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Intrinsic Dimension Estimation by
Maximum Likelihood in Probabilistic PCA

Charles Bouveyron, Gilles Celeux and Stéphane Girard

Abstract

A central issue in dimension reduction is choosing a sensible number of dimensions to be
retained. This work demonstrates the asymptotic consistency of the maximum likelihood crite-
rion for determining the intrinsic dimension of a dataset in a isotropic version of Probabilistic
Principal Component Analysis (PPCA). Numerical experiments on simulated and real datasets
show that the maximum likelihood criterion can actually be used in practice and outperforms
existing intrinsic dimension selection criteria in various situations. This paper exhibits as well
the limits of the maximum likelihood criterion and recommends in specific situations the use of

the AIC criterion.

Index Terms

Probabilistic PCA, isotropic model, dimension reduction, intrinsic dimension, maximum

likelihood, asymptotic consistency.

1 INTRODUCTION

The analysis of high-dimensional data has become an important problem in statistical learn-
ing and dimension reduction has a central place in such studies. Among all existing methods,
Principal Component Analysis (PCA) [13] and its probabilistic version (PPCA) [24], [25]
are two popular techniques. A central issue in dimension reduction is choosing a sensible
number of dimensions to be retained. We refer to [7] for a review on this topic. Two kind

of approaches have been proposed in the last decades for intrinsic dimension estimation.
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Local methods

The local approach estimates the topological dimension (defined as the basis dimension
of the tangent space of the data manifold) from the information contained in sample neigh-
borhoods. Fukanaga-Olsen’s algorithm [12] consists of estimating the rank of the covariance
matrix computed locally on a Voronoi tessellation. In [6], the Voronoi tessellation is computed
thanks to a topology representing network. The algorithms proposed by Pettis et al. [19] and
Verver-Duin [27] are based on the analysis of the distances from one point to its nearest
neighbors. The main limitation of local approaches is their sensitivity to outliers.
Global methods

The global approach consists of unfolding the whole dataset into a linear subspace. The
estimated intrinsic dimension is then the dimension of the resulting subspace. Such methods
can be divided into three subfamilies.

e Projection methods: The lower dimensional subspace can be estimated by minimizing
some projection errors. Examples of such approaches include PCA [13] sometimes as-
sociated with Cattell’s scree test [9] and its non linear extensions based either on auto-
associative models [14], [10] or Mercer kernels [21]. Multidimensional scaling type algo-
rithms aim at finding the projection which (locally) preserve the distances among data.
Recent methods include LLE [20] and ISOMAP [23].

o Fractal-based methods: These techniques rely on the assumption that the dataset is gen-
erated by a dynamic system. Their goal is to estimate the dimension of the attractor
associated to this dynamic system. For instance, [15] addresses this problem through the
estimation of the box-counting dimension and some heuristic methods are introduced
in [8]. Most of these methods are designed for low-dimensional datasets since their
complexity grows exponentially with the dimension.

o Model-based methods: The use of a parametric model permits to derive a maximum
likelihood (ML) estimator of the intrinsic dimension. For instance, in [16], the number
of points in a small sphere is modeled by a Poisson process. We also refer to [17] for a
bias correction of the previous ML estimator. In a similar spirit, [11] uses a polynomial
regression based on a uniformity assumption. Minka [18] proposed a penalized likeli-
hood criterion dedicated to the PPCA model and based on the Bayesian Information
Criterion (BIC) [22]. The underlying idea is that the likelihood is an increasing function
of the complexity and thus of the dimensionality as well. This remark motivates the
authors to use a penalized likelihood criterion.

In our work, a constrained version of PPCA is introduced, called isotropic PPCA, and it is

demonstrated that the ML criterion is asymptotically optimal in this case, the complexity
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of the model being not an increasing function of the dimensionality. The ML criterion is
compared in different situations on simulated and real data to two classical model selection
criteria, AIC [1] and BIC [22], to the empirical scree-test of Cattell [9], and to the model-based
methods [16] and [11].

This paper is organized as follows. Section 2 introduces an isotropic version of probabilistic
PCA and considers the estimation of its parameters. Section 3 focuses on the intrinsic
dimension estimation and demonstrates that the maximum likelihood method can be used
for this task in the context of the isotropic PPCA model. Section 4 illustrates on simulations
and real datasets the behavior of the proposed approach in different situations and Section 5

proposes some concluding remarks.

2 |ISOTROPIC PROBABILISTIC PCA

In this section, after having reminded the Probabilistic PCA (PPCA) model, it is reformulated
using an eigenvalue decomposition. An isotropic version of PPCA is then introduced and

inference aspects are addressed.

2.1 Factor Analysis and Probabilistic PCA

The Factor Analysis model [2], [3] links linearly a p-dimensional random vector y to a d-

dimensional Gaussian vector x of latent variables:
y=Hx+pu+e.

The p x d factor matrix H relates the two random vectors and p € RP is a nonrandom
position parameter. When d < p, the latent vector x provides a parsimonious representation
of y. Without loss of generality, it can be assumed that z ~ N (0, I;). If, moreover, the noise ¢
is supposed to be Gaussian ¢ ~ N (0, V), where U is a p x p variance matrix, and independent
from z, then we end up with a Gaussian distribution for the observations y, i.e. y ~ N (i, X)
where:

Y= HH!+ V.

In such a case, the model parameters can be estimated by maximum likelihood even though
an iterative procedure is involved. To overcome this practical difficulty, one can assume
an isotropic noise ¥ = b, with b > 0. This model is referred to as the Probabilistic PCA

model [25]. The variance matrix of y can be simplified in:
Y = HH' +bl,.

In contrast to the general Factor Analysis model, all parameters p, b and H benefit from

closed form estimators.
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Fig. 1. Graphical representation of the isotropic PPCA model.

2.2 Isotropic Probabilistic PCA

Similarly, it may be of interest to consider an isotropic factor matrix. In this case, the matrix
H can be rewritten as H = va — bV with a > b and where V is a p x d matrix such that

V'V = I,. Thus, the variance matrix of the observation y is given by:
Y= (a—b)VV"+bl,

An alternative, and more intuitive, parametrization of ¥ can be obtained using its eigenvalue

decomposition:
Y =QAQ,

where () is an orthogonal matrix containing the eigenvectors of ¥ and A is a diagonal matrix
containing the eigenvalues of X. Naturally, it is possible to express the eigenvector matrix
regarding the transformation matrix V' as follows: ) = [V, U] where U is a p x (p — d) matrix
such that () is orthogonal. Therefore, the matrix A associated with the isotropic PPCA model

has the following form:

0 b

with a > b. The isotropic PPCA model is therefore parametrized by p, @, a, b and d. A graphical

representation of the isotropic PPCA model is given by Figure 1. As it can be observed on Figure 2
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Fig. 2. The isotropic PPCA model: a controls the variance in the latent subspace E spanned
by the d first columns of @, i locates the subspace in the original space and b controls the

variance outside E.

which illustrates the model in a 3-dimensional space, such a modelling assumes that the distribution
is spherical and modelled by a within the d-dimensional latent subspace where the data actually
live. The d-dimensional latent subspace is spanned by the d first columns of @ which control the
orientation of the subspace whereas p locates the subspace in the original space. The isotropic PPCA
model supposes as well that the variance of noise can be modelled outside the latent subspace with
an unique parameter b. Finally, it should also be noticed that the mixture model introduced in [5] is
in fact a mixture of isotropic PPCA applied to discriminant analysis, i.e. each class is modelled by a

specific isotropic PPCA model.

2.3 Inference for isotropic PPCA

Before focusing on the estimation of the intrinsic dimension d, the inference on model parameters for
the isotropic PPCA model is considered. In the case of the isotropic PPCA model, the parameters to
be estimated are p, a, b, U and V. As in the classical Gaussian framework, the maximum likelihood
strategy is retained for parameter estimation. Denoting by n the number of observations, the log-

likelihood associated with the isotropic PPCA model is:

2 1 1
- log(L) = dlog(a) + (p — d) log(b) + - ; U§ij + 7 ; u?—Wuj, 1)
where W is the empirical variance matrix:
1 ¢ X ORI R
W= EZ(M*M)(W*M) , b= szz.
=1 =1

The estimation of the matrices U and V is similar to the estimation of H in the context of the
actual PPCA model (see [24] for further details). For a given value of d, the ML estimator of the

transformation matrix V' is the matrix containing the eigenvectors associated with the d largest
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eigenvalues of the empirical variance matrix W. Similarly, the ML estimator of U is the matrix
containing the eigenvectors associated with the p—d smallest eigenvalues of W. Using this eigenvalue

decomposition of W in (1), we obtain

d P
2 1 1
—;log(L) = dlog(a) + (p — d)log(b E g E E A 2
j=d+1

j=1
where \; is the jth eigenvalue of W. It follows that

1

=3 Z Z Aj-

j=1 g d+1

As one can observe, maximum likelihood provides intuitive estimates of model parameters. Par-
ticularly, ML estimates of parameters a and b are respectively means of the largest and smallest
eigenvalues of the empirical covariance matrix. From a numerical point of view, such estimates should
be more robust than eigenvalue estimates when the number of observations is small compared to
the data dimension p. Furthermore, it is not necessary in practice to compute the (p — d) smallest

eigenvalues of W since b can be computed as b= (tr(W) — da) /(p — d).

3 ESTIMATION OF THE INTRINSIC DIMENSION BY MAXIMUM LIKELIHOOD

In this section, we focus on the estimation of the intrinsic dimension d*. First the following proposition
is proved.

Proposition: The maximum likelihood of d* is asymptotically unique and consistent.

Proof: Since d is an integer parameter, it is possible to compute the likelihood for each value of d =
1,...,p—1 and to select the value associated to the largest likelihood. From Equation (2), the maximized

log-likelihood of the isotropic PPCA model can be written at the optimum 0= (fi, a, b,U, V) as

d
—% log(L(6,d)) = dlog(a) + (p — d) log(b) + tr(BW) - (é — %) ZAJ,

Since a =139\, b= Gra —asr Aj and tr(W) = 30, A, the log-likelihood reduces to:

2 log(L(9, ) = dlog(@) + (p — d) og(b) + p

Consequently, the maximization of the likelihood is equivalent to the minimization of ¢,(d) =
dlog(a) + (p — d)log(h). Asymptotically, as the number of (independent) observations n tends to
infinity, \; converges almost surely (a.s.) to a if j < d* and \; converges a.s. to b if j > d*, see
Lemma 2.1 [26]. Two cases can arise.

Situation d < d*: In this case, & — a and b — Fld [(d* —d)a+ (p— d*)b] a.s. when n — oo.
Consequently, ¢, (d) — ¢(d) a.s. where we have defined
d*—d —dr
=

o(a) = dloga) + (p ~ o
or equivalently

(b(d)p_p;fg(a) = ((;)—ci)) log <1 + (p—d) (é . 1>) = élog (1 + %) :
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with § = ((pp:dd*)) and v = 2 — 1. Thus, the study of ¢(d) reduces to the study of ¥(5) = dlog (1 + 1)

where 6 > 1 and v < 0. Since 9 is a strictly increasing function on [1, +00) for all v < 0, its minimum

is reached for 6 = 1 and therefore the minimum of ¢ on [1, d*] is reached for d = d*.
Situation d > d*: Here, a — % (d*a+ (d—d*)b) and b — b as. when n — oo. It leads to
¢n(d) — ¢(d) a.s. where

o(d) = dlog (%a+ d _dd* b) + (p — d) log(b).

Similarly to the first situation, we can write
9(d) — plog(b) _d]:bg(b) = dii log (1 + d?; (% — 1)) = dlog (1 + %) 5
with § = &£ and v = % — 1. Again, the study of ¢(d) reduces to the study of 1(5) = dlog (1 + 1)
where § > 1 and v > 0. Remarking that ¢ is a strictly increasing function on [1,+o00) for all v > 0,
its minimum is reached for 6 = 1 and therefore the minimum of ¢ on [d*, p] is reached for d = d*.
As a conclusion, we have proved that the likelihood associated with the model has asymptotically a
unique maximum for the actual intrinsic dimension d* of the data. O
From this proposition, it is deduced that the maximum likelihood criterion can be used to estimate
d* in the context of the isotropic PPCA model. Usually, as for instance for the general PPCA model,
model selection criteria using the maximum likelihood need an additional penalty term because the
maximum likelihood of a model is asymptotically a non decreasing function of the number of model
parameters. However, for isotropic PPCA, the proposition states that the likelihood is asymptotically
maximum for the intrinsic dimension d* of the data. Therefore ML criterion is a good candidate to
estimate the intrinsic dimension of a dataset in the isotropic PPCA framework. Other criteria of the
form ML + pen(n) where pen(n) is a penalty such that pen(n)/n tends to 0 as n tends to infinity
are other consistent criteria to estimate this intrinsic dimension. In the following such criteria as AIC

and BIC are compared with ML on an experimental ground.

4 NUMERICAL EXPERIMENTS

This section presents numerical experiments on simulated and real datasets in order to highlight
the main features of different intrinsic dimension estimation methods in the context of the isotropic
PPCA model. The maximum likelihood criterion, for which we have demonstrated the asymptotic
consistency, is compared in the following to two penalized likelihood criteria (AIC and BIC), an
empirical criterion (Cattell’s scree-test), the MleDim method of [16] and the incising balls (Inc. balls)
algorithm [11]. For the sake of simplicity, the following experiments will be set up according to two
parameters: a« = n/p and § = d*a/[(p — d*)b]. The parameter o controls the estimation conditions
through the ratio between the number of observations and the dimension of the observation space.
The second parameter, 3, controls the signal to noise ratio through the condition number a/b of
the variance matrix. We remind that AIC and BIC respectively penalize the log-likelihood by the
quantities v(M) and v(M)log(n)/2 where v(M) is the number of independent parameters (com-

plexity) of the used model M. The scree-test of Cattell is an empirical method which compares the
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Fig. 3. Dimension selection on data simulated according to the isotropic PPCA model with ML,
AIC and BIC. The data were simulated with p = 50, b = 1 and the actual intrinsic dimension is

d* = 20.

differences between consecutive eigenvalues with a fixed threshold for finding a breakdown point in
the eigenvalue scree. We refer respectively to [16] and [11] for details on the MleDim and Inc. balls
algorithms. Finally, for all the following experiments, the parameters p, b and d* will remain fixed to

the values p = 50, b = 1 and d* = 20.

4.1 An introductory example

The first experiment aims to show the behavior of the three likelihood-based criteria (ML, AIC and
BIC) according to the signal to noise ratio 3 for a fixed value of «. The simulated model for this

experiment is the isotropic PPCA model. The parameter o has been set to 5 which means that
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a=3and f=1,...,30 a=2and f=1,...,30 a=1land 6=1,...,30

Fig. 4. Average selected dimension according to the signal to noise ratio 3 for different values
of o with ML, AIC, BIC and the scree-test of Cattell. The data were simulated according to
a uniform distribution (see text for details) with p = 50 and the actual intrinsic dimension is

d* = 20.

the estimation conditions are favorable. Figure 3 shows the eigenvalue scree (left panels) and the
behavior of the three likelihood-based criteria (from left to right, ML, AIC and BIC) for different
values of (3. The first row of Figure 3 considers an easy situation where the eigenvalue scree has a
clear breakdown point between relevant and irrelevant dimensions and all criteria succeed in finding
the correct intrinsic dimension d* = 20. The second row presents a slightly more difficult situation for
which ML and AIC still succeed in determining d* whereas BIC penalizes too much the likelihood and
fails in determining d*. Finally, the last row focuses on a difficult situation where there is no elbow in
the eigenvalue scree. In this case, AIC and BIC fail in estimating d* by proposing d = 1. Conversely,
ML slightly overestimates the actual value of d* by proposing d = 28. It should be noticed that, in
the dimension reduction framework, slightly overestimating the intrinsic dimension is preferable to

underestimating it because all relevant dimensions are still retained.

4.2 Influence of the signal to noise ratio

The second experiment focuses on the influence of the signal to noise ratio (parameter 3) on the
intrinsic dimension estimation with the five studied dimension selection methods and this for different
values of o = n/p. In order not to favour the likelihood-based methods, ML, AIC and BIC, the
simulated model used in this numerical experiment will not be the isotropic PPCA model but a
uniform distribution with d* dimensions of variance a/12 and (p — d*) dimensions of variance b/12
is used. The results have been averaged from 50 independent simulated datasets. Figure 4 shows
the behavior of the criteria ML, AIC, BIC, the scree-test of Cattell, MleDim and Inc. balls according
to § for three values of o = 1,2, 3. The left panel of Figure 4 considers a situation where the n/p
ratio is quite favorable to the estimation (a = 3). Consequently, all likelihood-based criteria and the

scree-test of Cattell succeed on average in estimating the actual intrinsic dimension d* = 20 for a
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Nip ratio Nip ratio Nip atio

f=3and a=1,...,50 f=2and a=1,...,50 f=1and a=1,...,50

Fig. 5. Average selected dimension according to the ratio « = n/p for different values of 5 with
ML, AIC, BIC and the scree-test of Cattell. The data were simulated according to a uniform

distribution (see text for details) with p = 50 and the actual intrinsic dimension is d* = 20.

large range of values of 3. Surprisingly, Inc. balls and MleDim underestimate the intrinsic dimension
in this quite comfortable situation and Inc. balls appears to provide poor estimates of d*. Naturally,
for all methods, the task of estimating d* becomes difficult when £ is close to 1. In this case, AIC and
ML are clearly more efficient than the other criteria and ML should be recommended since it slightly
overestimates d* whereas AIC underestimates it. The center panel of Figure 4 focuses on a more
difficult estimation situation (« = 2) and a similar behavior can be observed for all the criteria except
for the empirical criterion of Cattell which is clearly less efficient than ML, AIC and BIC. Finally, the
right panel of Figure 4 considers a difficult situation (o = 1) where the number of observations is
small compared to the number of parameters to be estimated. It first appears that the scree-test of
Cattell, MleDim and Inc. balls fail for all values of # and should not be used in such a case. Secondly,
BIC turns out to perform poorly for values of 3 smaller than 15. For values of 3 between 5 and
15, AIC and ML outperform other criteria even though ML tends to dramatically overestimate d*.
When the number of observations is small compared to the dimension of the observation space, it
is desirable to slightly penalize the maximum likelihood and the AIC criterion could be preferred to

the ML criterion to select the intrinsic dimension of a dataset.

4.3 Influence of the n/p ratio

We now focus on the influence of the n/p ratio (parameter «) on the intrinsic dimension estimation
with the six studied criteria for different values of the signal to noise parameter 3. Again, the results
have been averaged from 50 independent simulated datasets. Figure 5 shows the behavior of the
criteria ML, AIC, BIC, the scree-test of Cattell, MleDim and Inc. balls according to « for three values
of # =1,2,3. On the one hand, the left and center panels of Figure 5 consider situations where the
signal to noise ratio is relatively good with a clear breakdown point in the eigenvalue scree. In such

situations, the criteria ML, AIC, BIC and Cattell are efficient for a large range of a values whereas,
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Dataset IERERE BIC AIC Cattell MleDim
Abalone 4177 | 8 | 05319 20) | 05319 (2.0) | 05319 (2.0) | 0.5049 (1.0) | 0.5318 (1.9)
Glass 214 | 9 | 04987 5.7) | 04916 47) | 05003 (5.2) | 0.4733 (3.0) | 0.4663 (3.4)
Satellite 6435 | 36 | 0.8207 (7.8) | 0.8205 (7.4) | 0.8205 (7.7) | 0.7647 (2.0) | 0.8213 (8.0)
Sonar 208 | 60 | 0.6355 (6.4) | 0.5654 (3.1) | 0.5849 (3.8) | 0.5278 (1.8) | 0.6237 (5.0)
USPS 358 2248 | 256 | 0.9062 (85.5) | 0.9100 (15.0) | 0.9175 (50.5) | 0.7637 (2.6) | 0.9094 (11.9)
Wine 178 | 13 | 07277 2.6) | 07110 2.2) | 0.7138 (2.3) | 0.6813 (1.0) | 0.6813 (1.0)
Yeast 1479 | 8 | 05107 (45) | 0.5359 (3.7) | 0.5204 (4.2) | 0.5190 3.7) | 0.4599 (5.3)
Significant wins ‘ - ‘ - ‘ 6 ‘ 5 ‘ 6 1 3
TABLE 1

Classification results on real datasets (UCI): reported values are average correct
classification rate computed on validation sets and the values in bracket are the average

selected dimensions. The results which are not in bold are significantly less than other results.

as previously, MleDim and Inc. balls respectively overestimate and underestimate the actual intrinsic
dimension. It should be noticed that the scree-test of Cattell and BIC appear again to be less efficient
than AIC and ML. On the other hand, the right panel of Figure 5 focuses on a difficult situation:
there is no clear breakdown point in the eigenvalue scree and the n/p ratio varies from a comfortable
situation (a = 50) to a critical one (o = 1). It can be observed that, in this case, BIC, MleDim and Inc.
balls fail in estimating d* whatever the « value is. The scree-test of Cattell and AIC tend to largely
underestimate d* whereas ML only slightly overestimates it. We can therefore recommend to use the
ML criterion for selecting the intrinsic dimension of a dataset when the signal to noise ratio is low.
This study demonstrates as well that the task of estimating the intrinsic dimension of a dataset is

extremely difficult when « and 3 are both close to 1.

4.4 Application to supervised classification

Finally, in order to compare and assess the different dimension selection methods on real datasets, we
chose to consider the supervised classification task. Supervised classification offers indeed the ability
to numerically evaluate the performance of the studied methods on real data (for which the actual
intrinsic dimension is unknown) through the correct classification rate. We selected seven datasets on
the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/): Abalone, Glass, Satellite, Sonar,
USPS, Wine and Yeast datasets. The USPS dataset has been modified to focus on discriminating the
three most difficult classes to be classify, namely the classes of the digits 3, 5 and 8. This dataset has
been called USPS 358. The second and the third columns of Table 1 give respectively the number of
observations and the number of dimensions of the seven datasets. In order to evaluate the ability
of the studied dimension selection methods, the following experimental setup has been used. Each
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Fig. 6. Recommended criteria for intrinsic dimension selection according to the n/p and signal

to noise ratios in the context of the isotropic PPCA model.

dataset was randomly split into a learning set of 10% of the observations and a validation set made of
the remaining observations for simulating a difficult classification situation. The intrinsic dimension
d was then selected with each dimension selection method before designing the classifier using
linear discriminant analysis (LDA) on the d first principal components (classical PCA). The correct
classification rate was computed afterward on the validation set. The results have been averaged
from 50 repetitions of the experimental setup. This experimental setup has been applied to the
previous dimension selection methods except the Inc. balls algorithm which gave very disappointing
results in the previous experiments. Table 1 reports the average correct classification rate of each
dimension selection method for the seven datasets. The average selected dimensions are also given
into brackets. The results which are not in bold are significantly worse than other results. Finally, the
last rows of Table 1 summarizes the number of significant wins of each dimension selection method
for the classification task. It appears that the likelihood-based methods ML, BIC and AIC perform
better than Cattell and MleDim to classify real data. It can be also noticed that ML turns out to
be particularly efficient when the n/p ratio is small (Sonar and Wine datasets) which reinforces our

previous conclusions.
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5 DiscussIioN

The present work focused on the estimation of the intrinsic dimension d which controls in PPCA the
number of parameters to be estimated. This problem can be regarded as a model selection problem.
From this point of view, it can be thought of as surprising to propose the maximum likelihood (ML)
as a model selection criterion since in most situations this criterion could be expected to increase
with the model complexity. The reason why ML can be used to estimate d* for the isotropic PPCA
model is the perfect duality between the subspace spanned by the eigenvectors associated with the
d largest eigenvalues of W and the supplementary noise subspace with dimension (p — d). Because
of the symmetry between a and b occurring in the isotropic PPCA model, the number of parameters
to be estimated is a function of min(7(d),7(p — d)) where 7(d) = d(p — (d + 1)/2) is the number of
parameters to be estimated for variance matrix ¥. Consequently, the complexity of the isotropic PPCA
model does not increase strictly with d: it increases between 1 and the actual intrinsic dimension d*
and decreases between d* and (p — 1). It is therefore not surprising that the ML criterion is able to
find the actual intrinsic dimension of the data without requiring an additional complexity penalty.

The theoretical result of Section 3 ensures that the ML criterion is consistent to estimate the actual
intrinsic dimension of the isotropic PPCA model. In practice, the sample size n is finite and can be
small in regard to p. Thus, it could happen that the sample variability leads to a ML criterion whose
maximum is attained for a larger dimension than the actual intrinsic dimension d*. In such cases and
especially for small n, a slight penalty term, as the AIC penalty term, could be desirable to select a
proper intrinsic dimension. Figure 6 displays a summary of the recommendations that could be given
from our experience. As it can be seen on this figure, it appear that AIC can outperform ML criterion
when n/p < 5 for a moderate signal to noise ratio. Finally, when n is not very large, it could be
recommended to compare the dimensions selected by AIC and ML and to choose d on an empirical
ground when the AIC and ML selected dimensions differ. And, in that purpose, the recommendations
provided by Figure 6 could be helpful.

Finally, the theoretical result exhibited in this work could have interesting applications in methods
based on the isotropic probabilistic PCA model. In particular, the isotropic PPCA model has been used
in [5], in a supervised classification framework, for modelling and classifying the data of K classes in
different subspaces with specific intrinsic dimensions dj, k = 1, ..., K, estimated through an empirical
strategy. In such a context, the BEC criterion [4] could be also used since it is a penalized-likelihood
criterion taking into account the classification aim. Alternatively, the asymptotic optimality of the ML
criterion for the isotropic PPCA model should allow this classification method to efficiently determine
the intrinsic dimension dj of each class using the ML criterion avoiding numerical problems when «

or/and 3 go close to 1.
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