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Abstract

This paper deals with elliptic optimal control problems for which the control
function is constrained to assume values in {0, 1}. Based on an appropriate
formulation of the optimality system, a semismooth Newton method is pro-
posed for the solution. Convergence results are proved, and some numerical
tests illustrate the efficiency of the method.
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1. Introduction

Let D be an open and bounded subset of R
2 with Lipschitz boundary.

We investigate the numerical solution of the optimal control problem:

Minimize
(u,y)∈E×H1

0
(D)

J(u, y) =
1

2

∫

D

(y − y†)2dx + ν

∫

D

udx (1)

subject to the state equation
Ey = u. (2)

Above the feasible set is defined by

E = {uΩ = χΩ a.e. in D, Ω ⊂ D},
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where, for every subset Ω of D, χΩ is the characteristic function of Ω in D.
The data (y†, ν) are given in L2(D) × R. The operator E stands for the
(negative) Dirichlet Laplacian, i.e.,

E : H1
0 (D) → H−1(D)

y 7→ [z 7→
∫

D
∇y.∇z].

We denote by yu := E−1u the state and by j(u) := J(u, yu) the reduced cost.
Note that, by a straightforward change of variables, this setting also allows
to treat controls of the form uΩ = χΩu− + (1 − χΩ)u+, where (u−, u+) are
given constants.

Due to the binary nature of the control u, the problem in hand falls into
the framework of shape optimization, but as the topology (i.e. the number
of connected components of the boundary) of the targeted domain Ω∗ is a
priori unknown, we rather speak of topology optimization. Let us briefly
recall the main classes of methods which can be applied in this case. The
most commonly used approaches rely on relaxed formulations [1, 8]. They are
in principle compatible with all the tools of nonlinear programming, which is
a considerable practical advantage, however eventually retrieving a feasible
control is not always easy. The so-called classical shape optimization methods
[18, 21], based on smooth boundary perturbations, offer a good accuracy as
to the parameterization of the domains, but do not allow topological changes.
More flexibility is obtained when they are associated with a level-set domain
representation [3, 22]. Nevertheless the nucleation of holes still does not occur
in this framework. The concept of topological derivative [14, 16, 20] has been
precisely introduced to give a quantitative information on the relevance of
creating a hole around an arbitrary point of the domain. Therefore, modern
topology optimization techniques often couple the topological derivative with
the shape derivative and / or the use of level sets [2, 11, 6]. A major drawback
of these methods is that they only rely on first order information. To justify
this claim, we recall that the topological derivative guΩ

(x) for a circular hole
is defined by

j(uΩ\B̄(x,ρ)) − j(uΩ) = f(ρ)guΩ
(x) + o(f(ρ)), (3)

where B̄(x, ρ) = {x, ‖x‖ ≤ ρ} and f is a nonnegative function that tends to
zero when ρ → 0. Higher order topological asymptotic expansions can be
derived [9, 10, 13], however the higher order terms are numerically quite dif-
ficult to be computed. In addition, as the (first order) topological derivative
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is generally not bound to vanish at the optimum, the way to use the higher
order information is not obvious. If it vanishes, or gets close to zero as it is
the case in least square problems, then the first order methods often prove
inefficient, as pointed out in [15]. In [15] a two steps approach is proposed.
In the first step the cost function is approximated (or rather weighted) by a
Gauss-Newton type method, and in the second step the first order topological
derivative of the weighted cost function is computed.

This paper is based on the remark that the topological optimality con-
ditions can be reformulated in the form F (u) = 0 with the help of an ap-
propriate function F . Then Newton type methods can be used to solve the
equation in an efficient way. These arguments are subsequently developed
according to the following outline. The optimality conditions associated with
Problem (1)-(2) are specified in Section 2 and the function F is introduced.
After some background material is recalled in Section 3, the proposed method
is described and analyzed in Sections 4 through 6. Finally, some numerical
results are presented in Section 7.

2. Optimality conditions

To begin with, let us specify some definitions and notations.

Definition 1. We say that a function u ∈ E is a local minimizer of (1)-(2)
if

∃η > 0 ∀u′ ∈ E ‖u′ − u‖L1(D) ≤ η ⇒ j(u′) ≥ j(u).

We say that it is a global minimizer if j(u′) ≥ j(u) for all u′ ∈ E.

Given a function f : D → R and a number a ∈ R, we define the level set
[f = a] := {x ∈ D, f(x) = a}. If A is a subset of D we denote by int(A)
its interior. We recall that the operator E : H1

0 (D) → H−1(D) is continuous
and invertible, and that H1(D) is continuously imbedded in Lq(D) for all q ∈
(1, +∞). Consequently, Problem (2) admits a unique solution yu ∈ H1

0 (D)
for any u ∈ Lp(D), p > 1. For such p we also define the adjoint state zu as
the solution of

Ezu = −(yu − y†) (4)

and we set
gu = −zu + ν. (5)

We can show [4] that gu is the Fréchet derivative of the mapping u ∈ Lp(D) 7→
j(u), and that it cöıncides with the topological derivative defined by (3) for
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f(ρ) = L2(B̄(x, ρ)) = πρ2. Here and in the sequel L2 designates the Lebesgue
measure on R

2. The following result is proved in [4].

Proposition 2. A necessary condition for u ∈ E to be a local minimizer of
(1)-(2) is

{

gu ≥ 0 in int([u = 0]),
gu ≤ 0 in int([u = 1]).

(6)

A sufficient condition for u ∈ E to be a global minimizer of (1)-(2) is

{

gu ≥ 0 a.e. in [u = 0],
gu ≤ 0 a.e. in [u = 1].

(7)

The proposed algorithm relies on an appropriate reformulation of the
conditions (6) and (7). To this aim we introduce the functional

F : L2(D) → L2(D)
u 7→ u|gu| + min(0, gu),

(8)

or equivalently

F : u 7→ u max(0, gu) + (1 − u) min(0, gu).

In view of the remark 4 below, F is well defined.

Theorem 3. A necessary condition for u ∈ E to be a local minimizer of
(1)-(2) is

F (u) = 0 in int([u = 0]) ∪ int([u = 1]). (9)

A sufficient condition for u ∈ L2(D) to be a global minimizer of (1)-(2) is

{

F (u) = 0 a.e. in D,
L2([gu = 0]) = 0.

(10)

Proof. Assume that (6) holds and take x ∈ int([u = 0]). Then gu(x) ≥ 0,
which entails F (u)(x) = 0. Similarly, if x ∈ int([u = 1]), then gu(x) ≤ 0,
thus F (u)(x) = 0. Assume now that F (u) = 0 a.e. in D and take x ∈ D
such that F (u)(x) = 0. If gu(x) > 0, then u(x)gu(x) = 0, thus u(x) = 0. If
gu(x) < 0, then (1 − u(x))gu(x) = 0, thus u(x) = 1. On the one hand we
deduce that u ∈ E provided that L2([gu = 0]) = 0. On the other hand we
derive (7) by contradiction.
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The remainder of the paper is devoted to the solution of the equation
F (u) = 0 a.e. in D (subsequently simply denoted by F (u) = 0), which, in
non-degenerate cases, is a necessary and sufficient optimality condition for
any u ∈ L2(D). As F is non-differentiable, a semismooth Newton method
will be invoked.

Remark 4. We recall that, since D is Lipschitz, E−1 maps L2(D) into
H3/2(D) (see e.g. [19]). By using for instance the closed graph theorem,
it easy to show that this map is continuous for these norms. In addition,
H3/2(D) is compactly imbedded in L∞(D). It follows that the map u ∈
L2(D) 7→ (yu, zu) ∈ (L∞(D))2 is linear and compact.

3. Preliminary material

In this section a few results related to semismooth Newton methods and
collectively compact sets of operators are recalled.

3.1. Semismooth Newton methods

Among the many generalizations of the notion of differentiability and the
related extensions of Newton’s method, we adopt here the presentation of
[17]. The following definition and theorems are extracted from [17], with a
few adaptations of the notations. Let X,Y be Banach spaces and U be an
open subset of X.

Definition 5. A function F : U → Y is called slantly differentiable if there
exists a mapping G : U → L(X,Y ), referred to as slanting function, such
that

lim
h→0

1

‖h‖‖F (u + h) − F (u) − G(u + h)h‖ = 0

for all u ∈ U .

Of course, functions which are C1 in the sense of Fréchet are slantly dif-
ferentiable. The following theorem provides another particularly useful ex-
ample.

Theorem 6. The mapping max(0, .) : Lq(D) → Lp(D) with 1 ≤ p < q ≤
+∞ is slantly differentiable on Lq(D) and u 7→ χ[u>0] is a slanting function.

The following theorem asserts the local convergence of the semismooth
Newton method applied to a slantly differentiable function.
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Theorem 7. Suppose that u∗ solves F (u∗) = 0 and that F is slantly differ-
entiable in an open set U containing u∗, with slanting function G. If G(u)
is nonsingular for all u ∈ U and {‖G(u)−1‖, u ∈ U} is bounded, then the
Newton iteration

un+1 = un − G(un)−1F (un)

converges superlinearly to u∗, provided that ‖u0 − u∗‖ is sufficiently small.

3.2. Collectively compact sets of operators

Let X be a Banach space and K be a subset of L(X), where L(X) is
the set of bounded linear operators from X into itself. We say that K is
collectively compact if the set {Kx, x ∈ X, ‖x‖ ≤ 1, K ∈ K} is relatively
compact. Obviously, if K is collectively compact, every K ∈ K is compact.
We recall a part of Theorem 1.6 of [7].

Theorem 8. Let K, (Kn)n∈N ∈ L(X). Assume that Kn → K pointwise,
{Kn} is collectively compact, and K is compact. Then (I − K)−1 exists if
and only if for some N and all n ≥ N the operators (I − Kn)−1 exist and
are bounded uniformly.

The following result can be seen as a particular case of Theorem 4.5 of
[12]. For completeness we provide a very simple proof using Theorem 8.

Theorem 9. Let K be a collectively compact set of bounded linear operators
of X. Assume further that K is pointwise sequentially compact, i.e., for every
sequence (Kn) of K there exists a subsequence (Knp

) and K ∈ K such that
Knp

x → Kx for all x ∈ X. If I − K is invertible for all K ∈ K, then

sup
K∈K

‖(I − K)−1‖ < ∞. (11)

Proof. Assume that (11) is not fulfilled. Then we can construct a sequence
(Kn) of K such that

‖(I − Kn)−1‖ ≥ 1

n
∀n ∈ N

∗. (12)

By compactness of K, there exists a subsequence (Knp
) such that Knp

→ K ∈
K pointwise. Since I−K is invertible, Theorem 8 implies that {(I−Knp

)−1}
is bounded uniformly, which is in contradiction with (12).
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4. Description and analysis of the method in function spaces

4.1. Direct application of the semismooth Newton method

A natural idea is to apply the semismooth Newton method described in
Theorem 7 to the solution of F (u) = 0. We shall show that this approach is
likely to fail in general.

The direct and adjoint equations (2) and (4) together with the definition
of the sensitivity (5) provide

gu = E−2u − E−1y† + ν. (13)

A straightforward calculation shows that F is locally Lipschitz continuous
in L2(D). But, in order to obtain the slant differentiability of F : L2(D) →
L2(D), we would need the slant differentiability of the function g ∈ L∞(D) 7→
max(0, g) ∈ L∞(D), which is not fulfilled. However, Theorem 3 could also
well be written in arbitrary Lp spaces, thus let us see what happens if we
consider F : Lp(D) → Lq(D) for 1 ≤ q < p ≤ ∞. We define

G(u) : h 7→ |gu|h +
[

uχ[gu>0] + (1 − u)χ[gu<0]

]

E−2h,

and we obtain

F (u + h) − F (u) − G(u + h)h

= u
[

|gu + E−2h| − |gu| − (χ[gu+E−2h>0] − χ[gu+E−2h<0])E
−2h
]

+ h
[

χ[gu+E−2h>0] − χ[gu+E−2h<0]

]

E−2h

+
[

min(0, gu + E−2h) − min(0, gu) − χ[gu+E−2h<0]E
−2h
]

.

Using successively the Hölder inequality, Theorem 6 and the continuity of
E−2 : Lp(D) → L∞(D) it comes

‖F (u + h) − F (u) − G(u + h)h‖Lq(D)

≤ ‖u‖Lp(D)o(‖E−2h‖L∞(D)) + 2‖h‖L1(D)‖E−2h‖L∞(D) + o(‖E−2h‖L∞(D))

≤ o(‖h‖Lp(D)).

Therefore G is a slanting function for F . Assume now that u∗ ∈ Lp(D) solves
F (u∗) = 0. As seen in the proof of Theorem 3, we have gu∗(x) > 0 ⇒ u∗(x) =
0 and gu∗(x) < 0 ⇒ u∗(x) = 1, which yields

G(u∗)h = |gu∗|h.
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It appears that G(u∗) is singular, unless we are in finite dimension (we can
choose p = q) and gu∗ does not vanish on D. Consequently the semismooth
Newton method applied to the solution of F (u∗) = 0 may hardly converge.
Numerically, this is rendered by oscillations which occur in the regions where
u switches between 0 and 1.

4.2. Regularization

To circumvent the phenomenon described above we introduce a family of
regularized functionals. For ε > 0 we define

F ε : L2(D) → L2(D)
u 7→ u(Φε ◦ gu) + min(0, gu),

(14)

with
Φε(t) =

√
ε2 + t2. (15)

Obviously, Φε maps L∞(D) into itself, hence F ε is well defined in L2(D). It
is also clearly locally Lipschitz continuous. By observing that the first term
in the definition of F ε is C1 and applying Theorem 6 to the second term, we
derive that F ε is slantly differentiable with slanting function

Gε(u)h = (Φε ◦ gu)h + u(Φ′
ε ◦ gu)E−2h + χ[gu<0]E

−2h,

that is,
Gε(u) = (Φε ◦ gu)T ε(u), (16)

with

T ε(u) = I +
u(Φ′

ε ◦ gu) + χ[gu<0]

Φε ◦ gu

E−2. (17)

Let us now address the convergence of the semismooth Newton method
applied to F ε. We denote by 〈., .〉 the canonical inner product of L2(D) and
by ‖.‖ the corresponding norm. Given two functions u, v ∈ L2(D), we use
the notation u ≤ v in the pointwise almost everywhere sense. We write u < v
if u ≤ v and u 6= v (i.e. u and v assume different values on a set on nonzero
measure).

Lemma 10. For all ε > 0, the equation F ε(uε) = 0 admits at least one
solution uε ∈ L2(D). In addition, every function uε ∈ L2(D) solution of
F ε(uε) = 0 satisfies

0 ≤ uε ≤ 1. (18)
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Proof. By definition of F ε it holds

F ε(uε) = 0 ⇔ uε = −min(0, guε)

Φε ◦ guε

=: Θε(uε). (19)

Equivalently we may write

Θε(uε) =







0 if guε ≥ 0,
|guε|

√

ε2 + g2
uε

if guε < 0,

hence 0 ≤ Θε(uε) ≤ 1. We define the convex set C = L2(D, [0, 1]). Clearly,
Θε is a continuous mapping from C into itself. Moreover, for all u ∈ L2(D),
it holds gu ∈ H1(D) ∩ L∞(D) which implies

∇Θε(u) = −(Φε ◦ gu)χ[gu<0]∇gu − min(0, gu)(Φ′
ε ◦ gu)∇gu

(Φε ◦ gu)2
∈ L2(D)

and subsequently Θε(u) ∈ H1(D). Therefore Θε(C) ⊂ C̃ := H1(D, [0, 1]).
Yet, C̃ is a relatively compact subset of L2(D). By Schauder’s fixed point
theorem, there exists some uε ∈ C such that Θε(uε) = uε.

Theorem 11. Suppose that uε ∈ L2(D) solves F ε(uε) = 0. Then the Newton
iteration

un+1 = un − Gε(un)−1F ε(un)

converges superlinearly to uε in L2(D), provided that ‖u0 −uε‖ is sufficiently
small.

Proof. The assumptions we need to check in order to apply Theorem 7 are
the invertibility of the slanting function in a neighborhood of uε together
with a uniform bound on the norm of the inverse. For all u ∈ L2(D) we set

wu =
u(Φ′

ε ◦ gu) + χ[gu<0]

Φε ◦ gu

, (20)

and for all w ∈ L2(D) we define the operator

K(w) : h ∈ L2(D) 7→ wE−2h ∈ L2(D).

In this way we have

T ε(u) = I + K(wu) ∀u ∈ L2(D).

We proceed in four steps.
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1. By definition it holds for all w, h ∈ L2(D)

〈(I + K(w))h,E−2h〉 = 〈h,E−2h〉 + 〈wE−2h,E−2h〉.

By the Cauchy-Schwarz inequality we obtain

〈wE−2h,E−2h〉 ≥ 〈min(0, w)E−2h,E−2h〉
≥ −‖min(0, w)‖L2(D)‖E−2h‖2

L4(D).

By elliptic regularity (see Remark 4), there exists a constant c > 0,
depending only on D, such that ‖E−2h‖L4(D) ≤ c‖E−1h‖L2(D). It comes

〈wE−2h,E−2h〉 ≥ −c2‖min(0, w)‖L2(D)‖E−1h‖2
L2(D),

and subsequently by symmetry of E−1

〈(I + K(w))h,E−2h〉 ≥ (1 − c2‖min(0, w)‖)‖E−1h‖2
L2(D). (21)

We set

W− =

{

w ∈ L2(D), ‖min(0, w)‖ ≤ 1

2c2

}

. (22)

For all w ∈ W−, we have 1 − c2‖min(0, w)‖ ≥ 1/2, thus in view of
(21) the operator I + K(w) is injective. In addition, E−2 : L2(D) →
L∞(D) is compact, thus K(w) is compact for all w ∈ L2(D). Then the
Fredholm alternative implies that

I + K(w) is invertible for all w ∈ W−. (23)

2. We now examine under which conditions wu ∈ W−. Let u ∈ L2(D) be
arbitrary. Using (18) it comes

−|u − uε| ≤ u ≤ 1 + |u − uε|. (24)

We write

u(Φ′
ε ◦ gu) + χ[gu<0] = (u(Φ′

ε ◦ gu) + 1)χ[gu<0] + u(Φ′
ε ◦ gu)χ[gu≥0]

=

(

1 − u
|gu|

√

ε2 + g2
u

)

χ[gu<0] + u
|gu|

√

ε2 + g2
u

χ[gu≥0].



11

Then (24) entails

u(Φ′
ε ◦ gu) + χ[gu<0]

≥
(

1 − (1 + |u − uε|) |gu|
√

ε2 + g2
u

)

χ[gu<0] − |u − uε| |gu|
√

ε2 + g2
u

χ[gu≥0]

≥ −|u − uε|χ[gu<0] − |u − uε|χ[gu≥0] = −|u − uε|.

We therefore derive from (20) that

wu ≥ −|u − uε|
ε

,

which implies

‖min(0, wu)‖ ≤ 1

ε
‖u − uε‖. (25)

We denote by U the ball

U =
{

u ∈ L2(D), ‖u − uε‖ <
ε

2c2

}

. (26)

It stems from (25) and (22) that

u ∈ U ⇒ wu ∈ W−. (27)

Remembering (23), we conclude that T ε(u) is invertible for all u ∈ U .

3. Let K(w)∗ be the adjoint operator of K(w), namely

K(w)∗ : h ∈ L2(D) 7→ E−2(wh) ∈ L2(D).

Note that the operator E−2 involved above is in fact the adjoint of
E−2 : L2(D) → L∞(D) which, in particular, defines a compact operator
from L1(D) into L2(D). The same notation has been kept since it is
an extension of the operator E−2 defined on L2(D). As U is bounded,
there exists M > 0 such that

‖wu‖ ≤ M ∀u ∈ U. (28)

We define the sets

W+ = {w ∈ L2(D), ‖w‖ ≤ M}, (29)
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W = W− ∩ W+, (30)

K = {K(w)∗, w ∈ W}.
We shall check the assumptions of Theorem 9 for K. Thanks to the
compactness of the operator E−2 : L1(D) → L2(D), we immediately
see that K is collectively compact. Let now (wn) be a sequence of
W . Since W is bounded, convex and closed in L2(D), there exists a
subsequence still denoted by (wn) such that wn ⇀ w ∈ W weakly in
L2(D). It follows that E−2(wnh) ⇀ E−2(wh) weakly in L2(D) for all
h ∈ L2(D). By compactness of E−2 : L1(D) → L2(D), the conver-
gence holds actually in norm (for a subsequence), hence K(wn)∗h →
K(w)∗h. Therefore Theorem 9 provides supK∈K ‖(I + K)−1‖ < ∞,
that is, supw∈W ‖(I + K(w)∗)−1‖ < ∞. Passing to the adjoint yields
supw∈W ‖(I + K(w))−1‖ < ∞. Yet, due to (27), (28), (29) and (30) it
holds u ∈ U ⇒ wu ∈ W . We arrive at

sup
u∈U

‖T ε(u)−1‖ = sup
u∈U

‖(I + K(wu))−1‖ < ∞. (31)

4. Let us now come back to the operator Gε(u). Using (16) and the in-
vertibility of T ε(u) we straightforwardly derive that Gε(u) is invertible
for all u ∈ U with

Gε(u)−1 : h 7→ T ε(u)−1(
h

Φε ◦ gu

).

Hence

‖Gε(u)−1‖ ≤ 1

ε
‖T ε(u)−1‖, (32)

which thanks to (31) yields

sup
u∈U

‖Gε(u)−1‖ < ∞.

Remark 12. Throughout the proof we can see that the role of the regular-
ization parameter ε is twofold: on the one hand it is directly involved in the
definition of U by (26), on the other hand it acts on the conditioning of the
system through (32).
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4.3. Convergence of the regularized solutions

We now examine the behavior of uε when ε goes to zero.

Lemma 13. If F ε(uε) = 0 then

−ε ≤ F (uε) ≤ 0.

Proof. We have

|guε| ≤ Φε ◦ guε =
√

ε2 + g2
uε ≤ ε + |guε|,

which, as uε ≥ 0, yields

F ε(uε) − εuε ≤ F (uε) ≤ F ε(uε).

Using that uε ≤ 1 and F ε(uε) = 0 completes the proof.

Theorem 14. Let (εk)k∈N be a sequence of positive numbers such that εk →
0. For each k consider a solution uεk ∈ L2(D) of F εk(uεk) = 0 and set
yεk = E−1uεk .

1. There exists a subsequence (εkp
) and u∗ ∈ L2(D, [0, 1]) such that

uεkp
L2(D)
⇀ u∗, yεkp

L2(D)→ y∗ := E−1u∗,

uεkp → χ[gu∗<0] a.e. in [gu∗ 6= 0].

If L2([gu∗ = 0]) = 0, then

uεkp → u∗ = χ[gu∗<0] a.e. in D and uεkp
L2(D)→ u∗. (33)

In particular, F (u∗) = 0 and (u∗, y∗) is a solution of (1)-(2).

2. Every accumulation point u∗ of the sequence (uεk) in L2(D) satisfies
F (u∗) = 0.

Proof. The weak convergence of (uεkp ) stems from (18) and the weak closed-
ness of L2(D, [0, 1]). The strong convergence of (yεkp ) stems from the com-
pactness of the operator E−1 : L2(D) → L2(D). Analogously gu

εkp strongly
converges to gu∗ in L∞(D). The pointwise a.e. convergence in [gu∗ 6= 0] can
be straightforwardly deduced from (19). Lebesgue’s dominated convergence
theorem ensures the convergence in L2(D) provided that L2([gu∗ = 0]) = 0.
The second assertion of the theorem is a direct consequence of Lemma 13
together with the continuity of F : L2(D) → L2(D).
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5. Finite dimensional version

Proposition 2 relies on the concept of topological sensitivity, i.e., on the
possibility to perturb the control variable in an infinitesimal region. Hence
it has no equivalent in finite dimension. In this section we rather discuss
the solution of a finite dimensional approximation of the optimality condi-
tions given by Proposition 2, or equivalently Theorem 3. Therefore we are
concerned with the solution of F (u) = 0 with

F : R
N → R

N

u 7→ u.|gu| + min(0, gu).
(34)

Above, gu is given by (13), E is a symmetric and invertible real matrix of
order N , y† ∈ R

N , and ν ∈ R. The dot stands for the coordinatewise product.
We introduce the regularized functional

F ε : u 7→ u.Φε(gu) + min(0, gu),

with Φε given by (15) and applied coordinatewise. Similarly to the function
space setting, F ε is slantly differentiable on R

N , and we obtain the slanting
matrix

Gε(u) = diag(Φε(gu)) + diag(u.Φ′
ε(gu) + χ[gu<0])E

−2. (35)

By inspection of the proofs, it appears that Lemma 10, Theorem 11, Lemma
13 and Theorem 14 can be readily translated in the finite dimensional setting,
which is left to the reader. As a corollary of Theorem 14, we deduce that
the equation F (u∗) = 0 admits at least one solution, which is obtained as an
accumulation point of the sequence (uεk).

6. Computational issues

The preceding discussions suggest an algorithm made of two nested loops:
an inner loop to solve F εk(uεk) = 0 for εk > 0 fixed, and an outer loop to let
εk go to zero.

Outer loop for solving F (u∗) = 0 starting from uini ∈ L2(D)

• Generate a sequence (εk)k∈N of positive numbers such that limk→∞ εk =
0. Set uε0 = uini.
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• Iterate for k = 1, 2, ...
Solve F εk(uεk) = 0 by the semismooth Newton method initialized at
uεk−1 (see below).

• Set u∗ = limk→+∞ uεk .

Inner loop for solving F ε(uε) = 0 starting from u0 ∈ L2(D)

• Iterate for n = 0, 1, ...

1. Compute gun
, F ε(un) and Gε(un) by (13), (14) and (16).

2. Solve
Gε(un)dn = −F ε(un). (36)

3. Set un+1 = un + dn.

• Set uε = limn→+∞ un.

Above, the algorithm is described in the function space setting, but the
discrete version is completely similar. Let us now comment on the solution
of (36). At iteration n, the slanting matrix Gε(un) is of the form Gε(un) =
An + BnE

−2, where An and Bn are diagonal matrices according to (35).
Hence the computation of Gε(un) requires the complete inversion of E. This
task has to be done only once, but it may still be costly in case of fine
discretization. In addition, the obtained matrix is full, which may rise a
problem of memory. In fact, one can bypass these difficulties by replacing
(36) by





An 0 Bn

−I E 0
0 −I E









dn

d′
n

d′′
n



 =





−F ε(un)
0
0



 . (37)

This corresponds to the Newton iteration applied to the solution of the op-
timality system







uΦε(g) + min(0, g) = 0,
Ey = u,
E(g − ν) = y − y†.

Although (37) is of higher dimension than (36), it is sparse and does not
require any preliminary computation. One can reduce its size by reversing
completely (13). Note that, in the continuous setting, this is only possible if
y† ∈ H1

0 (D), and, at the discrete level, numerical instabilities can be observed
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when y†
|∂D 6= 0. In this case, steps (2) and (3) of the inner loop can be

replaced by solving successively

(AnE
2 + Bn)en = −F ε(un),

gn+1 = gn + en,
un+1 = E2(gn+1 − ν) + Ey†.

(38)

In the numerical experiments which are presented in Section 7, E is chosen
as the finite difference approximation of the Dirichlet Laplacian with the five
points stencil. The regularization parameter is updated by

εk = min(εk−1, a‖guεk−1‖rk−1)

with a > 0, 0 < r < 1 and ε0 = a‖guε0‖. Obviously, the sequence (εk) is
nonincreasing and, due to the boundedness of {‖gu‖, 0 ≤ u ≤ 1}, it goes
to zero as k goes to infinity. The following parameters are used: a = 10−3,
r = 0.5, k = 1, ..., 10. The algorithm is initialized by uini ≡ 0.5. The stopping
criterion of the inner loop is chosen as ‖un+1 −un‖/‖un‖ ≤ b, with b = 10−3.

7. Numerical tests

7.1. First example

The computational domain is the square D = [0, 1]× [0, 1] discretized by
a 100 × 100 regular grid. We consider the data

y†(x1, x2) = sin(2πx1) sin(2πx2), ν = 10−2.

As y†
|∂D = 0, we use the reduced version of the algorithm given by (38). The

functions uεk obtained at the end of iterations 1 and 10 (of the outer loop)
are depicted in Figure 1. The convergence history of ‖F (uεk)‖2 is shown
in Figure 2. Some indications of the CPU time used are reported in Table
1. They have been obtained on a standard desktop computer with 2.4 GHz
processor.

7.2. Second example

The computational domain and the grid are unchanged, but we now
choose

y† = E−1χB, ν = 0,
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Figure 1: Example 1, control u
ε at iterations 1 (left) and 10 (right).
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Figure 2: Example 1, convergence history of log
10

‖F (uεk)‖2.
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Figure 3: Example 2, control u
ε at iterations 3 (left) and 10 (right).

Figure 4: Example 3, control u
ε at iteration 10 for case (a) (left) and case (b) (right).

where B is the ball of center (0.5, 0.5) and radius 0.25. It is a difficult
problem, because the solution is (u∗, y∗) = (χB, y†), thus gu∗ ≡ 0. Nev-
ertheless the algorithm still behaves properly, as shown in Figure 3. At
iteration 10 we obtain the relative errors ‖y − y†‖/‖y†‖ ≈ 4.5 × 10−7 and
‖u − χB‖/‖χB‖ ≈ 1.5 × 10−4.

7.3. Third example

The computational domain is now the rectangle D = [0, 2] × [0, 1] dis-
cretized by a 200 × 100 regular grid. We choose

y† ≡ 0.05, (a) ν = 10−4, (b) ν = 2 × 10−3.

Since y†
|∂D 6= 0 we do not use the reduced version, but the update (37).

The obtained results are displayed in Figure 4. For readability we have
represented the level set [uε > 0.5] (in dark), but in fact, like in the other
examples, this region corresponds to the set of points where uε ≈ 1. These
results match those obtained in [4] by a level set method.

7.4. Concluding remarks

With regards to the tests performed, the proposed algorithm appears to
be competitive in comparison with first order topology optimization meth-
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Example 1 2 3(a) 3(b)

Nb. of d.o.f. 9801 9801 19701 19701
CPU time (s) 13.3 17.1 49.2 48.6

Table 1: Some computational data.

ods. In particular, it is still efficient when the topological derivative at the
optimum is zero, which allows to be optimistic as to its application to recon-
struction problems. It is also compatible with the use of primal-dual Newton
type methods in topology optimization with constraints, which offers an al-
ternative to Uzawa type methods [5].
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