coarse level resolution level j0 is of minor
importance, and without loss of generality we take j0 = 0 for the linear estimator f

j1,bθn
.

Theorem 3.1 Assume that f ∈ F s
2,2 (M) with s > 1

2 and suppose that Assumptions 1, 2 and 3 are

satisfied. Define j1 = j1 (n) as the largest integer such that 2j1 ≤ n
1

2s+1 . Then, with probability
tending to one as n→ +∞, the information projection estimator (2.3) exists and satisfies:

∆
(
f ; f

j1(n),bθn

)
= Op

(
n−

2s
2s+1

)
.

Moreover, the convergence is uniform over the class F s
2,2 (M) in the sense that

lim
K→+∞

lim
n→+∞

sup
f∈F s

2,2(M)
P

(
n

2s
2s+1 ∆

(
f ; f

j1(n),bθn

)
> K

)
= 0.
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This theorem provides the existence with probability tending to one of a linear estimator for the
spectral density f given by f

j1(n),bθj1(n)
. This estimator is strictly positive by construction. Therefore

the corresponding estimator of the covariance function ρ̂L (which is obtained as the inverse Fourier
transform of f

j1(n),bθn
) is a positive definite function by Bochner theorem. Hence ρ̂L is a covariance

function.
In the related problem of density estimation from an i.d.d. sample, Koo [20] has shown that,

for the Kullback-Leibler divergence, n−
2s

2s+1 is the fastest rate of convergence for the problem of
estimating a density f such that log(f) belongs to the space Bs

2,2(M). For spectral densities belonging

to a general Besov ball Bs
p,q (M), Newman [23] has also shown that n−

2s
2s+1 is an optimal rate of

convergence for the L2 risk. For the Kullback-Leibler divergence, we conjecture that n−
2s

2s+1 is the
minimax rate of convergence for spectral densities belonging to F s

2,2(M).
However, the result obtained in the above theorem is nonadaptive because the selection of j1 (n)

depends on the unknown smoothness s of f . Moreover, the result is only suited for smooth functions
(as F s

2,2(M) corresponds to a Sobolev space of order s) and does not attain an optimal rate of
convergence when for example g = log(f) has singularities. We therefore propose in the next section
an adaptive estimator derived by applying an appropriate nonlinear thresholding procedure.

3.2 Adaptive estimation

3.2.1 The bound of f is known

In adaptive estimation, we need to define an appropriate thresholding rule for the wavelet coefficients
of the periodogram. This threshold is level-dependent and in this paper will take the form

ξ = ξj,n = 2

[
2 ‖f‖∞

(√
δ log n

n
+ 2

j
2 ‖ψ‖∞

δ log n

n

)
+
C∗√
n

]
, (3.1)

where δ ≥ 0 is a tuning parameter whose choice will be discussed later on and C∗ =

√
C2+39C2

1
4π2 . The

following theorem states that the relative entropy between the true f and its nonlinear estimator
achieves in probability the conjectured optimal rate of convergence up to a logarithmic factor over a
wide range of Besov balls.

Theorem 3.2 Assume that f ∈ F s
p,q (M) with s > 1

2 + 1
p and 1 ≤ p ≤ 2. Suppose also that

Assumptions 1, 2, 3 hold. For any n > 1, define j0 = j0 (n) to be the integer such that 2j0 ≥ log n ≥
2j0−1, and j1 = j1 (n) to be the integer such that 2j1 ≥ n

log n ≥ 2j1−1. For δ ≥ 6, take the threshold
ξj,n as in (3.1). Then, the thresholding estimator (2.4) exists with probability tending to one when
n→ +∞ and satisfies:

∆
(
f ; fHT

j0(n),j1(n),bθn,ξj,n

)
= Op

((
n

log n

)− 2s
2s+1

)
.

Note that the choices of j0, j1 and ξj,n are independent of the parameter s; hence the estimator
fHT

j0(n),j1(n),bθn,ξj,n
is an adaptive estimator which attains in probability what we claim is the optimal

rate of convergence, up to a logarithmic factor. In particular, fHT
j0(n),j1(n),bθn,ξj,n

is adaptive on F s
2,2 (M).

This theorem provides the existence with probability tending to one of a nonlinear estimator for the

7



spectral density. This estimator is strictly positive by construction. Therefore the corresponding
estimator of the covariance function ρ̂NL (which is obtained as the inverse Fourier transform of
fHT

j0(n),j1(n),bθn,ξj,n
) is a positive definite function by Bochner theorem. Hence ρ̂NL is a covariance

function.

3.2.2 Estimating the bound of f

Although the results of Theorem 3.2 are certainly of some theoretical interest, they are not helpful for
practical applications. The (deterministic) threshold ξj,n depends on the unknown quantities ‖f‖∞
and C∗ := C (C1, C2), where C1 and C2 are unknown constants. To make the method applicable,
it is necessary to find some completely data-driven rule for the threshold, which works well over a
range as wide as possible of smoothness classes. In this subsection, we give an extension that leads
to consider a random threshold which no longer depends on the bound on f neither on C∗. For this
let us consider the dyadic partitions of [0, 1] given by In =

{(
j/2Jn , (j + 1)/2Jn

)
, j = 0, ..., 2Jn − 1

}
.

Given some positive integer r, we define Pn as the space of piecewise polynomials of degree r on the
dyadic partition In of step 2−Jn . The dimension of Pn depends on n and is denoted by Nn. Note
that Nn = (r + 1) 2Jn . This family is regular in the sense that the partition In has equispaced knots.

An estimator of ‖f‖∞ is constructed as proposed by Birgé and Massart [6] in the following

way. We take the infinite norm of f̂n, where f̂n denotes the (empirical) orthogonal projection of the
periodogram In on Pn. We denote by fn the L2-orthogonal projection of f on the same space. Then
the following theorem holds.

Theorem 3.3 Assume that f ∈ F s
p,q (M) with s > 1

2 + 1
p and 1 ≤ p ≤ 2. Suppose also that

Assumptions 1, 2 and 3 hold. For any n > 1, let j0 = j0 (n) be the integer such that 2j0 ≥ log n ≥
2j0−1, and let j1 = j1 (n) be the integer such that 2j1 ≥ n

log n ≥ 2j1−1. Take the constants δ = 6 and

b ∈
[

3
4 , 1
)
, and define the threshold

ξ̂j,n = 2

[
2
∥∥∥f̂n

∥∥∥
∞

(√
δ

(1 − b)2
log n

n
+ 2

j
2 ‖ψ‖∞

δ

(1 − b)2
log n

n

)
+

√
log n

n

]
. (3.2)

Then, if ‖f − fn‖∞ ≤ 1
4 ‖f‖∞ and Nn ≤ κ

(r+1)2
n

log n , where κ is a numerical constant and r is the

degree of the polynomials, the thresholding estimator (2.4) exists with probability tending to one as
n→ +∞ and satisfies

∆
(
f ; fHT

j0(n),j1(n),bθn,bξj,n

)
= Op

((
n

log n

)− 2s
2s+1

)
.

In Comte [8] the condition ‖f − fn‖∞ ≤ 1
4 ‖f‖∞ is examined. If some regularity conditions are

set on f , then it is generally satisfied, as is known from approximation theory. Indeed for f ∈ Bs
p,∞,

with s > 1
p , we know from DeVore and Lorentz [13] that

‖f − fn‖∞ ≤ C (s) |f |s,pN
−

“
s− 1

p

”

n ,

with |f |s,p = sup
y>0

y−swd (f, y)p < +∞, where wd (f, y)p is the modulus of smoothness and d = [s] + 1.

Therefore ‖f − fn‖∞ ≤ 1
4 ‖f‖∞ if Nn ≥

(
4C (s)

|f |s,p

‖f‖
∞

) 1

s− 1
p := C (f, s, p), where C (f, s, p) is a

constant depending on f , s and p.
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4 Numerical experiments

In this section we present some numerical experiments which support the claims made in the theo-
retical part of this paper. The programs for our simulations were implemented using the MATLAB
programming environment. We simulate a time series which is a superposition of an ARMA(2,2)
process and a Gaussian white noise:

Xt = Yt + coZt, (4.1)

where

Yt + a1Yt−1 + a2Yt−2 = b0εt + b1εt−1 + b2εt−2,

and {εt}, {Zt} are independent Gaussian white noise processes with unit variance. The constants
were chosen as a1 = 0.2, a2 = 0.9, b0 = 1, b1 = 0, b2 = 1 and c0 = 0.5. We generated a sample of
size n = 1024 according to (4.1). The spectral density f of (Xt) is shown in Figure 1. It has two
moderately sharp peaks and is smooth in the rest of the domain.

Starting from the periodogram we considered the Symmlet 8 basis, i.e. the least asymmetric,
compactly supported wavelets which are described in Daubechies [11]. We choose j0 and j1 and as in
the hypothesis of Theorem 3.3 and left the coefficients assigned to the father wavelets unthresholded.
Hard thresholding is performed using the threshold ξ̂j,n as in (3.2) for the levels j = j0, ..., j1, and the
empirical coefficients from the higher resolution scales j > j1 are set to zero. This gives the estimate

fHT
j0,j1,ξj,n

=

2j0−1∑

k=0

âj0,kφj0,k +

j1∑

j=j0

2j−1∑

k=0

b̂j,kI
(∣∣∣̂bj,k

∣∣∣ > ξj,n

)
ψj,k, (4.2)

which is obtained by simply thresholding the wavelet coefficients (2.2) of the periodogram. Note that
such an estimator is not guaranteed to be strictly positive in the interval [0, 1]. However, we use it
to built our strictly positive estimator fHT

j0,j1,bθn,bξj,n

(see (2.4) to recall its definition). We want to find

θ̂n such that

〈
fHT

j0,j1,bθn,bξj,n
, ψj,k

〉
= δbξj,n

(
β̂j,k

)
for all (j, k) ∈ Λj1

For this, we take

θ̂n = arg min
θ∈R

#Λj1

∑

(j,k)∈Λj1

(
〈fj0,j1,θ, ψj,k〉 − δbξj,n

(
β̂j,k

))2
,

where fj0,j1,θ (.) = exp

(
∑

(j,k)∈Λj1

θj,kψj,k (.)

)
∈ Ej1 and Ej1 is the family (2.1). To solve this opti-

mization problem we used a gradient descent method with an adaptive step, taking as initial value

θ0 =

〈
log

((
fHT

j0,j1,bξj,n

)

+

)
, ψj,k

〉
,

where
(
fHT

j0,j1,bξj,n
(ω)
)

+
:= max

(
fHT

j0,j1,bξj,n
(ω) , η

)
for all ω ∈ [0, 1] and η > 0 is a small constant.
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Figure 1: True spectral density f , wavelet thresholding estimator fHT
j0,j1,bξj,n

and final positive estimator

fHT
j0,j1,bθn,bξj,n

.

In Figure 1 we display the unconstrained estimator fHT
j0,j1,ξj,n

as in (4.2), obtained by thresholding

of the wavelet coefficients of the periodogram, together with the estimator fHT
j0,j1,bθn,bξj,n

, which is

strictly positive by construction. Note that these wavelet estimators capture well the peaks and look
fairly good on the smooth part too.

We compared our method with the spectral density estimator proposed by Comte [8], which is
based on a model selection procedure. As an example, in Comte [8], the author study the behavior of
such estimators using a collection of nested models (Sm), with m = 1, ..., 100, where Sm is the space of
piecewise constant functions, generated by a histogram basis on [0, 1] of dimension m with equispaced
knots (see Comte [8] for further details). In Figure 2 we show the result of this comparison. Note
that our method better captures the peaks of the true spectral density.

5 Appendix

5.1 Some notations and definitions.

Throughout all the proofs, C denotes a generic constant whose value may change from line to line.
First, let us introduce the following definitions.
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Figure 2: True spectral density f , final positive estimator fHT
j0,j1,bθn,bξj,n

and estimator via model

selection using regular histograms.

Definition 5.1 Let Vj denote the usual multiresolution space at scale j spanned by the scaling func-
tions (φj,k)0≤k≤2j−1, and define Aj < +∞ as the constant such that ‖υ‖∞ ≤ Aj ‖υ‖L2

for all υ ∈ Vj.

Definition 5.2 For f ∈ F s
p,q(M), let g = log (f). Then for j ≥ j0 − 1, define Dj = ‖g − gj‖L2

and

γj = ‖g − gj‖∞ , where gj =
2j−1∑
k=0

θj,kψj,k, with θj,k = 〈g, ψj,k〉.

The proof of the following lemma immediately follows from the arguments in the proof of Lemma
A.5 in Antoniadis and Bigot [1].

Lemma 5.3 Let j ∈ N. Then Aj ≤ C2j/2. Suppose that f ∈ F s
p,q(M) with 1 ≤ p ≤ 2 and

s > 1
p . Then, uniformly over F s

p,q(M), Dj ≤ C2−j(s+1/2−1/p) and γj ≤ C2−j(s−1/p) where C denotes
constants depending only on M , s, p and q.

5.2 Technical results on information projection

The estimation of density function based on information projection has been introduced by Barron
and Sheu [2]. To apply this method in our context, we recall for completeness a set of results that
are useful to prove the existence of our estimators. The proofs of the following lemmas immediately
follow from results in Barron and Sheu [2] and Antoniadis and Bigot [1].
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Lemma 5.4 Let f and g two functions in L2([0, 1]) such that log
(

f
g

)
is bounded. Then ∆ (f ; g) ≤

1
2e

‚‚‚log
“

f
g

”‚‚‚
∞

∫ 1
0 f
(
log
(

f
g

))2
dµ, where µ denotes the Lebesgue measure on [0, 1].

Lemma 5.5 Let β ∈ R
#Λj1 . Assume that there exists some θ (β) ∈ R

#Λj1 such that, for all (j, k) ∈
Λj1, θ (β) is a solution of

〈
fj,θ(β), ψj,k

〉
= βj,k.

Then for any function f such that 〈f, ψj,k〉 = βj,k for all (j, k) ∈ Λj1, and for all θ ∈ R
#Λj1 , the

following Pythagorian-like identity holds:

∆ (f ; fj,θ) = ∆
(
f ; fj,θ(β)

)
+ ∆

(
fj,θ(β); fj,θ

)
. (5.1)

The next lemma is a key result which gives sufficient conditions for the existence of the vector
θ (β) as defined in Lemma 5.5. This lemma also relates distances between the functions in the
exponential family to distances between the corresponding wavelet coefficients. Its proof relies upon
a series of lemmas on bounds within exponential families for the Kullback-Leibler divergence and
can be found in Barron and Sheu [2] and Antoniadis and Bigot [1].

Lemma 5.6 Let θ0 ∈ R
#Λj1 , β0 =

(
β0,(j,k)

)
(j,k)∈Λj1

∈ R
#Λj1 such that β0,(j,k) = 〈fj,θ0, ψj,k〉 for

all (j, k) ∈ Λj1, and β̃ ∈ R
#Λj1 a given vector. Let b = exp

(
‖log (fj,θ0)‖∞

)
and e = exp(1). If∥∥∥β̃ − β0

∥∥∥
2
≤ 1

2ebAj1
then the solution θ

(
β̃
)

of

〈fj1,θ, ψj,k〉 = β̃j,k for all (j, k) ∈ Λj1

exists and satisfies:
∥∥∥θ
(
β̃
)
− θ0

∥∥∥
2
≤ 2eb

∥∥∥β̃ − β0

∥∥∥
2∥∥∥∥∥log

(
fj1,θ(β0)

f
j1,θ(eβ)

)∥∥∥∥∥
∞

≤ 2ebAj1

∥∥∥β̃ − β0

∥∥∥
2

∆
(
fj1,θ(β0); fj1,θ(eβ)

)
≤ 2eb

∥∥∥β̃ − β0

∥∥∥
2

2
,

where ‖β‖2 denotes the standard Euclidean norm for β ∈ R
#Λj1 .

Lemma 5.7 Suppose that f ∈ F s
p,q(M) with s > 1

p and 1 ≤ p ≤ 2. Then, there exists a constant M1

such that for all f ∈ F s
p,q(M), 0 < M−1

1 ≤ f ≤M1 < +∞.

5.3 Technical results for the proofs of the main results

Lemma 5.8 Let n ≥ 1, βj,k := 〈f, ψj,k〉 and β̂j,k := 〈In, ψj,k〉 for j ≥ j0 − 1 and 0 ≤ k ≤ 2j − 1.

Suppose that Assumptions 1, 2 and 3 hold. Then, Bias2
(
β̂j,k

)
:=
(
E

(
β̂j,k

)
− βj,k

)2
≤ C2

∗

n with

C∗ =

√
C2+39C2

1
4π2 , and V ar

(
β̂j,k

)
:= E

(
β̂j,k − E

(
β̂j,k

))2
≤ C

n for some constant C > 0. Moreover,

there exists a constant M2 > 0 such that for all f ∈ F s
p,q(M) with s > 1

p and 1 ≤ p ≤ 2,

E

(
β̂j,k − βj,k

)2
= Bias2

(
β̂j,k

)
+ V ar

(
β̂j,k

)
≤ M2

n
.
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Proof. Note that Bias2
(
β̂j,k

)
≤ ‖f − E (In)‖2

L2
. Using Proposition 1 in Comte [8], Assumptions

1 and 2 imply that ‖f − E (In)‖2
L2

≤ C2+39C2
1

4π2n
, which gives the result for the bias term. To bound

the variance term, remark that V ar
(
β̂j,k

)
= E 〈In − E (In) , ψj,k〉2 ≤ E‖In − E (In) ‖2

L2
‖ψj,k‖2

L2
=

∫ 1
0 E|In(ω)−E (In(ω)) |2dω. Then, under Assumptions 1 and 2, it follows that there exists an absolute

constant C > 0 such that for all ω ∈ [0, 1], E|In(ω) − E (In(ω)) |2 ≤ C
n . To complete the proof it

remains to remark that Assumption 3 implies that these bounds for the bias and the variance hold
uniformly over F s

p,q(M).

Lemma 5.9 Let n ≥ 1, bj,k := 〈f, ψj,k〉 and b̂j,k := 〈In, ψj,k〉 for j ≥ j0 and 0 ≤ k ≤ 2j − 1. Suppose
that Assumptions 1 and 2 hold. Then for any x > 0,

P

(
|̂bj,k − bj,k| > 2‖f‖∞

(√
x

n
+ 2j/2‖ψ‖∞

x

n

)
+
C∗√
n

)
≤ 2e−x,

where C∗ =

√
C2+39C2

1
4π2

Proof. Note that

b̂j,k =
1

2πn

n∑

t=1

n∑

t′=1

(
Xt −X

) (
Xt′ −X

)∗
1∫

0

ei2πω(t−t′)ψj,k (ω) dω =
1

2πn
X

T

Tn(ψj,k)X
∗,

where X =
(
X1 −X, ...,Xn −X

)T
, XT denotes the transpose of X and Tn(ψj,k) is the Toeplitz

matrix with entries [Tn(ψj,k)]t,t′ =
1∫
0

ei2πω(t−t′)ψj,k (ω) dω, 1 ≤ t, t′ ≤ n. We can assume without

loss of generality that E (Xt) = 0, and then under under Assumptions 1 and 2, X is a centered

Gaussian vector in R
n with covariance matrix Σ = Tn(f). Using the decomposition X = Σ

1
2 ε,

where ε ∼ N (0, In), it follows that b̂j,k = 1
2πnε

TAj,kε, with Aj,k = Σ
1
2Tn(ψj,k)Σ

1
2 . Note also that

E

(
b̂j,k

)
= 1

2πn tr (Aj,k), where tr (A) denotes the trace of a matrix A.

Now let s1, . . . , sn be the eigenvalues of the Hermitian matrix Aj,k with |s1| ≥ |s2| ≥ . . . ≥ |sn|
and let Z = 2πn

(
b̂j,k − E

(
b̂j,k

))
= εTAj,kε− tr (Aj,k). Then, for 0 < λ < (2|s1|)−1 one has that

log
(
E

(
eλZ
))

=

n∑

i=1

−λsi −
1

2
log (1 − 2λsi)

=

n∑

i=1

+∞∑

ℓ=2

1

2ℓ
(2siλ)ℓ ≤

n∑

i=1

+∞∑

ℓ=2

1

2ℓ
(2|si|λ)ℓ

≤
n∑

i=1

−λ|si| −
1

2
log (1 − 2λ|si|)

where we have used the fact that − log(1 − x) =
∑+∞

ℓ=1
xℓ

ℓ for x < 1. Then using the inequality

−u− 1
2 log (1 − 2u) ≤ u2

1−2u that holds for all 0 < u < 1
2 , the above inequality implies that

log
(
E

(
eλZ
))

≤
n∑

i=1

λ2|si|2
1 − 2λ|si|

≤ λ2‖s‖2

1 − 2λ|s1|
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where ‖s‖2 =
∑n

i=1 |si|2. Arguing as in Birgé and Massart [6], the above inequality implies that for
any x > 0, P(|Z| > 2|s1|x+ 2‖s‖√x) ≤ 2e−x, which can also be written as

P

(
|̂bj,k − E

(
b̂j,k

)
| > 2|s1|

x

2πn
+ 2

‖s‖
2πn

√
x

)
≤ 2e−x,

that implies

P

(
|̂bj,k − E

(
b̂j,k

)
| > 2|s1|

x

n
+ 2

‖s‖
n

√
x

)
≤ 2e−x. (5.2)

Let τ (A) denotes the spectral radius of a matrix A. For the Toeplitz matrices Σ = Tn(f) and
Tn(ψj,k) one has that

τ (Σ) ≤ ‖f‖∞ and τ (Tn(ψj,k)) ≤ ‖ψj,k‖∞ = 2j/2‖ψ‖∞

The above inequalities imply that

|s1| = τ
(
Σ

1
2Tn(ψj,k)Σ

1
2

)
≤ τ (Σ) τ (Tn(ψj,k)) ≤ ‖f‖∞2j/2‖ψ‖∞ (5.3)

Let λi, i = 1., , , .n, be the eigenvalues of Tn(ψj,k). From Lemma 3.1 in Davies [12], we have that

lim sup
n→+∞

1

n
tr
(
Tn(ψj,k)

2
)

= lim sup
n→+∞

1

n

n∑

i=1

λ2
i =

1∫

0

ψ2
j,k (ω) dω = 1,

which implies that

‖s‖2 =
n∑

i=1

|si|2 = tr
(
A2

j,k

)
= tr

(
(ΣTn(ψj,k))

2
)
≤ τ (Σ)2 tr

(
Tn(ψj,k)

2
)
≤ ‖f‖2

∞n, (5.4)

where we have used the inequality tr
(
(AB)2

)
≤ τ (A)2 tr

(
B2
)

that holds for any pair of Hermitian
matrices A,B. Combining (5.2), (5.3) and (5.4), we finally obtain that for any x > 0

P

(
|̂bj,k − E

(
b̂j,k

)
| > 2‖f‖∞

(√
x

n
+ 2j/2‖ψ‖∞

x

n

))
≤ 2e−x. (5.5)

Now, let ξj,n = 2‖f‖∞
(√

x
n + 2j/2‖ψ‖∞ x

n

)
+ C∗√

n
, and note that

P

(∣∣∣̂bj,k − bj,k

∣∣∣ > ξj,n

)
≤ P

(∣∣∣̂bj,k − E

(
b̂j,k

)∣∣∣ > ξj,n −
∣∣∣E
(
b̂j,k

)
− bj,k

∣∣∣
)
,

By Lemma 5.8, one has that
∣∣∣E
(
b̂j,k

)
− bj,k

∣∣∣ ≤ C∗√
n
, and thus ξj,n −

∣∣∣E
(
b̂j,k

)
− bj,k

∣∣∣ ≥ ξj,n − C∗√
n

which implies using (5.5) that

P

(∣∣∣̂bj,k − bj,k

∣∣∣ > ξj,n

)
≤ P

(∣∣∣̂bj,k − E

(
b̂j,k

)∣∣∣ > ξj,n − C∗√
n

)
≤ 2e−x,

which completes the proof of Lemma 5.9.
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Lemma 5.10 Assume that f ∈ F s
p,q (M) with s > 1

2 + 1
p and 1 ≤ p ≤ 2. Suppose that Assumptions

1, 2 and 3 hold. For any n > 1, define j0 = j0 (n) to be the integer such that 2j0 > log n ≥ 2j0−1,
and j1 = j1 (n) to be the integer such that 2j1 ≥ n

log n ≥ 2j1−1. For δ ≥ 6, take the threshold

ξj,n = 2

[
2 ‖f‖∞

(√
δ log n

n + 2
j
2 ‖ψ‖∞ δ log n

n

)
+ C∗√

n

]
as in (3.1), where C∗ =

√
C2+39C2

1
4π2 . Let βj,k :=

〈f, ψj,k〉 and β̂ξj,n,(j,k) := δξj,n

(
β̂j,k

)
with (j, k) ∈ Λj1 as in (2.4). Take β = (βj,k)(j,k)∈Λj1

and

β̂ξj,n
=
(
β̂ξj,n,(j,k)

)

(j,k)∈Λj1

. Then there exists a constant M3 > 0 such that for all sufficiently large

n:

E

∥∥∥β − β̂ξj,n

∥∥∥
2

2
:= E




∑

(j,k)∈Λj1

∣∣∣βj,k − δξj,n

(
β̂j,k

)∣∣∣
2


 ≤M3

(
n

log n

)− 2s
2s+1

uniformly over F s
p,q(M).

Proof. Taking into account that

E

∥∥∥β − β̂ξj,n

∥∥∥
2

2
=

2j0−1∑

k=0

E (aj0,k − âj0,k)
2 +

j1∑

j=j0

2j−1∑

k=0

E

[(
bj,k − b̂j,k

)2
I
(∣∣∣̂bj,k

∣∣∣ > ξj,n

)]

+

j1∑

j=j0

2j−1∑

k=0

b2j,kP
(∣∣∣̂bj,k

∣∣∣ ≤ ξj,n

)

:= T1 + T2 + T3, (5.6)

we are interested in bounding these three terms. The bound for T1 follows from Lemma 5.8 and the
fact that j0 = log2 (log n) ≤ 1

2s+1 log2 (n):

T1 =

2j0−1∑

k=0

E (aj0,k − âj0,k)
2 = O

(
2j0

n

)
≤ O

(
n−

2s
2s+1

)
. (5.7)

To bound T2 and T3 we proceed as in Hardle, Kerkyacharian, Picard and Tsybakov [17]. Write

T2 =

j1∑

j=j0

2j−1∑

k=0

E

[(
bj,k − b̂j,k

)2
{
I

(∣∣∣̂bj,k
∣∣∣ > ξj,n , |bj,k| >

ξj,n
2

)
+ I

(∣∣∣̂bj,k
∣∣∣ > ξj,n , |bj,k| ≤

ξj,n
2

)}]
,

and

T3 =

j1∑

j=j0

2j−1∑

k=0

b2j,k

[
P
(∣∣∣̂bj,k

∣∣∣ ≤ ξj,n , |bj,k| ≤ 2ξj,n

)
+ P

(∣∣∣̂bj,k
∣∣∣ ≤ ξj,n, |bj,k| > 2ξj,n

)]
.

Note that

I

(∣∣∣̂bj,k
∣∣∣ > ξj,n , |bj,k| ≤

ξj,n
2

)
≤ I

(∣∣∣̂bj,k − bj,k

∣∣∣ >
ξj,n
2

)
, (5.8)

I
(∣∣∣̂bj,k

∣∣∣ ≤ ξj,n , |bj,k| > 2ξj,n

)
≤ I

(∣∣∣̂bj,k − bj,k

∣∣∣ >
ξj,n
2

)
,
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and if
∣∣∣̂bj,k

∣∣∣ ≤ ξj,n , |bj,k| > 2ξj,n , then
∣∣∣̂bj,k

∣∣∣ ≤ |bj,k|
2 , and

∣∣∣̂bj,k − bj,k

∣∣∣ ≥
∣∣∣̂bj,k

∣∣∣−|bj,k| ≥ |bj,k|
2 . Therefore

b2j,k ≤ 4
(
b̂j,k − bj,k

)2
. (5.9)

Using (5.8) and (5.9), we get

T2 + T3 ≤
j1∑

j=j0

2j−1∑

k=0

E

{(
bj,k − b̂j,k

)2
}
I

(
|bj,k| >

ξj,n
2

)
+

j1∑

j=j0

2j−1∑

k=0

b2j,kI (|bj,k| ≤ 2ξj,n)

+ 5

j1∑

j=j0

2j−1∑

k=0

E

{(
bj,k − b̂j,k

)2
I

(∣∣∣̂bj,k − bj,k

∣∣∣ >
ξj,n
2

)}

:= T ′ + T ′′ + T ′′′.

Now we bound T ′′′. Using Cauchy-Schwarz inequality, we obtain

T ′′′ ≤ 5

j1∑

j=j0

2j−1∑

k=0

E
1
2

[(
bj,k − b̂j,k

)4
]
P

1
2

(∣∣∣̂bj,k − bj,k

∣∣∣ >
ξj,n
2

)
.

By the same inequality we get E

[(
b̂j,k − bj,k

)4
]

= E

[
〈In − f, ψj,k〉4

]
≤ E

[
‖In − f‖4

L2
‖ψj,k‖4

L2

]
=

O
(
E ‖In − f‖4

L2

)
. It can be checked that E ‖In − f‖4

L2
≤ 8E

(
‖In − E (In)‖4

L2
+ ‖E (In) − f‖4

L2

)
.

According to Comte [8], E ‖In − E (In)‖4
L2

= O
(
n2
)
. From the proof of Lemma 5.8 we get that

‖E (In) − f‖4
L2

= O
(

1
n2

)
. Therefore E ‖In − f‖4

L2
≤ O

(
n2 + 1

n2

)
= O

(
n2
)
. Hence

E

[(
b̂j,k − bj,k

)4
]

= O
(
E ‖In − f‖4

L2

)
= O

(
n2
)
.

For the bound of P
(∣∣∣̂bj,k − bj,k

∣∣∣ > ξj,n

2

)
we use the result of Lemma 5.9 with x = δ log n, where

δ > 0 is a constant to be specified later. We obtain

P

(∣∣∣̂bj,k − bj,k

∣∣∣ >
ξj,n
2

)
= P

(∣∣∣̂bj,k − bj,k

∣∣∣ > 2 ‖f‖∞

(√
δ log n

n
+ 2

j
2 ‖ψ‖∞

δ log n

n

)
+
C∗√
n

)

≤ 2e−δ log n = 2n−δ.

Therefore, for δ ≥ 6, we get

T ′′′ ≤ 5

j1∑

j=j0

2j−1∑

k=0

E
1
2

[(
bj,k − b̂j,k

)4
]
P

1
2

(∣∣∣̂bj,k − bj,k

∣∣∣ >
ξj,n
2

)

≤ C

j1∑

j=j0

2j−1∑

k=0

n1− δ
2 ≤ Cn−2

j1∑

j=j0

2j = O
(
n−22j1

)
= O

(
n−1

log n

)
≤ O

(
n−

2s
2s+1

)
.

Now we follow results found in Pensky and Sapatinas [24] to bound T ′ and T ′′. Let jA be the

integer such that 2jA >
(

n
log n

) 1
2s+1

> 2jA−1 (note that given our assumptions j0 ≤ jA ≤ j1 for

16



all sufficiently large n), then T ′ can be partitioned as T ′ = T ′
1 + T ′

2, where the first component is
calculated over the set of indices j0 ≤ j ≤ jA and the second component over jA +1 ≤ j ≤ j1. Hence,
using Lemma 5.8 we obtain

T ′
1 ≤ C

jA∑

j=j0

2j

n
= O

(
2jAn−1

)
= O

((
n

log n

) 1
2s+1

n−1

)
≤ O

(
n−

2s
2s+1

)
. (5.10)

To obtain a bound for T ′
2, we will use that if f ∈ F s

p,q (A), then for some constant C, dependent on
s, p, q and A > 0 only, we have that

2j−1∑

k=0

b2j,k ≤ C2−2js∗ , (5.11)

for 1 ≤ p ≤ 2, where s∗ = s+ 1
2 − 1

p . Taking into account that I
(
|bj,k| > ξj,n

2

)
≤ 4

ξ2
j,n

|bj,k|2, we get

T ′
2 ≤ C

n

j1∑

j=jA

2j−1∑

k=0

4

ξ2j,n
|bj,k|2 ≤ C

n

j1∑

j=jA

2j−1∑

k=0

|bj,k|2[
2 ‖f‖∞

(√
δ log n

n + 2
j
2 ‖ψ‖∞ δ log n

n

)
+ C∗√

n

]2

≤ C

n

j1∑

j=jA

2j−1∑

k=0

|bj,k|2

4 ‖f‖2
∞

(√
δ log n

n + 2
jA
2 ‖ψ‖∞ δ log n

n

)2

≤ C (‖f‖∞)
(√

δ log n+ ‖ψ‖∞ δn
−s

2s+1 (log n)
4s+1
4s+2

)2 2−2s∗jA

j1∑

j=jA

2j−1∑

k=0

22js∗ |bj,k|2

≤ O
(
2−2s∗jA

)
= O



(

n

log n

)− 2s∗

2s+1


 ,

where we used the fact that
√
δ log n+ ‖ψ‖∞ δn

−s
2s+1 (log n)

4s+1
4s+2 → +∞ when n→ +∞. Now remark

that if p = 2 then s∗ = s and thus

T ′
2 = O



(

n

log n

)− 2s∗

2s+1


 = O

((
n

log n

)− 2s
2s+1

)
. (5.12)

For the case 1 ≤ p < 2, the repeated use of the fact that if B,D > 0 then I (|bj,k| > B +D) ≤
I (|bj,k| > B), allow us to obtain that

T ′
2 ≤ C

j1∑

j=jA

2j−1∑

k=0

1

n
I

(
|bj,k| >

ξj,n
2

)
≤ C

j1∑

j=jA

2j−1∑

k=0

1

n
I

(
|bj,k| > 2 ‖f‖∞

√
δ log n

n

)

= C

j1∑

j=jA

2j−1∑

k=0

1

n
|bj,k|−p |bj,k|p I

(
|bj,k|−p <

(
2 ‖f‖∞

√
δ

√
log n

n

)−p)

≤ C

j1∑

j=jA

2j−1∑

k=0

1

n

(
2 ‖f‖∞

√
δ

√
log n

n

)−p

|bj,k|p .

17



Since f ∈ F s
p,q (A) it follows that there exists a constant C depending only on p, q, s and A such that

2j−1∑

k=0

|bj,k|p ≤ C2−pjs∗, (5.13)

where s∗ = s+ 1
2 − 1

p as before. By (5.13) we get

T ′
2 ≤ (log n)C (‖f‖∞ , δ, p)

j1∑

j=jA

2j−1∑

k=0

(log n)−
p
2

n1− p
2

|bj,k|p

≤ C (‖f‖∞ , δ, p)
(log n)1−

p
2

n1− p
2

j1∑

j=jA

C2−pjs∗ = O

(
(log n)1−

p
2

n1− p
2

2−pjAs∗

)

= O



(

n

log n

)p
2
−1( n

log n

)−
p(s+ 1

2−
1
p)

2s+1


 = O

((
n

log n

)− 2s
2s+1

)
. (5.14)

Hence, by (5.10), (5.12) and (5.14), T ′ = O

((
n

log n

)− 2s
2s+1

)
.

Now, set jA as before, then T ′′ can be split into T ′′ = T ′′
1 + T ′′

2 , where the first component is
calculated over the set of indices j0 ≤ j ≤ jA and the second component over jA + 1 ≤ j ≤ j1. Then

T ′′
1 ≤

jA∑

j=j0

2j−1∑

k=0

b2j,kI


|bj,k|2 ≤ 32


4 ‖f‖2

∞

(√
δ log n

n
+ 2

j
2 ‖ψ‖∞

δ log n

n

)2

+
C2
∗
n






≤ C (‖f‖∞)

jA∑

j=j0

2j−1∑

k=0

(√
δ log n

n
+ 2

j
2 ‖ψ‖∞

δ log n

n

)2

+ C (C∗)
jA∑

j=j0

2j−1∑

k=0

1

n
,

where we used that (B +D)2 ≤ 2
(
B2 +D2

)
for all B,D ∈ R. Using the same property again, we

obtain the desired bound for T ′′
1 :

T ′′
1 ≤ C (‖f‖∞)

jA∑

j=j0

2j−1∑

k=0

(
δ log n

n
+ 2j ‖ψ‖2

∞
δ2 (log n)2

n2

)
+ C (C∗)

jA∑

j=j0

2j−1∑

k=0

1

n

≤ C (‖f‖∞ , δ)
log n

n

jA∑

j=j0

2j + C (‖f‖∞ , δ, ‖ψ‖∞)
(log n)2

n2

jA∑

j=j0

22j +
C (C∗)
n

jA∑

j=j0

2j

≤ C (‖f‖∞ , δ, C∗)
log n

n
2jA + C (‖f‖∞ , δ, ‖ψ‖∞)

(log n)2

n2
22jA

= O
(
(log n)

2s
2s+1 n−

2s
2s+1 + (log n)

4s
2s+1 n−

4s
2s+1

)
≤ O

((
n

log n

)− 2s
2s+1

)
. (5.15)

To bound T ′′
2 , we proceed as follows:

T ′′
2 ≤

j1∑

j=jA+1

2j−1∑

k=0

b2j,k = O
(
2−2jAs∗

)
= O



(

n

log n

)− 2s∗

2s+1


 ,
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where we have used the condition (5.11). Now remark that if p = 2 then s∗ = s and thus

T ′′
2 = O



(

n

log n

)− 2s∗

2s+1


 = O

((
n

log n

)− 2s
2s+1

)
. (5.16)

If 1 ≤ p < 2,

T ′′
2 =

j1∑

j=jA+1

2j−1∑

k=0

|bj,k|2−p |bj,k|p I (|bj,k| ≤ 2ξj,n )

≤
j1∑

j=jA+1

2j−1∑

k=0

(
8 ‖f‖∞

√
δ log n

n
+ 8 ‖f‖∞ 2

j1
2 ‖ψ‖∞

δ log n

n
+ 4

√
log n

n

)2−p

|bj,k|p

= (C (‖f‖∞ , δ) + 4 + C (‖f‖∞ , ‖ψ‖∞ , δ))2−p

(√
log n

n

)2−p j1∑

j=jA+1

2j−1∑

k=0

|bj,k|p

= O

((
log n

n

) 2−p
2

2−pjAs∗

)
= O



(

n

log n

) p
2
−1−

p(s+1
2−

1
p)

2s+1


 = O

((
n

log n

)− 2s
2s+1

)
, (5.17)

where we have used condition (5.13) and the fact that C∗ ≤ √
log n for n sufficiently large, taking

into account that the constant C∗ := C (C1, C2) does not depend on n. Hence, by (5.15), (5.16) and

(5.17), T ′′ = O

((
n

log n

)− 2s
2s+1

)
. Combining all terms in (5.6), we conclude that:

E

∥∥∥β − β̂ξj,n

∥∥∥
2

2
= O

((
n

log n

)− 2s
2s+1

)
.

This completes the proof.

Lemma 5.11 Assume that f ∈ F s
p,q (M) with s > 1

2 + 1
p and 1 ≤ p ≤ 2. Suppose that Assumptions

1, 2 and 3 hold. For any n > 1, define j0 = j0 (n) to be the integer such that 2j0 > log n ≥
2j0−1, and j1 = j1 (n) to be the integer such that 2j1 ≥ n

log n ≥ 2j1−1. Define the threshold ξ̂j,n =

2

[
2
∥∥∥f̂n

∥∥∥
∞

(√
δ

(1−b)2
log n

n + 2
j
2 ‖ψ‖∞ δ

(1−b)2
log n

n

)
+
√

log n
n

]
as in (3.2) for some constants δ = 6 and

b ∈
[

3
4 , 1
)
. Let βj,k := 〈f, ψj,k〉 and β̂bξj,n,(j,k)

:= δbξj,n

(
β̂j,k

)
with (j, k) ∈ Λj1 as in (2.4). Take β =

(βj,k)(j,k)∈Λj1
and β̂bξj,n

=
(
β̂bξj,n,(j,k)

)
(j,k)∈Λj1

. Then, if ‖f − fn‖∞ ≤ 1
4 ‖f‖∞ and Nn ≤ κ

(r+1)2
n

log n ,

where κ is a numerical constant and r is the degree of the polynomials, there exists a constant M4 > 0
such that for all sufficiently large n:

E

∥∥∥β − β̂bξj,n

∥∥∥
2

2
:= E




∑

(j,k)∈Λj1

∣∣∣δbξj,n

(
β̂j,k

)
− βj,k

∣∣∣
2


 ≤M4

(
n

log n

)− 2s
2s+1

uniformly over F s
p,q(M).
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Proof. Recall that fn is the L2 orthogonal projection of f on the space Pn of piecewise polynomials
of degree r on a dyadic partition with step 2−Jn . The dimension of Pn is Nn = (r + 1) 2Jn . Let f̂n

similarly be the orthogonal projection of In on Pn. By doing analogous work as the one done to
obtain (5.6), we get that

E

∥∥∥β − β̂bξj,n

∥∥∥
2

2
:= T1 + T2 + T3, (5.18)

where T1 =
2j0−1∑
k=0

E (aj0,k − âj0,k)
2 do not depend on ξ̂j,n. Therefore, by (5.7), T1 = O

(
n−

2s
2s+1

)
. For

T2 and T3 we have that

T2 =

j1∑

j=j0

2j−1∑

k=0

E

[(
bj,k − b̂j,k

)2
{
I

(∣∣∣̂bj,k
∣∣∣ > ξ̂j,n , |bj,k| >

ξ̂j,n
2

)
+ I

(∣∣∣̂bj,k
∣∣∣ > ξ̂j,n , |bj,k| ≤

ξ̂j,n
2

)}]

and

T3 =

j1∑

j=j0

2j−1∑

k=0

b2j,k

[
P
(∣∣∣̂bj,k

∣∣∣ ≤ ξ̂j,n , |bj,k| ≤ 2ξ̂j,n

)
+ P

(∣∣∣̂bj,k
∣∣∣ ≤ ξ̂j,n, |bj,k| > 2ξ̂j,n

)]
.

Note that

I

(∣∣∣̂bj,k
∣∣∣ > ξ̂j,n , |bj,k| ≤

ξ̂j,n
2

)
≤ I

(∣∣∣̂bj,k − bj,k

∣∣∣ >
ξ̂j,n
2

)
, (5.19)

I
(∣∣∣̂bj,k

∣∣∣ ≤ ξ̂j,n , |bj,k| > 2ξ̂j,n

)
≤ I

(∣∣∣̂bj,k − bj,k

∣∣∣ >
ξ̂j,n
2

)
,

and if
∣∣∣̂bj,k

∣∣∣ ≤ ξ̂j,n , |bj,k| > 2ξ̂j,n , then
∣∣∣̂bj,k

∣∣∣ ≤ |bj,k|
2 , and

∣∣∣̂bj,k − bj,k

∣∣∣ ≥
∣∣∣̂bj,k

∣∣∣−|bj,k| ≥ |bj,k|
2 . Therefore

b2j,k ≤ 4
(
b̂j,k − bj,k

)2
. (5.20)

Using (5.19) and (5.20), we get

T2 + T3 ≤
j1∑

j=j0

2j−1∑

k=0

E

{(
bj,k − b̂j,k

)2
I

(
|bj,k| >

ξ̂j,n
2

)}

+

j1∑

j=j0

2j−1∑

k=0

E

{
b2j,kI

(
|bj,k| ≤ 2ξ̂j,n

)}

+ 5

j1∑

j=j0

2j−1∑

k=0

E

{(
bj,k − b̂j,k

)2
I

(∣∣∣̂bj,k − bj,k

∣∣∣ >
ξ̂j,n
2

)}

:= T ′ + T ′′ + T ′′′.

Now we bound T ′′′. Using Cauchy-Schwarz inequality, one obtains

T ′′′ ≤ 5

j1∑

j=j0

2j−1∑

k=0

E
1
2

[(
bj,k − b̂j,k

)4
]
P

1
2

(∣∣∣̂bj,k − bj,k

∣∣∣ >
ξ̂j,n
2

)
,
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From Lemma 5.9 we have that for any y > 0 the following exponential inequality holds:

P

(∣∣∣̂bj,k − bj,k

∣∣∣ > 2 ‖f‖∞
(√

y

n
+ 2

j
2 ‖ψ‖∞

y

n

)
+
C∗√
n

)
≤ 2e−y. (5.21)

As in Comte [8], let

Θn,b =





∣∣∣∣∣∣

∥∥∥f̂n

∥∥∥
∞

‖f‖∞
− 1

∣∣∣∣∣∣
< b



 ,

with b ∈ (0, 1). Then, using that P
(∣∣∣̂bj,k − bj,k

∣∣∣ > B +D
)

≤ P
(∣∣∣̂bj,k − bj,k

∣∣∣ > B
)

for B,D > 0,

and taking xn = δ log n

(1−b)2
, one gets

P

(∣∣∣̂bj,k − bj,k

∣∣∣ >
ξ̂j,n
2

)
≤ P

(∣∣∣̂bj,k − bj,k

∣∣∣ > 2
∥∥∥f̂n

∥∥∥
∞

(√
xn

n
+ 2

j
2 ‖ψ‖∞

xn

n

))

≤ P

((∣∣∣̂bj,k − bj,k

∣∣∣ > 2
∥∥∥f̂n

∥∥∥
∞

(√
xn

n
+ 2

j
2 ‖ψ‖∞

xn

n

))
| Θn,b

)
P (Θn,b)

+ P

((∣∣∣̂bj,k − bj,k

∣∣∣ > 2
∥∥∥f̂n

∥∥∥
∞

(√
xn

n
+ 2

j
2 ‖ψ‖∞

xn

n

))
| Θc

n,b

)
P
(
Θc

n,b

)

:= P1P (Θn,b) + P2P
(
Θc

n,b

)
.

In Comte [8] is proved that if ‖f − fn‖∞ ≤ 1
4 ‖f‖∞ then P

(
Θc

n,b

)
≤ O

(
n−4

)
for the choices of

1 ≥ b ≈ 4
6

√
5
π = 0.841 ≥ 3

4 and Nn ≤ 1
36(r+1)2

n
log n , where κ = 1

36 is the numerical constant in the

hypothesis of our theorem. Following its proof it can be shown that this bound can be improved
taking κ = 1

36( 7
5)

and b as before (see the tree last equations of page 290 in [8]). With this selection of

κ we obtain that P
(
Θc

n,b

)
≤ O

(
n−6

)
. Using that P (Θn,b) = O (1) and P2 = O (1), it only remains

to bound the conditional probability P1. On Θn,b the following inequalities hold:
∥∥∥f̂n

∥∥∥
∞
> (1 − b) ‖f‖∞ (5.22)

and
∥∥∥f̂n

∥∥∥
∞
< (1 + b) ‖f‖∞ . (5.23)

Then, using (5.22) we get

P1 ≤ P

(∣∣∣̂bj,k − bj,k

∣∣∣ > 2 ‖f‖∞

(√
δ log n

n
+ 2

j
2 ‖ψ‖∞

δ log n

n

))
≤ 2e−δ log n = 2n−δ,

where the last inequality is obtained using (5.21) for y = δ log n > 0. Hence, using that δ = 6, we
get

P

(∣∣∣̂bj,k − bj,k

∣∣∣ >
ξ̂j,n
2

)
≤ O

(
n−6

)
.
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Therefore

T ′′′ ≤ 5

j1∑

j=j0

2j−1∑

k=0

E
1
2

[(
bj,k − b̂j,k

)4
]
P

1
2

(∣∣∣̂bj,k − bj,k

∣∣∣ >
ξ̂j,n
2

)
≤ C

j1∑

j=j0

2j−1∑

k=0

n−2

= Cn−2
j1∑

j=j0

2j ≤ O
(
n−22j1

)
= O

(
n−1

log n

)
≤ O

(
n−

2s
2s+1

)
.

Now we bound T ′. Let jA be the integer such that 2jA >
(

n
log n

) 1
2s+1

> 2jA−1, then T ′ = T ′
1 +T ′

2,

where the first component is computed over the set of indices j0 ≤ j ≤ jA and the second component
over jA + 1 ≤ j ≤ j1. Hence, using Lemma 5.8 we obtain

T ′
1 ≤

jA∑

j=j0

2j−1∑

k=0

E

(
bj,k − b̂j,k

)2
≤ C

n

jA∑

j=j0

2j ≤ O

(
2jA

n

)
= O

((
n

log n

) 1
2s+1

n−1

)
≤ O

(
n−

2s
2s+1

)
.

For T ′
2, one has

T ′
2 =

j1∑

j=jA

2j−1∑

k=0

E

{(
bj,k − b̂j,k

)2
I

(
|bj,k| >

ξ̂j,n
2
,Θn,b

)}

+

j1∑

j=jA

2j−1∑

k=0

E

{(
bj,k − b̂j,k

)2
I

(
|bj,k| >

ξ̂j,n
2
,Θc

n,b

)}

:= T ′
2,1 + T ′

2,2,

Now we bound T ′
2,1. Using that on Θn,b inequality (5.22) holds and following the same procedures

as in the proof of Theorem 3.2, we get

T ′
2,1 ≤

j1∑

j=jA

2j−1∑

k=0

E

(
bj,k − b̂j,k

)2
I

[
|bj,k| > 2 (1 − b) ‖f‖∞

(√
xn

n
+ 2

j
2 ‖ψ‖∞

xn

n

)
+

√
log n

n

]

≤ C

n

j1∑

j=jA

2j−1∑

k=0

I

(
|bj,k| > 2 (1 − b) ‖f‖∞

(√
xn

n
+ 2

j
2 ‖ψ‖∞

xn

n

))
(5.24)

≤ C

4

1

n

j1∑

j=jA

2j−1∑

k=0

|bj,k|2

‖f‖2
∞

(√
δ log n

n + 2
j
2 ‖ψ‖∞ δ log n

(1−b)n

)2

≤ C (‖f‖∞)
(√

δ log n+ ‖ψ‖∞ (1 − b)−1 δn
−s

2s+1 (log n)
4s+1
4s+2

)2 2−2s∗jA

j1∑

j=jA

2j−1∑

k=0

22js∗ |bj,k|2

≤ O
(
2−2s∗jA

)
= O



(

n

log n

)− 2s∗

2s+1


 ,

22



where we have used that
√
δ log n + ‖ψ‖∞ (1 − b)−1 δn

−s
2s+1 (log n)

4s+1
4s+2 → +∞ when n → +∞ and

that condition (5.11) is satisfied. Now remark that if p = 2 then s∗ = s and thus

T ′
2,1 = O

((
n

log n

)− 2s
2s+1

)
. (5.25)

For the case 1 ≤ p < 2, from (5.24) we have that

T ′
2,1 ≤ C

n

j1∑

j=jA

2j−1∑

k=0

I

(
|bj,k| > 2 ‖f‖∞

(√
δ log n

n
+ 2

j
2 ‖ψ‖∞

δ log n

(1 − b)n

))

≤ C

n

j1∑

j=jA

2j−1∑

k=0

I

(
|bj,k| > 2 ‖f‖∞

√
δ
log n

n

)

≤ C

n

j1∑

j=jA

2j−1∑

k=0

|bj,k|−p |bj,k|p I
(
|bj,k|−p <

(
2 ‖f‖∞

√
δ
log n

n

)−p)

≤ C (‖f‖∞ , δ, p)
1

n

(
log n

n

)− p
2

j1∑

j=jA

2j−1∑

k=0

|bj,k|p

≤ (log n)C (‖f‖∞ , δ, p)
(log n)−

p
2

n1− p
2

j1∑

j=jA

2j−1∑

k=0

|bj,k|p = O

(
(log n)1−

p
2

n1− p
2

2−pjAs∗

)

≤ O



(

n

log n

) p
2
−1( n

log n

)−
p(s+ 1

2−
1
p)

2s+1


 = O

((
n

log n

)− 2s
2s+1

)
, (5.26)

where we have used condition (5.13). Hence T ′
2,1 = O

((
n

log n

)− 2s
2s+1

)
.

Now we bound T ′
2,2. Using Cauchy-Schwarz inequality, we have

T ′
2,2 ≤ C

j1∑

j=jA

2j−1∑

k=0

nP
1
2

(
|bj,k| > 2

∥∥∥f̂n

∥∥∥
∞

(√
xn

n
+ 2

j
2 ‖ψ‖∞

xn

n

)
+

√
log n

n
| Θc

n,b

)
P

1
2
(
Θc

n,b

)

≤ C

j1∑

j=jA

2j−1∑

k=0

nP
1
2
(
Θc

n,b

)
≤ C

j1∑

j=jA

2j−1∑

k=0

n−2 ≤ O

(
2j1

n2

)
≤ O

(
n−1

log n

)
≤ O

(
n−

2s
2s+1

)
,

(5.27)

where we have used that E

{(
bj,k − b̂j,k

)4
}

= O
(
n2
)

and that P
(
Θc

n,b

)
≤ O

(
n−6

)
. Then, putting

together (5.25), (5.26) and (5.27), we obtain that T ′
2 = O

((
n

log n

)− 2s
2s+1

)
.

Now we bound T ′′. Set jA as before, then T ′′ = T ′′
1 +T ′′

2 , where the first component is calculated
over the set of indices j0 ≤ j ≤ jA and the second component over jA + 1 ≤ j ≤ j1. Recall that
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xn = δ log n

(1−b)2
, then

T ′′
1 =

jA∑

j=j0

2j−1∑

k=0

b2j,kP

(
|bj,k| ≤ 4

[
2
∥∥∥f̂n

∥∥∥
∞

(√
xn

n
+ 2

j
2 ‖ψ‖∞

xn

n

)
+

√
log n

n

])

≤
jA∑

j=j0

2j−1∑

k=0

b2j,kP

(
|bj,k| ≤ 4

[
2 (1 + b) ‖f‖∞

(√
xn

n
+ 2

j
2 ‖ψ‖∞

xn

n

)
+

√
log n

n

])

+

jA∑

j=j0

2j−1∑

k=0

b2j,kP
(
Θc

n,b

)

:= T ′′
1,1 + T ′′

1,2,

where we have used that given Θn,b inequality (5.23) holds. Now we bound T ′′
1,1. For T ′′

1,1 we have

T ′′
1,1 =

jA∑

j=j0

2j−1∑

k=0

b2j,kP


|bj,k|2 ≤ 16

[
2 (1 + b) ‖f‖∞

(√
xn

n
+ 2

j
2 ‖ψ‖∞

xn

n

)
+

√
log n

n

]2



≤ 16

jA∑

j=j0

2j−1∑

k=0

[
2 (1 + b) ‖f‖∞

(√
xn

n
+ 2

j
2 ‖ψ‖∞

xn

n

)
+

√
log n

n

]2

≤ 32

jA∑

j=j0

2j−1∑

k=0

(
8 (1 + b)2 ‖f‖2

∞

(
δ log n

(1 − b)2 n
+ 2j ‖ψ‖2

∞
δ2 (log n)2

(1 − b)4 n2

)
+

log n

n

)

≤ C

2j−1∑

k=0

(
8 (1 + b)2 ‖f‖2

∞

(
δ log n

(1 − b)2 n
+ 2jA ‖ψ‖2

∞
δ2 (log n)2

(1 − b)4 n2

)
+

log n

n

)
,

where we have used repeatedly that (B +D)2 ≤ 2
(
B2 +D2

)
for all B,D ∈ R.

Then,

T ′′
1,1 ≤ C

jA∑

j=j0

2j−1∑

k=0

(
C (‖f‖∞ , b)

(
δ log n

(1 − b)2 n
+ ‖ψ‖2

∞
δ2 log n

(1 − b)4 n

)
+

log n

n

)

= C (‖f‖∞ , ‖ψ‖∞ , δ, b)
log n

n

jA∑

j=j0

2j ≤ C (‖f‖∞ , ‖ψ‖∞ , δ, b)
log n

n
2jA

= O

(
log n

n

(
n

log n

) 1
2s+1

)
= O

((
n

log n

)− 2s
2s+1

)
, (5.28)

To bound T ′′
1,2 we use again that P

(
Θc

n,b

)
≤ O

(
n−6

)
and that condition (5.11) is satisfied. Then

T ′′
1,2 ≤

jA∑

j=j0

2j−1∑

k=0

b2j,kn
−6 ≤ n−6

jA∑

j=j0

C2−2js∗ = O
(
n−62−2j0s∗

)
≤ O

(
n−1

)
. (5.29)
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Hence, by (5.28) and (5.29), T ′′
1 = O

((
n

log n

)− 2s
2s+1

)
. Now we bound T ′′

2 .

T ′′
2 ≤

j1∑

j=jA+1

2j−1∑

k=0

b2j,kP
(
|bj,k| ≤ 2ξ̂j,n

)
≤

j1∑

j=jA+1

2j−1∑

k=0

b2j,k = O
(
2−2jAs∗

)
= O



(

n

log n

)− 2s∗

2s+1


 ,

where we have used again the condition (5.11). Now remark that if p = 2 then s∗ = s and thus

T ′′
2 = O



(

n

log n

)− 2s∗

2s+1


 = O

((
n

log n

)− 2s
2s+1

)
.

For 1 ≤ p < 2, we proceed as follows.

T ′′
2 =

j1∑

j=jA+1

2j−1∑

k=0

E

[
b2j,kI

(
|bj,k| ≤ 2ξ̂j,n ,Θn,b

)
+ b2j,kI

(
|bj,k| ≤ 2ξ̂j,n ,Θ

c
n,b

)]

≤
j1∑

j=jA+1

2j−1∑

k=0

E

[
b2j,kI

(
|bj,k| ≤ 4

(
2 (1 + b) ‖f‖∞

(√
xn

n
+ 2

j
2 ‖ψ‖∞

xn

n

)
+

√
log n

n

))]

+

j1∑

j=jA+1

2j−1∑

k=0

b2j,kP

(
|bj,k| ≤

(
8
∥∥∥f̂n

∥∥∥
∞

(√
xn

n
+ 2

j
2 ‖ψ‖∞

xn

n

)
+ 4

√
log n

n

)
| Θc

n,b

)
P
(
Θc

n,b

)

:= T ′′
2,1 + T ′′

2,2,

where we have used that on Θn,b inequality (5.23) holds.
Now we bound T ′′

2,1.

T ′′
2,1 ≤

j1∑

j=jA+1

2j−1∑

k=0

|bj,k|2−p |bj,k|p I
(
|bj,k| ≤ 8 (1 + b) ‖f‖∞

(√
xn

n
+ 2

j
2 ‖ψ‖∞

xn

n

)
+ 4

√
log n

n

)

≤
j1∑

j=jA+1

2j−1∑

k=0

(
8 (1 + b) ‖f‖∞

(√
δ log n

(1 − b)2 n
+ 2

j1
2
‖ψ‖∞ δ log n

(1 − b)2 n

)
+ 4

√
log n

n

)2−p

|bj,k|p

≤
j1∑

j=jA+1

2j−1∑

k=0

(
C (‖f‖∞ , b)

(√
δ

(1 − b)2
+

‖ψ‖∞ δ

(1 − b)2

)√
log n

n
+ 4

√
log n

n

)2−p

|bj,k|p

≤ C (‖f‖∞ , b, δ, ‖ψ‖∞)2−p

(√
log n

n

)2−p j1∑

j=jA+1

2j−1∑

k=0

|bj,k|p ≤ O

((
log n

n

) 2−p
2

2−pjAs∗

)

= O



(

log n

n

) 2−p
2
(

n

log n

)−
p(s+ 1

2−
1
p)

2s+1


 = O

((
n

log n

)− 2s
2s+1

)
. (5.30)

where we have used that condition (5.13) is satisfied. To bound T ′′
2,2 we use again that P

(
Θc

n,b

)
≤

O
(
n−6

)
and that condition (5.11) also holds. Then, from (5.29) we get

T ′′
2,2 ≤

j1∑

j=jA+1

2j−1∑

k=0

b2j,kP
(
Θc

n,b

)
≤ n−6

j1∑

j=jA+1

C2−2js∗ = O
(
n−62−2jAs∗

)
≤ O

(
n−1

)
. (5.31)
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Hence, by (5.30) and (5.31), T ′′ = O

((
n

log n

)− 2s
2s+1

)
. Combining all terms in (5.18), we conclude

that:

E

∥∥∥β − β̂bξj,n

∥∥∥
2

2
= O

((
n

log n

)− 2s
2s+1

)
.

This completes the proof.

5.4 Proof of Theorem 3.1

First, one needs the following proposition.

Proposition 5.12 Let βj,k = 〈f, ψj,k〉 and β̂j,k = 〈In, ψj,k〉 with (j, k) ∈ Λj1. Suppose that f ∈
F s

p,q (M) with s > 1/p and 1 ≤ p ≤ 2. Let M1 > 0 be a constant such that M−1
1 ≤ f ≤ M1 (see

Lemma 5.7). Let ǫj1 = 2M2
1 e

2γj1
+1Dj1Aj1. If ǫj1 ≤ 1, then there exists θ∗j1 ∈ R

#Λj1 such that:
〈
fj1,θ∗j1

, ψj,k

〉
= 〈f, ψj,k〉 = βj,k for all (j, k) ∈ Λj1

Moreover, the following inequality holds (approximation error)

∆
(
f ; fj,θ∗j

)
≤ M1

2
eγjD2

j .

Suppose that Assumptions 1 and 2 hold. Let ηj1,n = 4M2
1 e

2γj1
+2ǫj1

+2A2
j1

#Λj1
n . Then, for every λ > 0

such that λ ≤ η−1
j1,n there exists a set Ωn,1 of probability less than M2λ

−1, where M2 is the constant

defined in Lemma 5.8, such that outside the set Ωn,1 there exists some θ̂n ∈ R
#Λj1 which satisfies:

〈
f

j1,bθn
, ψj,k

〉
= 〈In, ψj,k〉 = β̂j,k for all (j, k) ∈ Λj1.

Moreover, outside the set Ωn,1, the following inequality holds (estimation error)

∆
(
fj,θ∗j

; f
j,bθj

)
≤ 2M1e

γj+ǫj+1M2λ
#Λj1

n
.

Proof. Approximation error: Recall that βj,k = 〈f, ψj,k〉 and let β = (βj,k)(j,k)∈Λj1
. De-

fine by gj1 =
∑

(j,k)∈Λj1

θj,kψj,k an approximation of g = log (f) and let β0,(j,k) =
〈
fj1,θj1

, ψj,k

〉
=

〈exp (gj1) , ψj,k〉 with θj1 = (θj,k)(j,k)∈Λj1
and β0 =

(
β0,(j,k)

)
(j,k)∈Λj1

. Observe that the coefficients

βj,k − β0,(j,k), (j, k) ∈ Λj1, are the coefficients of the orthonormal projection of f − fj1,θj1
onto Vj .

Hence by Bessel’s inequality:

‖β − β0‖2
2 ≤

∥∥f − fj,θj

∥∥2

L2
.

Using Lemma 5.7 and Lemma 2 in Barron and Sheu [2], we get that:

‖β − β0‖2
2 ≤

∫ (
f − fj,θj

)2
dµ ≤M1

∫ (
f − fj,θj

)2

f
dµ

≤M1e
2

‚‚‚‚log

„
f

fj,θj

«‚‚‚‚
∞

∫
f

(
log

(
f

fj,θj

))2

dµ

≤M2
1 e

2‖g−gj‖∞ ‖g − gj‖2
L2

= M2
1 e

2γjD2
j .
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Then, one can easily check that

b = e

“‚‚‚log
“
fj1,θj1

”‚‚‚
∞

”

≤M1e
γj1 .

Thus the assumption that ǫj1 ≤ 1 implies that the inequality ‖β − β0‖2 ≤ M1e
γj1Dj1 ≤ 1

2beAj1
is

satisfied. Hence, Lemma 5.6 can be applied with θ0 = θj1, β̃ = β and b = exp
(∥∥∥log

(
fj1,θj1

)∥∥∥
∞

)
,

which implies that there exists θ∗j1 = θ (β) such that
〈
fj1,θ∗j1

, ψj,k

〉
= βj,k for all (j, k) ∈ Λj1 .

By the Pythagorian-like relationship (5.1), we obtain that ∆
(
f ; fj,θ∗j

)
≤ ∆

(
f ; fj,θj

)
. Hence,

using Lemma 5.4, it follows that

∆
(
f ; fj,θ∗j

)
≤ 1

2
e

‚‚‚‚log

„
f

fj,θj

«‚‚‚‚
∞

∫
f

(
log

(
f

fj,θj

))2

dµ

≤ M1

2
e

‚‚‚log(f)−log
“
fj,θj

”‚‚‚
∞

∫ (
log (f) − log

(
fj,θj

))2
dµ

=
M1

2
e‖g−gj‖∞ ‖g − gj‖2

L2
=
M1

2
eγjD2

j .

which completes the proof for the approximation error.

Estimation error: Applying again Lemma 5.6 with θ0 = θ∗j1, β0,(j,k) = 〈fj1,θ0, ψj,k〉 = βj,k, β̃ = β̂,

where β̂ =
(
β̂j,k

)
(j,k)∈Λj1

, and b = exp
(∥∥∥log

(
fj1,θ∗j1

)∥∥∥
∞

)
we obtain that if

∥∥∥β̂ − β
∥∥∥

2
≤ 1

2ebAj
then

there exists θ̂j1 = θ
(
β̂
)

such that
〈
f

j1,bθj1
, ψj,k

〉
= β̂j,k for all (j, k) ∈ Λj1 .

Hence, it remains to prove that our assumptions imply that the event
∥∥∥β̂ − β

∥∥∥
2
≤ 1

2ebAj
holds

with probability 1 −M2λ
−1. First remark that b ≤ M1e

γj+ǫj and that by Markov’s inequality and
Lemma 5.8 we obtain that for any λ > 0

P

(∥∥∥β̂j − βj

∥∥∥
2

2
≥ λ

#Λj1

n

)
≤ 1

λ

n

#Λj1

E

∥∥∥β̂j − βj

∥∥∥
2

2
≤M2λ

−1

Hence, outside a set Ωn,1 of probability less than M2λ
−1 then

∥∥∥β̂j − βj

∥∥∥
2

2
≤ λ

#Λj1
n . Therefore, the

condition
∥∥∥β̂j − βj

∥∥∥
2
≤ 1

2ebAj
holds if

(
λ

#Λj1
n

) 1
2 ≤ 1

2ebAj
, which is equivalent to 4e2b2A2

jλ
#Λj1

n ≤ 1.

This last inequality is true if ηj,n = 4M2
1 e

2γj+2ǫj+2A2
j

#Λj1
n ≤ 1

λ , using that b2 ≤M2
1 e

2γj+2ǫj .

Hence, outside the set Ωn,1, our assumptions imply that there exists θ̂j1 = θ
(
β̂
)

such that
〈
f

j1,bθj1
, ψj,k

〉
= β̂j,k for all (j, k) ∈ Λj1 . Finally, outside the set Ωn,1, by using the bound given in

Lemma 5.6, one obtains the following inequality for the estimation error

∆
(
fj,θ∗j

; f
j,bθj

)
≤ 2M1e

γj+ǫj+1λ
#Λj1

n
.

which completes the proof of Proposition 5.12.
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Our assumptions on j1(n) imply that 1
2n

1
2s+1 ≤ 2j1(n) ≤ n

1
2s+1 . Therefore, using Lemma 5.3, one

has that for all f ∈ F s
2,2(M) with s > 1/2

γj1(n) ≤ Cn
1−2s

2(2s+1) , Aj1(n) ≤ Cn
1

2(2s+1) , Dj1(n) ≤ Cn−
s

2s+1 ,

where C denotes constants not depending on g = log(f). Hence,

lim
n→+∞

ǫj1(n) = lim
n→+∞

2M2
1 e

2γj1(n)+1Aj1(n)Dj1(n) = 0,

uniformly over F s
2,2(M) for s > 1/2. For all sufficiently large n, ǫj1(n) ≤ 1 and thus, using Proposition

5.12, there exists θ∗j1(n) ∈ R
#Λj1(n) such that

∆
(
f ; fj,θ∗

j1(n)

)
≤ M1

2
eγj1(n)D2

j1(n) ≤ Cn−
2s

2s+1 for all f ∈ F s
2,2(M). (5.32)

By the same arguments it follows that

lim
n→+∞

ηj1(n),n = lim
n→+∞

4M2
1 e

2γj1(n)+2ǫj1(n)+2A2
j1(n)

#Λj1(n)

n
= 0,

uniformly over F s
2,2(M) for s > 1/2. Now let λ > 0. The above result shows that for sufficiently large

n, λ ≤ η−1
j1(n),n, and thus using Proposition 5.12 it follows that there exists a set Ωn,1 of probability

less than M2λ
−1 such that outside this set there exists θ̂n ∈ R

#Λj1(n) which satisfies:

∆
(
fj1(n),θ∗

j1(n)
; f

j1(n),bθn

)
≤ 2M1e

γj1(n)+ǫj1(n)+1M2λ
#Λj1(n)

n
≤ Cλn−

2s
2s+1 , (5.33)

for all f ∈ F s
2,2(M). Then, by the Pythagorian-like identity (5.1) it follows that outside the set Ωn,1

∆
(
f ; f

j1(n),bθn

)
= ∆

(
f ; fj1(n),θ∗

j1(n)

)
+ ∆

(
fj1(n),θ∗

j1(n)
; f

j1(n),bθj1(n)

)
,

and thus Theorem 3.1 follows from inequalities (5.32) and (5.33).

5.5 Proof of Theorem 3.2

First, one needs the following proposition.

Proposition 5.13 Let βj,k := 〈f, ψj,k〉 and β̂ξj,n,(j,k) := δξj,n

(
β̂j,k

)
with (j, k) ∈ Λj1. Assume that

f ∈ F s
p,q (A) with s > 1/p and 1 ≤ p ≤ 2. Let M1 > 0 be a constant such that M−1

1 ≤ f ≤ M1 (see

Lemma 5.7). Let ǫj1 = 2M2
1 e

2γj1
+1Dj1Aj1. If ǫj1 ≤ 1, then there exists θ∗j1 ∈ R

#Λj1 such that:

〈
fj1,θ∗j1

, ψj,k

〉
= 〈f, ψj,k〉 = βj,k for all (j, k) ∈ Λj1

Moreover, the following inequality holds (approximation error)

∆
(
f ; fj,θ∗j

)
≤ M1

2
eγjD2

j .
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Suppose that Assumptions 1 and 2 hold. Let ηj1,n = 4M2
1 e

2γj1
+2ǫj1

+2A2
j1

(
n

log n

)− 2s
2s+1

. Then, for

every λ > 0 such that λ ≤ η−1
j1,n there exists a set Ωn,2 of probability less than M3λ

−1, where M3

is the constant defined in Lemma 5.10, such that outside the set Ωn,2 there exists some θ̂n ∈ R
#Λj1

which satisfies:

〈
fHT

j1,bθn,ξj,n
, ψj,k

〉
= δξj,n

(
β̂j,k

)
= β̂ξj,n,(j,k) for all (j, k) ∈ Λj1 .

Moreover, outside the set Ωn,2, the following inequality holds (estimation error)

∆
(
fj,θ∗j

; fHT
j1,bθn,ξj,n

)
≤ 2M1e

γj+ǫj+1λ

(
n

log n

)− 2s
2s+1

.

Proof. Approximation error: The proof is the same that the one of Proposition 5.12.
Estimation error: Applying Lemma 5.6 with θ0 = θ∗j1, β0,(j,k) = 〈fj1,θ0 , ψj,k〉 = βj,k, β̃ = β̂ξj,n

,

where β̂ξj,n
=
(
β̂ξj,n,(j,k)

)
(j,k)∈Λj1

, and b = exp
(∥∥∥log

(
fj1,θ∗j1

)∥∥∥
∞

)
we obtain that if

∥∥∥β̂ξj,n
− β

∥∥∥
2
≤

1
2ebAj

then there exists θ̂j1 = θ
(
β̂ξj,n

)
such that

〈
fHT

j1,bθj1
,ξj,n

, ψj,k

〉
= β̂ξj,n,(j,k) for all (j, k) ∈ Λj1.

Hence, it remains to prove that our assumptions imply that the event
∥∥∥β̂ξj,n

− β
∥∥∥

2
≤ 1

2ebAj
holds

with probability 1 −M3λ
−1, where β = (βj,k)(j,k)∈Λj1

. First remark that b ≤ M1e
γj+ǫj and that by

Markov’s inequality and Lemma 5.10 we obtain that for any λ > 0

P

(∥∥∥β̂ξj,n
− β

∥∥∥
2

2
≥ λ

(
n

log n

)− 2s
2s+1

)
≤ 1

λ

(
n

log n

) 2s
2s+1

E

∥∥∥β̂ξj,n
− β

∥∥∥
2

2

≤ M3

λ

(
n

log n

) 2s
2s+1

(
n

log n

)− 2s
2s+1

≤M3λ
−1.

Hence, outside a set Ωn,2 of probability less thanM3λ
−1, it holds that

∥∥∥β̂ξj,n
− β

∥∥∥
2

2
≤ λ

(
n

log n

)− 2s
2s+1

.

Therefore, the condition
∥∥∥β̂ξj,n

− β
∥∥∥

2
≤ 1

2ebAj
holds if

(
λ
(

n
log n

)− 2s
2s+1

) 1
2

≤ 1
2ebAj

, which is equivalent

to 4e2b2A2
jλ
(

n
log n

)− 2s
2s+1 ≤ 1. This last inequality is true if ηj,n = 4M2

1 e
2γj+2ǫj+2A2

j

(
n

log n

)− 2s
2s+1 ≤

1
λ , using that b2 ≤M2

1 e
2γj+2ǫj .

Hence, outside the set Ωn,2, our assumptions imply that there exists θ̂j1 = θ
(
β̂ξj,n

)
such that

〈
fHT

j1,bθj1
,ξj,n

, ψj,k

〉
= β̂ξj,n,(j,k) for all (j, k) ∈ Λj1 . Finally, outside the set Ωn,2, by using the bound

given in Lemma 5.6, one obtains the following inequality for the estimation error

∆
(
fj,θ∗j

; fHT
j,bθj,ξj,n

)
≤ 2M1e

γj+ǫj+1λ

(
n

log n

)− 2s
2s+1

which completes the proof of Proposition 5.13.
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Our assumptions on j1(n) imply that 1
2

n
log n ≤ 2j1(n) ≤ n

log n . Therefore, using Lemma 5.3, one
has that for all f ∈ F s

p,q(M) with s > 1/p

γj1(n) ≤ C

(
n

log n

)−
“
s− 1

p

”

, Aj1(n) ≤
(

n

log n

) 1
2

, Dj1(n) ≤ C

(
n

log n

)−s∗

,

where C denotes constants not depending on g = log(f). Hence,

lim
n→+∞

ǫj1(n) = lim
n→+∞

2M2
1 e

2γj1(n)+1Aj1(n)Dj1(n) = 0,

uniformly over F s
p,q(M) for s > 1/p. For all sufficiently large n, ǫj1(n) ≤ 1 and thus, using Proposition

5.13, there exists θ∗j1(n) ∈ R
#Λj1(n) such that

∆
(
f ; fj1(n),θ∗

j1(n)

)
≤ M1

2
eγj1(n)D2

j1(n) ≤ C

(
n

log n

)−2s∗

for all f ∈ F s
p,q(M).

Now remark that if p = 2 then s∗ = s > 1 (by assumption), thus

∆
(
f ; fj1(n),θ∗

j1(n)

)
= O

((
n

log n

)−2s
)

≤ O

((
n

log n

)− 2s
2s+1

)
.

If 1 ≤ p < 2 then one can check that condition s > 1
2 + 1

p implies that 2s∗ > 2s
2s+1 , hence

∆
(
f ; fj1(n),θ∗

j1(n)

)
≤ O

((
n

log n

)− 2s
2s+1

)
. (5.34)

By the same arguments it follows that

lim
n→+∞

ηj1(n),n = lim
n→+∞

4M2
1 e

2(γj1(n)+ǫj1(n)+1)A2
j1(n)

(
n

log n

)− 2s
2s+1

= 0,

uniformly over F s
p,q(M) for s > 1/p. Now let λ > 0. The above result shows that for sufficiently large

n, λ ≤ η−1
j1(n),n, and thus using Proposition 5.13 it follows that there exists a set Ωn,2 of probability

less than M3λ
−1 such that outside this set there exists θ̂n ∈ R

#Λj1(n) which satisfies:

∆
(
fj1(n),θ∗

j1(n)
; fHT

j1(n),bθn,ξj,n

)
≤ 2M1e

γj1(n)+ǫj1(n)+1λ

(
n

log n

)− 2s
2s+1

(5.35)

for all f ∈ F s
p,q(M). Then, by the Pythagorian-like identity (5.1) it follows that outside the set Ωn,2

∆
(
f ; fHT

j1(n),bθn,ξj,n

)
= ∆

(
f ; fj1(n),θ∗

j1(n)

)
+ ∆

(
fj1(n),θ∗

j1(n)
; fHT

j1(n),bθn,ξj,n

)
,

and thus Theorem 3.2 follows from inequalities (5.34) and (5.35).

5.6 Proof of Theorem 3.3

The proof is analogous to the one of Theorem 3.2. It follows from Lemma 5.11.
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