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Isotypic Decomposition of the Cohomology and Factorization

of the Zeta Functions of Dwork Hypersurfaces

Philippe Goutet

December 10, 2009

Abstract

The aim of this article is to illustrate, on the Dwork hypersurfaces xn

1+· · ·+xn

n−nψx1 . . . xn =
0 (with n an integer ≥ 3 and ψ ∈ F∗

q a parameter satisfying ψn 6= 1), how the study of the
representation of a finite group of automorphisms of a hypersurface in its etale cohomology
allows to factor its zeta function.

1 Introduction

Let n be an integer ≥ 3 and Fq a finite field of characteristic p 6= 2 not dividing n; to simplify the
results, we will assume that q ≡ 1 mod n. We consider the projective hypersurface Xψ ⊂ Pn−1

Fq

given by
xn1 + · · · + xnn − nψx1 . . . xn = 0,

where ψ is a non zero parameter belonging to Fq. The zeta function of Xψ is defined as

ZXψ/Fq(t) = exp

(+∞
∑

r=1

#Xψ(Fqr )
tr

r

)

.

We assume that ψn 6= 1, so thatXψ = Xψ⊗FqFq is nonsingular. AsXψ is a non-singular hypersurface

of Pn−1, we know that the dimension of the etale ℓ-adic cohomology spaces Hi
et(Xψ,Qℓ) is zero for

i > 2n− 4 or i < 0 and that, for 0 ≤ i ≤ 2n− 4,

dimHi
et(Xψ,Qℓ) =

{

δi if i 6= n− 2,

δi + (n−1)n+(−1)n(n−1)
n if i = n− 2,

where δi = 0 if i is odd and δi = 1 if i is even (see §2.2). As we will recall in Remark 2.3 page 3,
the zeta function of Xψ is related to how the Frobenius acts on Hn−2

et (Xψ,Qℓ).
We set

A = {(ζ1, . . . , ζn) ∈ µn(Fq)
n | ζ1 . . . ζn = 1}/{(ζ, . . . , ζ)};

Â = {(a1, . . . , an) ∈ (Z/nZ)n | a1 + · · · + an = 0}/{(a, . . . , a)},

and denote by [ζ1, . . . , ζn] the class of (ζ1, . . . , ζn) in A and [a1, . . . , an] that of (a1, . . . , an) in Â.
We will identify the group Â with the group of characters of A taking values in F∗

q . The group A
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acts on Xψ by coordinatewise multiplication; the symmetric group Sn acts on the right on Xψ by
permutation of the coordinates

[x1 : . . . :xn]
σ = [xσ(1) : . . . :xσ(n)],

and on the left on A and Â by

σ[ζ1, . . . , ζn] = [ζσ−1(1), . . . , ζσ−1(n)];
σ[a1, . . . , an] = [aσ−1(1), . . . , aσ−1(n)].

The semidirect product G = A⋊ Sn acts on the right on Xψ, and hence on the left on Hn−2
et (Xψ,

Qℓ) as the functor g 7→ g∗ is contravariant.
The aim of this article is to describe the structure of Hn−2

et (Xψ,Qℓ) as a Qℓ[G]-module in order
to deduce a factorization of the zeta function of Xψ. More precisely, we will show that the primitive
part of Hn−2

et (Xψ,Qℓ) (as defined in §2.2) admits an isotypic decomposition

⊕

a,ω

Wa,ω ⊗Da Va,ω,

where a describes (Sn × (Z/nZ)×)\Â, ω belongs to a certain set of roots of unity (see Corol-
lary 5.12 page 19), Wa,ω is a simple Q[G]-module which is independent of ℓ, Da is the division ring
EndQ[G](Wa,ω)opp, and Va,ω is a free module over Da⊗Q Qℓ whose rank is independent of ℓ. Because
the Frobenius stabilizes these isotypic spaces, its characteristic polynomial splits in as many factors
(the idea to use this method is inspired by an argument given in [Hulek et al., 2006, §6.2]).

The first step is to decompose the Qℓ[G]-module Hn−2
et (Xψ,Qℓ); we follow the same method

Brünjes used for the case ψ = 0 (Fermat hypersurface), but, thanks to a more powerful trace
formula, we avoid the tedious induction of [Brünjes, 2004, Proposition 11.5]. Our methods can be
generalized to other families of hypersurfaces, allow us to obtain factorizations slightly finer than
those of Kloosterman [2007] (who uses the p-adic Monsky-Washnitzer cohomology), and also allow
us to express each factor as the norm of a polynomial with coefficients in a certain finite extension
of Q, hence explaining a numerical observation of Candelas, de la Ossa and Rodriguez-Villegas in
the case n = 5 where this extension is Q(

√
5) (see [Candelas et al., 2003, Table 12.1 page 133]1).

Let us also mention that, in a recent article, Katz [2009] studies the action of A (but not of A⋊Sn)
on the cohomology of Xψ and establishes a motivic link between Xψ and objects of hypergeometric
type.

The article is organized as follows. After preliminaries (§2), we describe the structure ofHn−2
et (Xψ,

Qℓ) as a Qℓ[A]-module (§3) and then as a Qℓ[G]-module (§4). We then deduce the structure of the
Qℓ[G]-module Hn−2

et (Xψ,Qℓ) (§5) and explain the link between this structure and the existence of
a factorisation of the zeta function of Xψ (§6). An index of all notations introduced in the article
is given in §A and a table of the main formulas appears in §B.

2 Preliminaries

We begin by recalling a Lefschetz-type trace formula by Deligne and Lusztig which allows to express
the alternating sum of the traces of an automorphism on the ℓ-adic cohomology spaces as the Euler–
Poincaré characteristic of the fixed-point scheme of this automorphism. We then recall the value of
this Euler–Poincaré characteristic in the cases we will encounter in what follows (smooth projective
hypersurfaces). Finally, we link the trace of an element of G to the Euler–Poincaré characteristic
of a subscheme of fixed points.

1They make this observation only in the case ψ = 0, but their numerical data in §13.3 suggests the same
phenomenon happens when ψ 6= 0 and q ≡ 1 mod 5.
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2.1 Lefschetz trace formula

Let us recall that the Euler–Poincaré characteristic of a proper scheme over Fp is given by

χ(X) =

2 dimX
∑

i=0

(−1)i dimHi
et(X,Qℓ),

where ℓ is a prime number 6= p. It is an integer independent of ℓ.

Theorem 2.1. Let X be a proper scheme over Fp. If f is an automorphism of X of finite order
prime to p, and if Xf denotes the fixed-point subscheme of f of the scheme X, then

2 dimX
∑

i=0

(−1)i tr(f∗|Hi
et(X,Qℓ)) = χ(Xf ).

Proof. See [Deligne and Lusztig, 1976, Theorem 3.2, page 119].

2.2 Euler–Poincaré characteristic of a non-singular hypersurface

In this §2.2, exceptionally, we do not assume that n ≥ 3.

Theorem 2.2 (Hirzebruch formula). Let n be an integer ≥ 1 and f ∈ Fp[x1, . . . , xn] a homogeneous

polynomial of degree d such that f , ∂f
∂x1

, . . . , ∂f
∂xn

have no common zero in F
n

p except (0, . . . , 0).

Then the hypersurface X ⊂ Pn−1
Fp

defined by f = 0 is non-singular (and irreducible if n ≥ 3) and
its Euler–Poincaré characteristic is

χ(X) = (n− 1) +
(1 − d)n + (d− 1)

d
.

Proof. If n ≥ 3, we use Corollary 7.5.(iii) of [SGA5, exposé VII]: indeed, the subscheme X of Pn−1
Fp

is smooth, connected and of dimension n− 2; its Euler–Poincaré characteristic is hence

χ(X) = d

n−2
∑

i=0

(−1)n−i
(

n

i

)

dn−2−i =
1

d

n−2
∑

i=0

(−1)n−i
(

n

i

)

dn−i

=
(1 − d)n + nd− 1

d
,

which is the announced formula. If n = 2, the hypersurface X of P1
Fp

consists of d distinct points

and so χ(X) = d, which shows the result as (2 − 1) + 1
d [(1 − d)2 + (d − 1)] = d. Finally, if n = 1,

X = ∅ and so χ(X) = 0, which also shows the result in this case.

Remark 2.3. When n ≥ 3, Theorem 2.2 can be refined as follows. We keep the same notations and
denote by j the canonical injection X → Pn−1

Fp
. By the Weak Lefschetz Theorem, (see for example

[Freitag and Kiehl, 1988, Corollary 9.4, page 106]), for i < n− 2 (respectively i = n− 2), the linear
map j∗ : Hi

et(P
n−1
Fp

,Qℓ) → Hi
et(X,Qℓ) is bijective (respectively injective). If we set δi = 0 if i odd

and δi = 1 if i is even, we thus have dimHi
et(X,Qℓ) = δi for i < n− 2, and this result stays valid

for n− 2 < i ≤ 2(n− 2) by Poincaré duality. For i = n− 2, the image of the map j∗ : Hn−2
et (Pn−1

Fp
,

Qℓ) → Hn−2
et (X,Qℓ) has dimension δi. We will denote it by Hn−2

et (X,Qℓ)
inprim and set Hn−2

et (X,
Qℓ)

prim = Hn−2
et (X,Qℓ)/H

n−2
et (X,Qℓ)

inprim. Because the Frobenius acts as the multiplication by
q(n−2)/2 on Hn−2

et (Xψ,Qℓ)
inprim and by multiplication by qi on each H2i

et (Xψ,Qℓ), we have

ZXψ/Fq(t) =
det(1 − tFrob∗|Hn−2

et (Xψ,Qℓ)
prim)(−1)n−1

(1 − t)(1 − qt) . . . (1 − qn−2t)
.
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2.3 Character of G acting on Hn−2
et (Xψ, Qℓ)

prim

The isomorphism class of a Qℓ[G]-module is completely determined by its character. In this §2.3,
we will express in terms of Euler–Poincaré characteristics the values of the character of the Qℓ[G]-
module Hn−2

et (Xψ ,Qℓ)
prim for the elements g ∈ G which are of order prime to p.

Lemma 2.4. Each g ∈ G acts as the identity on Hn−2
et (Xψ,Qℓ)

inprim and on Hi
et(Xψ,Qℓ) when

i 6= n− 2.

Proof. As g is the restriction of an automorphism of Pn−1
Fq

, it results from Remark 2.3 and the
following lemma.

Lemma 2.5. If h is an automorphism of Pn−1
Fq

, then h∗ acts as the identity on Hi
et(P

n−1
Fq

,Qℓ) for
all i.

Proof. The group PGLn(Fq) acts on the right on Hi
et(P

n−1
Fq

,Qℓ) by u 7→ u∗; as Hi
et(P

n−1
Fq

,Qℓ) is of

dimension 0 or 1, this action is by homothety, and thus factors by an abelian quotient of PGLn(Fq).
Since Fq is algebraically closed, PGLn(Fq) is equal to its commutator subgroup and thus has no
nonzero abelian quotient. Hence, for all u ∈ PGLn(Fq), u

∗ = Id.

Theorem 2.6. If g ∈ G is of order prime to p, then

tr(g∗|Hn−2
et (Xψ,Qℓ)

prim) = (−1)n−1
(

(n− 1) − χ(X
g

ψ)
)

. (2.1)

Proof. Using the trace formula of Theorem 2.1, we can write

2 dimX
∑

i=0

(−1)i tr(g∗|Hi
et(Xψ,Qℓ)) = χ(X

g

ψ).

By Lemma 2.4, we have (with, as previously, δi = 0 if i is odd and δi = 1 if i is even)

tr(g∗|Hi
et(Xψ,Qℓ)) =

{

δi if i 6= n− 2,

δi + tr(g∗|Hi
et(Xψ,Qℓ)

prim) if i = n− 2,

and thus
χ(X

g

ψ) = (n− 1) + (−1)n−2 tr(g∗|Hn−2
et (Xψ,Qℓ)

prim),

which is exactly the announced formula.

3 Action of A on Hn−2
et (Xψ, Qℓ)

prim

The irreducible representations over Qℓ of the finite abelian group A are its characters (of degree 1).
Finding the structure of the Qℓ[A]-module Hn−2

et (Xψ,Qℓ) hence amounts to figuring out the mul-
tiplicity of each character of A in the representation g 7→ g∗ of A in Hn−2

et (Xψ ,Qℓ); it is the aim
of this §3. The choice, in §3.1, of an isomorphism between µn(Fq) and µn(Qℓ) allows to identify

Â to the group of characters of A taking values in Qℓ. After determining the character of the
Qℓ[A]-module Hn−2

et (Xψ,Qℓ)
prim in §3.2, we will prove in §3.3 that the multiplicity of a ∈ Â is

ma = #(Z/nZ \ {a1, . . . , an}).

3.1 Characters of A with values in Qℓ

As we only consider the case q ≡ 1 mod n, the group µn(Fq) consisting of the nth roots of unity of
Fq is isomorphic to the group of nth roots of unity of Qℓ. We call t an isomorphism of µn(Fq) onto

µn(Qℓ) and use it to identify the group Â with the group of characters of A taking values in Qℓ

thanks to the isomorphism [a1, . . . , an] 7→ ([ζ1, . . . , ζn] 7→ t(ζ1)
a1 · · · t(ζn)an).
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3.2 Character values of the Qℓ[A]-module Hn−2
et (Xψ, Qℓ)

prim

As p is prime to n by assumption, the elements of A have an order prime to p; we may thus use
Formula (2.1) to obtain the values taken by the characters of the Qℓ[A]-module Hn−2

et (Xψ,Qℓ)
prim.

Theorem 3.1. Consider (ζ1, . . . , ζn) ∈ µn(Fq)
n such that ζ1 . . . ζn = 1 and let g be the correspond-

ing element [ζ1, . . . , ζn] of A. For all ζ ∈ µn(Fq), denote by k(ζ) the number of i ∈ [[1;n]] such that
ζi = ζ. We have

tr(g∗|Hn−2
et (Xψ,Qℓ)

prim) =
(−1)n

n

∑

ζ∈µn(Fq)

(1 − n)k(ζ). (3.1)

Proof. A point of Xψ with homogeneous coordinates [x1 : . . . :xn] is a fixed point of g if and only if
(x1, . . . , xn) is proportional to (ζ1x1, . . . , ζnxn). The proportionality coefficient is necessarily a root
of unity ζ ∈ µn(Fq), and we must have xi = 0 if ζi 6= ζ. Hence, the subscheme of fixed points of g
of Xψ is the disjoint union over ζ ∈ µn(Fq) of the subvarieties

Yζ = {x ∈ Xψ | xi = 0 if ζi 6= ζ}.

If k(ζ) = n, we have Yζ = Xψ. If 2 ≤ k(ζ) ≤ n− 1, Yζ is isomorphic to the hypersurface of Pk(ζ)−1

defined by yn1 + yn2 + · · · + ynk(ζ) = 0. Finally, if k(ζ) = 0 or 1, Yζ is empty. In each of these cases,
we can apply Theorem 2.2 and obtain

χ(Yζ) = k(ζ) − 1 +
(1 − n)k(ζ) + n− 1

n
= k(ζ) − 1

n
+

(1 − n)k(ζ)

n
.

Consequently, since
∑

ζ∈µn(Fq)
k(ζ) = n and

∑

ζ∈µn(Fq)
1
n = 1,

χ(X
g

ψ) =
∑

ζ∈µn(Fq)

χ(Yζ) = n− 1 +
∑

ζ∈µn(Fq)

(1 − n)k(ζ)

n
.

Using trace formula (2.1) page 4, we deduce the announced result.

Remark 3.2. A recent preprint proves, in a more general setting, formulas of the type given in
Theorem 3.1 and Theorem 4.12 page 10; see [Chênevert, 2009, Corollary 2.5].

3.3 Decomposition in irreducible representations

The following theorem gives a simple expression for the multiplicity ma of a character a ∈ Â in the
Qℓ[A]-module Hn−2

et (Xψ,Qℓ)
prim.

Theorem 3.3. The multiplicity of the irreducible character a = [a1, . . . , an] of A in the Qℓ[A]-
module Hn−2

et (Xψ,Qℓ)
prim is

ma = #(Z/nZ \ {a1, . . . , an}) = n− (number of distinct ai).

Proof. Consider (ζ1, . . . , ζn) ∈ µn(Fq)
n such that ζ1 . . . ζn = 1 and let g be the corresponding

element [ζ1, . . . , ζn] of A. From the definition, we have

tr(g∗|Hn−2
et (Xψ,Qℓ)

prim) =
∑

a∈Â

maζ
a1

1 . . . ζann

=
1

n

∑

(a1,...,an)∈(Z/nZ)n

a1+···+an=0

maζ
a1

1 . . . ζann .
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We will show that if we replace ma by the number of elements of Z/nZ \ {a1, . . . , an} in the right
hand side, we recover Formula (3.1) above, which will show the announced result. We write

1

n

∑

(a1,...,an)∈(Z/nZ)n

a1+···+an=0

#(Z/nZ \ {a1, . . . , an})ζa1

1 . . . ζann

=
1

n

∑

(a1,...,an)∈(Z/nZ)n

a1+···+an=0

(

∑

k∈Z/nZ
∀i, ai 6=k

1

)

ζa1

1 . . . ζann

=
1

n

∑

k∈Z/nZ

∑

(a1,...,an)∈(Z/nZ)n

a1+···+an=0
∀i, ai 6=k

ζa1

1 . . . ζann

=
1

n

∑

k∈Z/nZ

∑

(a1,...,an)∈(Z/nZ)n

a1+···+an=0
∀i, ai 6=0

ζa1

1 . . . ζann

=
∑

(a1,...,an)∈(Z/nZ)n

a1+···+an=0
∀i, ai 6=0

ζa1

1 . . . ζann

=
∑

a1,...,an∈(Z/nZ)\{0}
a1+···+an=0

ζa1

1 . . . ζann .

We now conclude by using the following lemma.

Lemma 3.4. Let r be an integer ≥ 1 and ζ1, . . . , ζr elements of µn(Fq). If k(ζ) = k(ζ1,...,ζr)(ζ)
denotes the number of i ∈ [[1; r]] such that ζi = ζ, then

∑

a1,...,ar∈(Z/nZ)\{0}
a1+···+ar=0

ζa1

1 . . . ζarr =
(−1)r

n

∑

ζ∈µn(Fq)

(1 − n)k(ζ).

Proof. We proceed by induction on r. For r = 1, the equality is the relation

0 = − 1

n

(

(1 − n)1 + (n− 1)(1 − n)0
)

.

We now assume that r ≥ 2 and that the result is known for r − 1. We write
∑

a1,...,ar∈(Z/nZ)\{0}
a1+···+ar=0

ζa1

1 . . . ζarr =
∑

a1,...,ar−1∈(Z/nZ)\{0}
a1+···+ar−1 6=0

ζa1

1 . . . ζ
ar−1

r−1 ζ
−a1−···−ar−1

r

=
∑

a1,...,ar−1∈(Z/nZ)\{0}

(

ζ1
ζr

)a1

. . .

(

ζr−1

ζr

)ar−1

−
∑

a1,...,ar−1∈(Z/nZ)\{0}
a1+···+ar−1=0

ζa1

1 . . . ζ
ar−1

r−1 .

Given ζ ∈ µn(Fq), we have
∑

a∈(Z/nZ)\{0}

ζa =

{

−1 if ζ 6= 1,

n− 1 if ζ = 1.
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This little remark allows to compute the first sum:

∑

a1,...,ar−1∈(Z/nZ)\{0}

(

ζ1
ζr

)a1

. . .

(

ζr−1

ζr

)ar−1

= (−1)r−k(ζr)(n− 1)k(ζr)−1,

where k(ζ) = k(ζ1,...,ζr)(ζ). To compute the second sum, we use the induction assumption:

∑

a1,...,ar−1∈(Z/nZ)\{0}
a1+···+ar−1=0

ζa1

1 . . . ζ
ar−1

r−1 =
(−1)r−1

n

(

∑

ζ 6=ζr

(1 − n)k(ζ) + (1 − n)k(ζr)−1

)

.

We conclude by noting that

(−1)r−k(ζr)(n− 1)k(ζr)−1 − (−1)r−1

n
(1 − n)k(ζr)−1

= − (−1)rn(1 − n)k(ζr)−1

n
+

(−1)r

n
(1 − n)k(ζr)−1 =

(−1)r

n
(1 − n)k(ζr).

Remark 3.5. As a consequence of Theorem 3.3, the multiplicity ma of the character a ∈ Â is
nonzero unless a belongs to the orbit of [0, 1, 2, . . . , n− 1] under Sn (which imposes n odd, or else
1 + 2 + · · · + (n− 1) is not divisible by n).

4 Action of G on Hn−2
et (Xψ, Qℓ)

prim

4.1 A decomposition of the Qℓ[G]-module Hn−2
et (Xψ, Qℓ)

prim

For every a belonging to Â identified to the group of characters of A taking values in Qℓ, we denote
byHa the isotypic component relatively to a of the Qℓ[A]-module Hn−2

et (Xψ,Qℓ)
prim (see [Bourbaki,

1958, §3.4]). It is a Qℓ-vector space of dimension ma, where ma is the multiplicity computed in §3.3,
and we have

Hn−2
et (Xψ,Qℓ)

prim =
⊕

a∈Â

Ha.

The group G acts on the left on A by inner automorphisms, and thus acts on the left on Â: if
g ∈ Aσ, with σ ∈ Sn, and if a = [a1, . . . , an], we have ga = σa = [aσ−1(1), . . . , aσ−1(n)].

Consider a ∈ Â. Denote by 〈a〉 the orbit of a under Sn. The stabilizer Ga of a in G is equal to
A ⋊ Sa, where Sa = {σ ∈ Sn | σa = a}. We have gHa = Hga for all g ∈ G and the space Ha is
stable by Ga. The subspace

⊕

a′∈〈a〉Ha′ of Hn−2
et (Xψ,Qℓ)

prim is stable by G; it is a Qℓ[G]-module

canonically isomorphic to IndGGa Ha. We thus deduce the following result.

Theorem 4.1. Denote by R ⊂ Â a set of representatives of Sn\Â. The Qℓ[G]-module Hn−2
et (Xψ,

Qℓ)
prim is isomorphic to

⊕

a∈R

IndGGa Ha.

The aim of the rest of this §4 is to determine how the group Sa acts on Ha. The strategy is the
following: after showing that Sa is a semi-direct product S′

a⋊Σa (§4.2), we compute tr(σ∗|Hn−2
et (Xψ,

Qℓ)
prim) for σ a generator of S′

a and compare it to the trace of the identity (§4.4) to deduce that
S′
a acts as ǫ(σ) IdHa on Ha (see §4.5). We then show, using a method similar to §3, that Σa acts as

a multiple of the regular representation (§4.6–4.8).
The approach we use to study the action of S′

a is the same that Brünjes used in [Brünjes, 2004,
Proposition 11.5, page 197] for the case ψ = 0, the only difference being that our trace formula
allows us to avoid a tedious proof by induction.
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4.2 Structure of Sa

Consider a = [a1, . . . , an] ∈ Â, where (a1, . . . , an) is an element of (Z/nZ)n such that a1+· · ·+an = 0.
The set of j ∈ Z/nZ such that (a1 + j, . . . , an + j) is a permutation of (a1, . . . , an) is a subgroup of
Z/nZ; it can be written as n′

aZ/nZ for some integer n′
a ≥ 1 dividing n; let da = n/n′

a be the order
of this group. These two integers only depend on a and not on the choice of a1, . . . , an.

Remark 4.2. For all b ∈ Z/nZ, denote by I(b) the set of i ∈ {1, . . . , n} such that ai = b. The set
n′
aZ/nZ is the set of j ∈ Z/nZ such that I(b + j) has the same number of elements as I(b) for all
b ∈ Z/nZ.

Lemma 4.3. There is a permutation σ ∈ Sn such that

a) if 1 ≤ i ≤ n, we have aσ(i) = ai + n′
a ;

b) σ is the product of n′
a disjoint cycles of length da.

Proof. Let us note that the condition 4.3.a is equivalent to the fact that σ(I(b)) = I(b+n′
a). For all

b ∈ Z/nZ such that I(b) 6= ∅, choose a numbering i1(b), . . . , i#I(b)(b) of the elements of I(b) and
denote by σ the element of Sn which sends il(b) to il(b + n′

a) for all b ∈ Z/nZ and 1 ≤ l ≤ #I(b).
From the definition, we have aσ(i) = ai + n′

a and, inspecting the orbits of each of the ai under
b 7→ b+ n′

a, we see that σ is a product of n′
a disjoint cycles of length da.

Denote by S′
a the fixator of (a1, . . . , an) ∈ (Z/nZ)n in Sn; it is a group which can be identified

with
∏

b∈Z/nZ SI(b) (it is hence generated by transpositions) and we set γa = [Sn : S′
a]. Consider

σ ∈ Sn satisfying the conditions of the preceding lemma and let Σa = 〈σ〉 be the cyclic subgroup
of order da of Sn generated by σ.

Proposition 4.4. The fixator Sa of a = [a1, . . . , an] ∈ Â can be written as the semi-direct product

Sa = S′
a ⋊ Σa.

Proof. If s ∈ Sa, there exists a unique j ∈ n′
aZ/nZ such that s(a1, . . . , an) = (a1 + j, . . . , an + j).

This element only depends on a, not on the choice of a1, . . . , an; we denote it by ja(s). The map
ja : Sa → n′

aZ/nZ thus defined is a group homomorphism. This homomorphism is surjective and
its kernel is the fixator S′

a of (a1, . . . , an) ∈ (Z/nZ)n in Sn.
Moreover, as aσ(i) = ai + n′

a and thus aσ−1(i) = ai − n′
a, we have ja(σ) = −n′

a by construction,

hence ja induces an isomorphism of Σa = 〈σ〉 onto the image n′
aZ/nZ of ja, which shows that

Sa = S′
a ⋊ Σa.

Remarks 4.5. a) In particular, the group S′
a is a normal subgroup of Sa and the quotient group

Sa/S
′
a is isomorphic to n′

aZ/nZ and hence of order da.

b) Let us insist on the fact that n′
a, da, S

′
a and ja only depend on a and not on the choice

of the representative (a1, . . . , an) ∈ Z/nZ. The group Σa also only depends on a, but its
construction is not canonical as it depends on an arbitrary choice of numbering.

c) Let us also note that if k ∈ (Z/nZ)×, then dka = da, n
′
ka = n′

a, S
′
ka = S′

a and Ska = Sa, but
jka = kja.

4.3 Character values on a transposition τ

Theorem 4.6. For any transposition τ ∈ Sn, we have

tr(τ∗|Hn−2
et (Xψ,Qℓ)

prim) = (−1)n
(

(1 − n)n−1 + (n− 1)

n
− δn

)

, (4.1)

where, as previously, δn = 0 if n is odd and δn = 1 if n is even.
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Proof. We may assume that τ = (1, 2). We look for the fixed points of τ , i.e. the set of points
[x1 : . . . :xn] such that [x1 :x2 :x3 : . . . :xn] = [x2 :x1 :x3 : . . . :xn] and xn1 + · · ·+xnn−nψx1 . . . xn = 0.
For such a point, we have x2

1 = x2
2, so that we are in one of the following two cases.

a) We have x1 = x2 and 2xn2 + xn3 + · · · + xnn − nψx2
2x3 . . . xn = 0. The hypersurface of Pn−2

defined by this equation is smooth because ψn 6= 1 and its Euler–Poincaré characteristic is
(n− 2) + 1

n [(1 − n)n−1 + (n− 1)] (Theorem 2.2).

b) We have x1 = −x2 6= 0, in which case x3 = · · · = xn = 0 and xn1 + xn2 = 0. This can only
happen if n is odd and [x1 : . . . :xn] = [1 :−1 : 0 : . . . : 0].

The Euler–Poincaré characteristic of the fixed-point subvariety of τ of Xψ is thus

χ(Xτ
ψ) = (n− 2) +

(1 − n)n−1 + (n− 1)

n
+ 1 − δn

= (n− 1) +
(1 − n)n−1 + (n− 1)

n
− δn,

and consequently, as τ is of order 2 and Fq is of characteristic 6= 2, Theorem 2.6 applies:

tr(τ∗|Hn−2
et (Xψ,Qℓ)

prim) = (−1)n−1
(

(n− 1) − χ(X
τ

ψ)
)

= (−1)n
(

(1 − n)n−1 + (n− 1)

n
− δn

)

.

4.4 Sum of the dimensions of the spaces Ha for a ∈ Â
τ

Proposition 4.7. Let τ ∈ Sn be a transposition. Denote by Â
τ

the set of elements of Â fixed by τ .
We have

∑

a∈Âτ

ma = (−1)n−1

(

(1 − n)n−1 + (n− 1)

n
− δn

)

,

where, as previously, δn = 0 if n is odd and δn = 1 if n is even.

Proof. We may assume that τ = (1, 2). Denote by B the set of elements (b1, . . . , bn) ∈ (Z/nZ\{0})n
such that b1 = b2 and b1+· · ·+bn = 0. The map (b1, . . . , bn) 7→ [b1, . . . , bn] from B to Â

τ
is surjective

and each element a ∈ Â
τ

has exactly ma elements in its preimage. We thus have
∑

a∈Âτ ma = #B
and conclude thanks to the following lemma.

Lemma 4.8. Let r be an integer ≥ 2. The number of r-uples (b1, . . . , br) belonging to (Z/nZ\{0})r
such that b1 = b2 and b1 + · · · + br = 0 is

(−1)r−1

(

(1 − n)r−1 + (n− 1)

n
− δn

)

.

Proof. Denote by ur the number we want to compute. We have u2 = δn and ur+ur+1 is the number
of (r+ 1)-uples (b1, . . . , br, br+1) ∈ (Z/nZ \ {0})r×Z/nZ such that b1 = b2 and b1 + · · ·+ br+1 = 0,
that is, ur + ur+1 = (n− 1)r−1. We deduce the announced result by induction on r.

4.5 Action of S ′
a on Ha

We start with a general result on automorphisms of finite order with trace equal to the dimension
of the space.

Lemma 4.9. Let k be a field of characteristic zero, V a vector space of finite dimension over k

and u an automorphism of V of finite order. If tru = dimV , then u = IdV .
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Proof. Let M be the matrix of u in a certain basis of V over k. The subfield k′ of k generated by
the coefficients of M embeds itself in C; we can thus restrict ourselves to the case k = C.

Let λ1, . . . , λm (where m = dim V ) be the (complex) eigenvalues of M , each repeated with
multiplicity. They are all roots of unity. As we have, according to the assumptions of the lemma,

|λ1 + · · · + λm| = |tr u| = m = |λ1| + · · · + |λm|,

the λi’s are positively proportional, hence equal. As their sum is m, they are all equal to 1. The
endomorphism u of V is thus unipotent; as it is of finite order, it is equal to IdV .

Remark 4.10. Let k be a field having characteristic zero, and (Vi)i∈I a finite sequence of vector
space of finite dimensions over k. For each i ∈ I, let ui be an automorphism of Vi of finite order.
If

∑

i∈I trui is equal to
∑

i∈I dimVi (respectively to −
∑

i∈I dimVi), then ui = IdVi (respectively
ui = − IdVi) for all i ∈ I. This results from Lemma 4.9 applied to the automorphism u of V =
⊕

i∈I Vi which is equal to ui (respectively to −ui) over Vi for all i ∈ I.

Let τ ∈ Sn be a transposition. As Hn−2
et (Xψ,Qℓ)

prim =
⊕

a∈ÂHa and as τ∗ sends Ha into Hτa,
we have

tr(τ∗|Hn−2
et (Xψ,Qℓ)

prim) =
∑

a∈Âτ

tr(τ∗|Ha).

By Theorem 4.6 and Proposition 4.7, we also have

tr(τ∗|Hn−2
et (Xψ,Qℓ)

prim) = −
∑

a∈Âτ

dimHa.

We thus deduce from Remark 4.10 that, for each a ∈ Âτ , τ∗ acts on Ha by − IdHa .

Theorem 4.11. Consider a ∈ Â and σ ∈ S′
a. If we denote by ǫ(σ) the signature of σ, we have

σ∗|Ha = ǫ(σ) IdHa .

Proof. The subgroup S′
a of Sn is generated by the transpositions τ satisfying τa = a (see §4.2) and

we have just seen that τ∗|Ha = − IdHa = ǫ(τ) IdHa .

4.6 Character values on Aσ where σ is a product of n′ disjoint cycles of

length d

Let n′ and d be integers ≥ 1 such that n′d = n and let σ ∈ Sn be a product of n′ disjoint cycles of
length d. Let ζ1, . . . , ζn be elements of µn(Fq) such that ζ1 . . . ζn = 1 and denote by g the element
[ζ1, . . . , ζn]σ of G = A ⋊ Sn. Let O1, . . . , On′ be the n′ orbits of σ in {1, . . . , n} and, for each
ζ ∈ µn(Fq), denote by k(ζ) the number of j ∈ {1, . . . , n′} such that

∏

i∈Oj
ζi = ζ. The following

theorem generalizes Theorem 3.1 (which is recovered by taking d = 1 and n′ = n i.e. σ = Id).

Theorem 4.12. Under the preceding assumptions,

tr(g∗|Hn−2
et (Xψ,Qℓ)

prim) =
(−1)n

n′

∑

ζ∈µn′(Fq)

(1 − n)k(ζ).

Proof. We may assume that σ is the product of ((j − 1)d + 1, . . . , jd) for 1 ≤ j ≤ n′ and that
Oj = {(j − 1)d + 1, . . . , jd}. The fixed points of g in Xψ(Fq) are the points [x1 : . . . :xn] of Xψ(Fq)
such that

[ζσ−1(1)xσ−1(1) : . . . : ζσ−1(n)xσ−1(n)] = [x1 : . . . :xn]

i.e.
[ζ1x1 : . . . : ζnxn] = [xσ(1) : . . . :xσ(n)].
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The subscheme X
g

ψ of these fixed points is thus the disjoint union, over λ ∈ F
∗

q , of the closed

subschemes Yλ of Xψ defined by

(Yλ)

{

xn1 + · · · + xnn − nψx1 . . . xn = 0,

xσ(i) = λζixi for 1 ≤ i ≤ n.

Let j ∈ {1, . . . , n′}. If
∏

i∈Oj
ζi 6= λ−d, the second relation shows that xi = 0 for all i ∈ Oj . If

∏

i∈Oj
ζi = λ−d, we have λ ∈ µnd(Fq) and the second relation shows that

∑

i∈Oj

xni = xnjd

( d
∑

i=1

(λn)i
)

=

{

dxnjd if λ ∈ µn(Fq),

0 if λ /∈ µn(Fq).

Consider λ ∈ F
∗

q and let ζ = λ−d (as n = n′d, we have ζn
′

= 1 ⇐⇒ λn = 1). Denote by J the
set of j ∈ {1, . . . , n′} such that

∏

i∈Oj
ζi = ζ and let yj = xjd for each j ∈ J . If ζ /∈ µn(Fq), J is

empty and hence Yλ is empty. Assume now that ζ ∈ µn(Fq). The number of elements of J is k(ζ).
We consider two cases.

a) First case: ζ ∈ µn′(Fq). According to what we have just done, the scheme Yλ is isomorphic

to the hypersurface of P
k(ζ)−1
Fq

defined by

d

(

∑

j∈J

ynj

)

= 0 if J 6= {1, . . . , n′},

d(yn1 + · · · + ynn′) − nψ′yd1 . . . y
d
n′ = 0 if J = {1, . . . , n′},

where ψ′ is the product of ψ by an element of µn(Fq). This hypersurface is smooth (because,

in the second case, we have (ψ′)n = ψn 6= 1 and thus (ψ′)n
′ 6= 1), hence, by Theorem 2.2

page 3, we have

χ(Yλ) = k(ζ) − 1 +
(1 − n)k(ζ) + (n− 1)

n
= k(ζ) +

(1 − n)k(ζ) − 1

n
.

b) Second case: ζ ∈ µn(Fq) \ µn′(Fq). This time, the scheme Yλ is isomorphic to P
k(ζ)−1
Fq

if

J 6= {1, . . . , n′} and to the hypersurface of Pn
′−1

Fq
defined by (y1 . . . yn′)d = 0 if J = {1, . . . , n′}.

In the first case, we have χ(Yλ) = k(ζ). In the second case, we necessarily have n′ ≥ 2 and

the Euler–Poincaré characteristic of Yλ is equal to that of Y red
λ , which is the union in Pn

′−1
Fq

of the hyperplanes defined by yj = 0, hence

χ(Yλ) =
∑

L⊂{1,...,n′}
L 6=∅

(−1)#L−1(n′ − #L) =

n′

∑

l=1

(−1)l−1

(

n′

l

)

(n′ − l)

= n′
n′−1
∑

l=1

(−1)l−1

(

n′ − 1

l

)

= n′(1 − (1 + (−1))n
′−1) = n′ = k(ζ).

For each ζ ∈ µn(Fq), there exists exactly d values of λ such that λ−d = ζ. Thus

χ(X
g

ψ) =
∑

λ∈F
∗

q

χ(Yλ) = d
∑

ζ∈µn(Fq)

k(ζ) + d
∑

ζ∈µn′(Fq)

(1 − n)k(ζ) − 1

n

= dn′ +
∑

ζ∈µn′ (Fq)

(1 − n)k(ζ) − 1

n′
= n− 1 +

∑

ζ∈µn′(Fq)

(1 − n)k(ζ)

n′
.
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The order of g divides nd and hence is prime to q; thus, by Theorem 2.6,

tr(g∗|Hn−2
et (Xψ,Qℓ)

prim) = (−1)n−1
(

(n− 1) − χ(X
g

ψ)
)

=
(−1)n

n′

∑

ζ∈µn′(Fq)

(1 − n)k(ζ).

4.7 Trace of a product σ of n′ disjoint cycles of length d acting on Ha

when a ∈ Â
σ

We keep the notations of §4.6.

Lemma 4.13. If σ ∈ Sn is a product of n′ disjoint cycles of length d,

∑

a∈Â such that σ∈Sā′

a(ζ1, . . . , ζn)ma =
(−1)n

′

n′

∑

ζ∈µn′(Fq)

(1 − n)k(ζ).

Proof. Denote by B the set of (b1, . . . , bn) ∈ ((Z/nZ) \ {0})n such that b1 + · · · + bn = 0 and
σ(b1, . . . , bn) = (b1, . . . , bn). The image of the map B → Â, (b1, . . . , bn) 7→ [b1, . . . , bn] is the set of
a ∈ Â such that σ ∈ S′

a; such an element a has exactly ma elements in its preimage. The sum we
must compute can hence be rewritten as

∑

(b1,...,bn)∈B

ζb11 . . . ζbnn .

If (b1, . . . , bn) ∈ B, all the bi, for i belonging to an orbit Oj of σ, are equal to a common
cj ∈ (Z/nZ) \ {0} and we have d(c1 + . . . cn′) = 0 in Z/nZ i.e. c1 + · · · + cn′ ∈ n′Z/nZ. Our sum
can thus be rewritten as

∑

c1,...,cn′∈(Z/nZ)\{0}
c1+···+cn′∈n′Z/nZ

µc11 . . . µ
cn′

n′ ,

where µj =
∏

i∈Oj
ζi. We conclude by using the following generalization of Lemma 3.4 (which is

recovered by taking d = 1 and n′ = n i.e. σ = Id).

Lemma 4.14. Let r be an integer ≥ 1 and µ1, . . . , µr elements of µn(Fq). For each ζ ∈ µn(Fq),
we denote by k(ζ) the number of j ∈ {1, . . . , r} such that µj = ζ. We have

∑

c1,...,cr∈(Z/nZ)\{0}
c1+···+cr∈n

′Z/nZ

µc11 . . . µcrr =
(−1)r

n′

∑

ζ∈µn′(Fq)

(1 − n)k(ζ).

Proof. We prove the result by induction on r. For r = 1, we have

∑

c1∈n′Z/nZ\{0}

µc11 =

{

d− 1 = −1
n′ ((1 − n)1 + (n′ − 1)(1 − n)0) if µ1 ∈ µn′(Fq),

−1 = −1
n′ (n′(1 − n)0) if µ1 /∈ µn′(Fq),

hence the result in that case. Assume now that r ≥ 2 and that the result is proved for r − 1. We
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write
∑

c1,...,cr∈(Z/nZ)\{0}
c1+···+cr∈n

′
Z/nZ

µc11 . . . µcrr +
∑

c1,...,cr−1∈(Z/nZ)\{0}
c1+···+cr−1∈n

′Z/nZ

µc11 . . . µ
cr−1

r−1

=
∑

c1,...,cr−1∈(Z/nZ)\{0}
cr∈Z/nZ

c1+···+cr∈n
′Z/nZ

µc11 . . . µcrr

=
∑

c1,...,cr−1∈(Z/nZ)\{0}
l∈n′Z/nZ

µc11 . . . µ
cr−1

r−1 µ
l−c1−···−cr−1

r

=
∑

c1,...,cr−1∈(Z/nZ)\{0}

(

µ1

µr

)c1

. . .

(

µr−1

µr

)cr−1
∑

l∈n′Z/nZ

µlr.

The sum
∑

l∈n′Z/nZ µ
l
r is equal to d if µr ∈ µn′(Fq) and to 0 otherwise whereas

∑

ci∈(Z/nZ)\{0} ( µiµr )
ci

is equal to n − 1 if µi = µr and to −1 otherwise. The product of all these sums is thus equal to
(−1)r−1d(1 − n)k(µr)−1 if µr ∈ µn′(Fq) and to 0 otherwise.

Taking into account the induction assumption, we obtain

∑

c1,...,cr∈(Z/nZ)\{0}
c1+···+cr∈n

′Z/nZ

µc11 . . . µcrr

=
∑

ζ∈µn′(Fq)
ζ 6=µr

(−1)r
(1 − n)k(ζ)

n′

+
∑

ζ∈µn′(Fq)
ζ=µr

(

(−1)r
(1 − n)k(ζ)−1

n′
− d(−1)r(1 − n)k(ζ)−1

)

=
(−1)r

n′

∑

ζ∈µn′(Fq)

(1 − n)k(ζ).

Theorem 4.15. If σ is a product of n′ disjoint cycles of length d and if a ∈ Â
σ
, then

tr(σ∗|Ha) =

{

(−1)n−n
′

ma if σ ∈ S′
a,

0 if σ ∈ Sa \ S′
a.

Proof. As Hn−2
et (Xψ,Qℓ)

prim =
⊕

a∈ÂHa and as σ∗ sends Ha into Hσa, we have, for each (ζ1, . . . ,
ζn) ∈ µn(Fq)

n satisfying ζ1 . . . ζn = 1,

tr(([ζ1, . . . , ζn]σ)∗|Hn−2
et (Xψ,Qℓ)

prim) =
∑

a∈Âσ

a(ζ1, . . . , ζn) tr(σ∗|Ha).

Moreover, by Theorem 4.12 and Lemma 4.13,

∑

a∈Â such that σ∈S′

a

(−1)n−n
′

ma a(ζ1, . . . , ζn) =
∑

a∈Âσ

tr(σ∗|Ha) a(ζ1, . . . , ζn)

As this is valid for all (ζ1, . . . , ζn) ∈ µn(Fq)
n satisfying ζ1 . . . ζn = 1, we may identify the coefficients,

which gives the announced result.
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4.8 Action of Sa on Ha

Let’s recapitulate the results of §§4.3–4.7. We keep the notations of §4.2: a = [a1, . . . , an] is an
element of Â, n′

aZ/nZ is the set of j ∈ Z/nZ such that (a1 + j, . . . , an + j) is a permutation of
(a1, . . . , an) and da = n/n′

a; the fixator Sa of a in Sn can be written as

Sa = S′
a ⋊ Σa where S′

a is the fixator of (a1, . . . , an) in Sn,

and Σa = 〈σ〉 is a cyclic group of order da,

with σ a product of n′
a disjoint cycles of length da.

The dimension ma of Ha is, by Theorem 3.3, equal to #(Z/nZ \ {a1, . . . , an}). It is a multiple
of da as {a1, . . . , an} is stable by translation by elements of n′

aZ/nZ; we can thus write ma = dam
′
a.

Theorem 4.16. The group Sa acts on Ha as follows:

• an element s ∈ S′
a acts by ǫ(s) IdHa ;

• an element s ∈ Σa acts by m′
a copies of the regular representation of Σa.

Proof. The first assertion results from Theorem 4.11 and the second from Theorem 4.15: the trace
of σi acting on Ha is zero if 1 ≤ i ≤ n − 1 and equal to ma = dimHa if i = 0 (note that
(−1)n−n

′

a = 1 since both n and n′
a are odd), hence Σa acts as m′

a = ma/da copies of the regular
representation.

This completely determines the structure of the Qℓ[Sa]-module Ha. From the considerations of
§4.1, we deduce the structure of the Qℓ[G]-module Hn−2

et (Xψ,Qℓ)
prim:

Hn−2
et (Xψ,Qℓ)

prim ≃
⊕

a∈R

IndGA⋊Sa (a⊗ ǫ⊗ reg
m′

a

Sa/S′

a
), (4.2)

where regSa/S′

a
is the regular representation of Sa/S

′
a (let us recall that R ⊂ Â is a set of represen-

tative elements of Sn\Â; see §4.1).

5 Action of G on Hn−2
et (Xψ, Qℓ)

prim

We begin by giving a canonical construction of cyclotomic fields and characters attached to cyclic
groups.

5.1 The cyclotomic field attached to a cyclic group

Let C be a cyclic group of order m ≥ 1. Denote by Q[C] the group algebra of C over Q and by mC

the ideal of Q[C] generated by the sums
∑

x∈C′ [x] for C′ a subgroup 6= {1} of C.

Theorem 5.1. The ideal mC of Q[C] is maximal and the field KC = Q[C]/mC is isomorphic to
the cyclotomic field Q(µm) of mth roots of unity.

Proof. We may assume that C = Z/mZ so that the algebra Q[C] can be identified with Q[X ]/(Xm−
1)Q[X ]. We have Xm− 1 =

∏

d|mΦd, where Φd is the dth cyclotomic polynomial. The polynomials

Φd are paiwise prime in Q[X ]. From the chinese remainder theorem, we deduce that Q[X ]/(Xm −
1)Q[X ] is isomorphic to

∏

d|m Q[X ]/ΦdQ[X ]. We now proceed to show that mC is the kernel of

the projection φ : Q[X ]/(Xm − 1)Q[X ] → Q[X ]/ΦmQ[X ]. Let d 6= m be an integer dividing m
and Cd = dZ/mZ the unique subgroup of C with index d; the element

∑

x∈Cd
[x] of Q[C] has

projection 0 on Q[X ]/ΦmQ[X ] and projection 6= 0 (equal to m/d) on Q[X ]/ΦdQ[X ], which shows
the result.
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The field KC is called the cyclotomic field attached to the cyclic group C. The compound map

C → Q[C] → KC = Q[C]/mC

is a canonical character χC of C taking values in KC . It induces an isomorphism between C and
the group of mth roots of unity of KC .

Proposition 5.2. The field KC is a simple Q[C]-module with endomorphism ring KC.

Let C1 and C2 be two cyclic groups of same orderm and φ : C1 → C2 and isomorphism of C1 onto
C2. The homomorphism Q[C1] → Q[C2] extending φ factors as an isomorphism Kφ : KC1

→ KC2

and we have Kφ ◦ χC1
= χC2

◦ φ, i.e. the following diagram is commutative

C1
φ−−−−→ C2

χC1





y





y

χC2

KC1

Kφ−−−−→ KC2

5.2 The simple Q[A]-module attached to an element of (Z/nZ)×\Â
The group (Z/nZ)× acts on Â by k × [a1, . . . , an] = [ka1, . . . , kan]. If a ∈ Â, we denote by ā the
class mod (Z/nZ)× of a. Let us note that the integers da and n′

a defined in §4.2 only depend on ā
and not on a (see Remark 4.5).

Denote by na the order of a in the group Â; it only depends on ā and not on a. If m is an
integer, we have ma = 0 if and only if all the mai are equal, i.e. if and only if m(ai−ai′) = 0 for all
i and i′ between 1 and n. The subgroup of Z/nZ generated by the elements ai − ai′ only depends
on ā and not on a or on the choice of a1, . . . , an; it can be written as faZ/nZ where fa divides n
and its order is na, hence n = nafa. The integer fa only depends on ā, not on a.

Following §3.1, we identify the group Â to the group of characters of A taking values in Fq, the

element a ∈ Â corresponding to the character [ζ1, . . . , ζn] 7→ ζa1

1 . . . ζann . If Na and Ea denote the
kernel and the image of this character, Ea ≃ A/Na is a cyclic subgroup of order na. Let us note
that Ea and Na only depend on ā, not on a.

Denote by Ka the cyclotomic field attached to the cyclic group Ea (see §5.1) and χa the com-
pound character

A ։ A/Na
∼→ Ea →֒ Ka,

where the third arrow is the canonical character of Ea from §5.1.

Remarks 5.3. a) Consider k ∈ (Z/nZ)×. We have ka = a if and only if k ≡ 1 mod naZ.

b) The cyclotomic field Ka only depends on ā and not on a, but χka = χka.

Proposition 5.4. The character χa defines a structure of simple Q[A]-module on Ka whose endo-
morphism ring is canonically isomorphic to the field Ka.

5.3 The stabilizer Sā in Sn of an element ā ∈ (Z/nZ)×\Â
The group Sn acts on Â by σ[a1, . . . , an] = [aσ−1(1), . . . , aσ−1(n)]. This action commutes to that of

(Z/nZ)× and factors as an action of Sn on (Z/nZ)×\Â. We designate by Sā the fixator of ā in Sn.
If σ ∈ Sā, there exists a unique k ∈ (Z/naZ)× such that σa = ka; we denote it by ka(σ). The

map ka : Sā → (Z/naZ)× defined in that way is a group homomorphism which is not surjective in
general2. Its kernel is the group Sa from §4.2; in particular, Sa is a normal subgroup of Sā. Let us
note that the map ka only depends on ā, not on a.

2Consider n = 5 and a = [0, 0, 1, 1, 3]: we have na = 5, but there is no σ ∈ S5 such that σa = 2a.
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From the definition of n′
a, there is an i such that a1 = ai+n′

a, i.e. n′
a = a1−ai ∈ faZ/nZ. Thus,

there is an integer ea such that n′
a = eafa and we have n = daeafa and na = daea. The integer ea

only depends on ā, not on a.

Theorem 5.5. The image of the homomorphism ka : Sā → (Z/naZ)× contains the elements of
(Z/naZ)× which are ≡ 1 mod ea and is thus the preimage of a subgroup of (Z/eaZ)× by the
canonical surjection (Z/naZ)× → (Z/eaZ)×.

Proof. Given k ∈ (Z/nZ)× such that k ≡ 1 mod ea, we must find a permutation σ ∈ Sn such
that σa = ka. We only need to show that there exists j such that, for all b ∈ Z/nZ, the sets
I(kb+ j) and I(b) have the same number of elements. The following lemma shows that we may take
j = −ka1 + a1.

Lemma 5.6. If k ≡ 1 mod ea, then, for all b ∈ Z/nZ, I(kb− ka1 + a1) has the same number of
elements as I(b).

Proof. Consider b ∈ Z/nZ. Suppose that b ≡ a1 mod fa, so that (kb−ka1+a1)−b = (k−1)(b−a1)
is a multiple of eafa = n′

a and thus kb − ka1 + a1 ≡ b mod n′
a; by Remark 4.2, this implies that

I(kb− ka1 + a1) has the same number of elements as I(b).
Suppose now that b 6≡ a1 mod fa (and thus I(b) = ∅); in that case, kb − ka1 is non zero

mod fa and so, from the definition of fa, kb − ka1 + a1 is not one of the ai’s, which shows that
I(kb− ka1 + a1) is empty.

We now determine the structure of Sā. Let us recall (see Remark 4.5) that S′
a and Sa depend

only on ā, not on a.

Theorem 5.7. The group S′
a is a normal subgroup of Sā and the following short exact sequence

splits
1 → S′

a → Sā → Sā/S
′
a → 1.

Proof. From the definition of fa, it is possible to choose the representative (a1, . . . , an) of a in
(Z/nZ)n such that each ai is a multiple of fa; because fana = n, the elements wai and wfa,
where w ∈ (Z/naZ)×, are well-defined in Z/nZ. If σ ∈ Sā, there is a unique pair (uσ, vσ) ∈
Z/naZ × (Z/naZ)× such that, for all i, we have aσ(i) = vσai + uσfa. The uniqueness of vσ comes
from the fact that, as we have already seen (Remark 5.3), a k such that ka = σa is defined mod na
and the uniqueness of uσ comes from the fact that uσfa is unique mod n.

The map φ : σ 7→ (uσ, vσ) is a group homomorphism from Sā to Z/naZ ⋊ (Z/naZ)× (the group
law being (u, v)(u′, v′) = (u + vu′, vv′)); its kernel is S′

a which is thus a normal subgroup of Sā.
For each b ∈ Z/nZ, we choose a numbering i1(b), . . . , i#I(b)(b) of the elements of I(b). Given

(u, v) ∈ φ(Sā), if I(b) is non-empty, then b is a multiple of fa (by assumption) and I(b) has
the same number of elements than I(vb + ufa) as aσ(i) = vai + ufa for all σ ∈ Sā satisfying
φ(σ) = (u, v). Thus, there is a permutation σu,v ∈ Sn sending il(b) on il(vb+ufa) for all b ∈ Z/nZ

and 1 ≤ l ≤ #I(b). From its definition, this permutation belongs to Sā and φ(σu,v) = (u, v).
Moreover, the map (u, v) 7→ σu,v is a group homomorphism since we have

v′(vb+ ufa) + u′fa = (v′v)b + (u′ + v′u)fa.

This shows that (u, v) 7→ σu,v is a splitting map for φ and thus the short exact sequence 1 → S′
a →

Sā → Sā/S
′
a → 1 splits.

Remarks 5.8. a) Even though Sa is a normal subgroup of Sā, the exact short sequence 1 →
Sa → Sā → Sā/Sa → 1 does not always splits. Indeed, consider the case n = 24 and the
sequence (a1, . . . , a24) with four times each of the numbers 0, 2, 12, 14 and two times each
of the numbers 1, 7, 13, 19; we have na = 24, but, even though 5 is of order 2 in (Z/24Z)×,
the only elements (u, v) of the image of φ such that v = 5 are (2, 5) and (14, 5) which are of
order 4.
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b) When σ ∈ Sa, we have vσ = 1 and uσ ∈ eaZ/naZ; indeed, if σ ∈ Sa, then vσ = 1 and so
aσ(i) − ai = uσfa; thus, from the definition of n′

a, uσfa is a multiple of n′
a = eafa and hence

uσ is a multiple of ea.

c) With the notations of §4.2, we have, for all s ∈ Sa, ja(s) = faus. More precisely, ja : Sa →
n′
aZ/nZ is the compound of the homomorphism σ 7→ us sending Sa into eaZ/naZ and of the

isomorphism of eaZ/naZ onto n′
aZ/nZ deduced from the multiplication by fa.

5.4 Construction of Q[G]-modules and study of their extension of scalars

to Qℓ

The aim of this §5.4 is to construct Q[G]-modules which, after extension of scalars to Qℓ, will give
back the representations considered in §4.

Before we begin, let us recall that the field Ka only depends on ā, not on a, but that χka = χka
(see Remark 5.3). If v ∈ (Z/naZ)×, we denote by θv the automorphism of the field Ka sending every
na

th root of unity onto its vth power.
Consider a ∈ Â; we choose a representative (a1, . . . , an) ∈ (Z/nZ)n of a such that the ai are all

multiple of fa and continue to use the notations of §5.3 concerning the integers uσ and vσ.

Proposition 5.9. If ω is a na
th root of unity in Ka, the following map defines a representation of

A⋊ Sā into Ka

µa,ω : A⋊ Sā → EndQ(Ka)

(ζ, σ) 7→ χa(ζ)ǫ(σ)ωuσ θvσ

Let Ma,ω be the Q[A ⋊ Sā]-module Ka thus defined. It has rank φ(na) (where φ is Euler’s totient
function), and, up to isomorphism, it is independent of the choice of the representative (a1, . . . , an)
of a such that each ai is divisible by fa.

Proof. Let us first check that µa,ω is a group homomorphism. We have

µa,ω(ζ, σ)µa,ω(ζ′, σ′) = χa(ζ)ǫ(σ)ωuσθvσχa(ζ
′)ǫ(σ′)ωuσ′ θvσ′

= χa(ζ)χa(ζ
′)vσ ǫ(σ)ǫ(σ′)ωuσ+uσ′vσθvσvσ′ ,

and

µa,ω((ζ, σ)(ζ′, σ′)) = µa,ω(ζ σζ ′, σσ′) = χa(ζ
σζ ′)ǫ(σσ′)ωuσ+vσuσ′ θvσvσ′

= χa(ζ)χa(
σζ ′)ǫ(σ)ǫ(σ′)ωuσ+vσuσ′ θvσvσ′ .

To prove these two quantities are equal, we need to show that χa(
σζ ′) = χa(ζ

′)vσ :

χa(
σζ ′) = χσ−1a(ζ

′) = χvσa(ζ
′) = χa(ζ

′)vσ .

We now proceed to show that µa,ω does not depends, up to isomorphism, on the choice of
the representative (a1, . . . , an) of a such that each ai is a multiple of fa. If (a′1, . . . , a

′
n) is another

representative, there exists j such that a′i = ai + jfa for all i, and so

a′σ(i) = aσ(i) + jfa = vσai + uσfa + jfa = vσa
′
i + (uσ + j(1 − vσ))fa.

Thus, v′σ = vσ and u′σ = uσ + j(1 − vσ), hence

µ′
a,ω(ζ, σ) = χa(ζ)ǫ(σ)ωuσ+j(1−vσ)θvσ = ωjµa,ω(ζ, σ)ω−j .
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We now study the extension of scalars Ma,ω⊗Q Qℓ. We use the isomorphism t from §3.1 between
µn(Fq) and µn(Qℓ); there exists a unique embedding ιa of Ka in Qℓ such that the following diagram
is commutative:

Ea −֒−−→ µn(Fq)
t−֒−−→ µn(Qℓ)

∥

∥

−֒−→

Ea −֒−−→ Ka −֒−−→
ιa

Qℓ .

This embedding only depends on ā, not on a. Moreover, if we identify a ∈ Â to a character
A→ µn(Fq), the following diagram is commutative:

A
a−֒−−→ µn(Fq)

t−֒−−→ µn(Qℓ)
∥

∥

−֒−→
A −֒−−→

χa
Ka −֒−−→

ιa
Qℓ .

In the remainder of this §5.4, we identify Ka to the subfield ιa(Ka) of Qℓ thanks to ιa.
With this identification, we have an isomorphism

δ : Ka ⊗Q Qℓ
∼→ Q

(Z/naZ)×

ℓ

k ⊗ λ 7→ (θv(k)λ)v∈(Z/naZ)×

Because

k ⊗ λ
µa,ω(ζ,σ)⊗IdQℓ7−−−−−−−−−−→ χa(ζ)ǫ(σ)ωuσθvσ (k) ⊗ λ

δ7−−−−−−−−−−→ (χa(ζ)
vǫ(σ)ωvuσθvvσ (k)λ)v∈(Z/naZ)× ,

the endomorphism of Q
(Z/naZ)×

ℓ deduced from µa,ω(ζ, σ) ⊗ Id
Qℓ

by the isomorphism δ is given by

(xv)v∈(Z/naZ)× 7→ (χva(ζ)ǫ(σ)ωvuσxvvσ )v∈(Z/naZ)× . (5.1)

Proposition 5.10. Let ua be the homomorphism σ 7→ uσ of Sa into eaZ/naZ; it does not depend
on the choice of the representative (a1, . . . , an) of a and we have uka = kua for all k ∈ (Z/naZ)×

(see Remarks 5.8.c and 4.5.c). The Qℓ[A⋊ Sā]-module Ma,ω ⊗Q Qℓ is isomorphic to

⊕

k∈(Z/naZ)×/ Im ka

IndA⋊Sā
A⋊Sa

(ka⊗ ǫ⊗ ωuka).

Proof. Formula (5.1) above shows that the isotypic components of the Qℓ[A]-module Ma,ω ⊗Q Qℓ

are of the form ka for k ∈ (Z/naZ)× (as in §3.1, we identify a to a character taking values in Qℓ);
each of these isotypic components is a direct sum of representations of dimension 1 isomorphic to
ka.

Let’s now determine the action of the group Sa. As Ska = Sa for all k ∈ (Z/nZ)×, the group
Sa stablizes each one-dimensional piece isomorphic to ka of the Qℓ[A]-module Ma,ω ⊗Q Qℓ and, by
Formula (5.1), Sa acts on a piece isomorphic to ka by multiplication by ǫ(σ)ωkuσ = ǫ(σ)ωuka .

This shows that the Qℓ[A⋊ Sa]-module Ma,ω ⊗Q Qℓ is isomorphic to

⊕

k∈(Z/naZ)×

(ka⊗ ǫ⊗ ωuka). (5.2)
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From Formula (5.1) and the fact that Sā/Sa = Im ka = {vσ | σ ∈ Sā}, we have the following
isomorphism of Qℓ[A⋊ Sā]-modules:

⊕

k∈Im ka

(ka⊗ ǫ⊗ ωuka) ≃ IndA⋊Sā
A⋊Sa

(a⊗ ǫ⊗ ωua).

From this, we get the announced result.

We deduce the following three corollaries.

Corollary 5.11. Up to isomorphism, Ma,ω only depends on the da
th root of unity ωea . More

precisely,
Ma,ω ≃Ma′,ω′ ⇐⇒ a′ ∈ (Z/nZ)×a and ωea = ω′ea .

Proof. As two representations isomorphic after extension of scalars are also isomorphic before (see
[Curtis and Reiner, 1962, Theorem 29.7, page 200]), we only have to show the result for Ma,ω⊗Q Qℓ.
From Formula (5.2), we have

Ma,ω ⊗Q Qℓ|A ≃
⊕

k∈(Z/naZ)×

ka,

which shows that, if Ma,ω ⊗Q Qℓ ≃ Ma′,ω′ ⊗Q Qℓ, then a′ ∈ (Z/nZ)×a. Let us now assume that
a′ ∈ (Z/nZ)×a so that ea = ea′ . Recall (see Remark 5.8.b as well as the proof of Proposition 4.4)
that ua is a surjection of Sa onto eaZ/naZ with uka = kua. By Formula (5.2), we have

Ma,ω ⊗Q Qℓ|Sa ≃ ǫ⊗
⊕

k∈(Z/naZ)×

ωkua ,

hence, if Ma,ω ⊗Q Qℓ ≃ Ma′,ω′ ⊗Q Qℓ, we have {ωkua | k ∈ (Z/naZ)×} = {ω′kua | k ∈ (Z/naZ)×}
and so there exists κ ∈ (Z/naZ)× such that ωea = ω′κea .

Conversely, we assume that a′ ∈ (Z/nZ)×a and that there exists κ ∈ (Z/naZ)× such that
ωea = ω′κea and prove that Ma,ω ⊗Q Qℓ ≃ Ma′,ω′ ⊗Q Qℓ if and only if κ = 1. We write a′ = k′a so
that we have an isomorphism of Qℓ[A⋊ Sa]-modules

Ma′,ω′ ⊗Q Qℓ ≃
⊕

k∈(Z/naZ)×

(kk′a⊗ ǫ⊗ ω′ukk′a)

=
⊕

k∈(Z/naZ)×

(κka⊗ ǫ⊗ ω′uκka)

=
⊕

k∈(Z/naZ)×

(κka⊗ ǫ⊗ ωuka).

This shows that Ma′,ω′ ⊗Q Qℓ ≃ Ma,ω ⊗Q Qℓ implies κ = 1. Conversely, if κ = 1, the isomorphism
from Proposition 5.10 shows that

Ma′,ω′ ⊗Q Qℓ ≃
⊕

k∈(Z/naZ)×/ Im ka

IndA⋊Sā
A⋊Sa

(kk′a⊗ ǫ⊗ ωukk′a)

≃
⊕

k∈(Z/naZ)×/ Im ka

IndA⋊Sā
A⋊Sa

(ka⊗ ǫ⊗ ωuka)

≃Ma,ω ⊗Q Qℓ.

Corollary 5.12. For each da
th root of unity η ∈ Ka, we denote by ω(η) ∈ Ka a na

th root of unity
satisfying ω(η)ea = η. We have an isomorphism of Qℓ[A⋊ Sā]-modules

⊕

η∈µda
(Ka)

Ma,ω(η) ⊗Q Qℓ ≃
⊕

k∈(Z/naZ)×/ Im ka

IndA⋊Sā
A⋊Sa

(ka⊗ ǫ⊗ regSa/S′

a
).
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Proof. According to the previous proposition, we only have to check that, for all k ∈ (Z/naZ)×,
⊕

η∈µda
(Ka)

ω(η)uka = regSa/S′

a
.

From Remark 5.8.b, we may write ua = eau
′
a where u′a : Sa → Z/daZ is a group homomorphism.

We have u′a(σ) = 0 ⇐⇒ ua(σ) = 0 ⇐⇒ σ ∈ S′
a as ja = −faua (Remark 5.8.c). Consequently, if

σ ∈ Sa,
∑

η∈µda
(Ka)

ω(η)uka(σ) =
∑

η∈µda
(Ka)

ω(η)kua(σ) =
∑

η∈µda
(Ka)

ηku
′

a(σ)

=

{

da if σ ∈ S′
a,

0 otherwise,

which proves the announced result.

Corollary 5.13. We keep the notations of the previous corollary. We have an isomorphism of
Qℓ[G]-modules

Hn−2
et (Xψ,Qℓ)

prim ≃
⊕

a∈(Z/nZ)××Sn\Â

m′
a IndGA⋊Sā

(

⊕

η∈µda
(Ka)

Ma,ω(η)

)

⊗Q Qℓ.

Proof. As a consequence of the previous corollary and of the results of §4.8, we have

Hn−2
et (Xψ,Qℓ)

prim ≃
⊕

a∈(Z/nZ)××Sn\Â

m′
a IndGA⋊Sā

(

⊕

η∈µda
(Ka)

Ma,ω(η)

)

⊗Q Qℓ.

We deduce the announced result over Qℓ thanks to the same argument as in Corollary 5.11: two
representations isomorphic after extension of scalars are also isomorphic before.

5.5 Endomorphism rings of the representations

Denote by Wa,ω the Q[G]-module IndGA⋊SāMa,ω; the aim of this §5.5 is to show that it is a simple
module and identify its endomorphism ring.

Theorem 5.14. The Q[G]-module Wa,ω is simple. Moreover, if we identify the group Gal(Ka/Q)
with (Z/naZ)×, the endomorphism ring of Wa,ω identifies with the unique subfield Da of Ka such
that Gal(Ka/Da) = Im ka. That is to say, Da is the subfield of Ka consisting of the elements fixed
by all the θvσ for σ ∈ Sā. In particular, Da is commutative.

Proof. Since a Q[G]-module is simple if and only if its endomorphism ring is a division ring, we
only need to show the second assertion.

We have Wa,ω = IndGA⋊SāMa,ω where Ma,ω is just Ka with the structure of Q[A⋊ Sā]-module
given by the representation µa,ω. We may write Wa,ω =

⊕

s∈Sn/Sā
sMa,ω. From the definition

of Sā, each sMa,ω is stable by A and the Q[A]-modules sMa,ω are disjoint. Consequently, the
endomorphism ring of Wa,ω stabilizes Ma,ω and u 7→ u|Ma,ω

defines an isomorphism between the
endomorphism ring of Wa,ω and the endomorphism ring of the Q[A⋊ Sā]-module Ma,ω.

We now need to show that the endomorphism ring of the Q[A⋊Sā]-moduleMa,ω is the subfield of
Ka fixed by all the θvσ for σ ∈ Sā. The endomorphism ring of the Q[A]-module Ma,ω is canonically
isomorphic to Ka via x 7→ (λ 7→ xλ) since the Q[A]-module Ma,ω is Ka. We deduce that the
endomorphism ring of the Q[A⋊ Sā]-module Ma,ω is the subfield of Ka consisting of the elements
x such that λ 7→ xλ commutes with each µa,ω(ζ, σ) i.e. with each θvσ . Because λ 7→ xλ commutes
with θvσ if and only if θvσ(x) = x, the ring Da = EndQ[G](Wa,ω,Wa,ω) is the subfield of Ka fixed
by each θvσ for σ ∈ Sā.
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Remarks 5.15. a) The field Da is independent of the choice of ω.

b) The field Da has dimension φ(na)
#Imka

over Q. When (Z/naZ)× is cyclic (e.g. when n is prime

and na = n), this dimension characterizes Da.

c) As (Z/eaZ)× ⊂ Im ka, we have Da ⊂ K′
a where K′

a is the subfield of Ka generated by the ea
th

roots of unity. In general, Da 6= K′
a as we may see by taking n = 5 and a = [0, 0, 1, 1, 3]: we

have na = ea = 5 and so Ka = K′
a = Q(µ5) whereas Da = Q(

√
5) (this is the same example

as in the footnote to page 15).

Examples 5.16. a) When a = [0, . . . , 0], we have Da = Ka = Q.

b) When n = 5 and ā is the class of [0, 0, 0, 1, 4] or [0, 0, 1, 1, 3], we have Da = Q(
√

5).

c) When n = 7, we have the following possibilities concerning Da.

class of ā Da

[0, 0, 0, 0, 0, 0, 0], [0, 1, 2, 3, 4, 5, 6] Q

[0, 0, 0, 0, 1, 2, 4], [0, 0, 1, 1, 3, 3, 6] Q(
√
−7)

[0, 0, 0, 0, 0, 1, 6], [0, 0, 0, 1, 1, 1, 4]
[0, 0, 0, 1, 1, 6, 6], [0, 0, 0, 1, 2, 5, 6] Q(µ7)

+

[0, 0, 1, 1, 3, 4, 5], [0, 0, 1, 1, 2, 4, 6]

[0, 0, 0, 0, 1, 1, 5], [0, 0, 0, 1, 1, 2, 3] Q(µ7)

Theorem 5.17. We have

Wa,ω ≃Wa′,ω′ ⇐⇒ a ∈ ((Z/nZ)× × Sn)a
′ and ωea = ω′ea .

Proof. As two representations isomorphic after extension of scalars are also isomorphic before (see
[Curtis and Reiner, 1962, Theorem 29.7, page 200]), we only need to show the result for Wa,ω⊗Q Qℓ.
Following Proposition 5.10, we have

Wa,ω ⊗Q Qℓ =
⊕

s∈Sn/Sā

sMa,ω ⊗ Qℓ ≃
⊕

s∈Sn/Sā

s

(

⊕

k∈(Z/naZ)×

(ka⊗ ǫ⊗ ωuka)

)

.

If a and a′ are the same mod the action of (Z/nZ)× × Sn, this formula shows that Wa,ω ⊗ Qℓ

and Wa′,ω′ ⊗ Qℓ are not isomorphic.
If a ∈ ((Z/nZ)× × Sn)a

′, as the group A⋊ Sā stabilizes each copy of sMa,ω an thus stabilizes
Ma,ω, we deduce, thanks to Corollary 5.11, that if ωea 6= ω′ea , then Wa,ω ⊗ Qℓ and Wa′,ω′ ⊗ Qℓ are
not isomorphic.

Finally, if a ∈ ((Z/nZ)× ×Sn)a
′ and ωea = ω′ea , then the previous formula shows that Wa,ω ⊗

Qℓ ≃Wa′,ω′ ⊗ Qℓ.

6 Consequence for the factorization of the zeta function

The aim of this §6 is to show that Hn−2
et (Xψ,Qℓ)

prim is a direct sum of subspaces stable by the
Frobenius and to deduce a factorization of the zeta function of Xψ. The idea of using this method
comes from [Hulek et al., 2006, §6.2].

The subspaces we consider are the isotypic components of the Q[G]-module Hn−2
et (Xψ ,Qℓ)

prim;
after describing them in §6.1, we study in §6.2 how the Frobenius acts on them and deduce that

the characteristic polynomial of the restriction of the Frobenius is an integer power Q
γa/da
a,ω of a

polynomial Qa,ω which has integer coefficients independent of ℓ (see §6.3). Finally, in §6.4, we
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deduce that the part of the zeta function of Xψ corresponding to Hn−2
et (Xψ,Qℓ)

prim is the product

over a ∈ Â and η ∈ µda(Ka) of the polynomials Q
γa/da
a,ω(η) (see Corollary 5.12 for the definition of ω(η))

and we show that each Qa,ω(η) factors over the field Da considered in §5.5. We end by explicitly
treating the cases n = 3, 4, 5, and 7 in §6.5.

6.1 Isotypic decomposition of the Qℓ[G]-module Hn−2
et (Xψ, Qℓ)

prim

The aim of this §6.1 is to express, in terms of the representationsWa,ω considered above, the isotypic
components of the Q[G]-module Hn−2

et (Xψ,Qℓ)
prim. We keep the notations of §5.5.

Proposition 6.1. Let ω be a na
th root of unity. The Da⊗QQℓ-module Va,ω = HomQ[G](Wa,ω, H

n−2
et (Xψ,

Qℓ)
prim) is free of rank m′

a.

Proof. By Corollary 5.13, we have

Hn−2
et (Xψ,Qℓ)

prim ≃
⊕

a∈(Z/nZ)××Sn\Â

(

⊕

η∈µda
(Ka)

W
m′

a

a,ω(η) ⊗Q Qℓ

)

.

We deduce the following isomorphisms of Da ⊗Q Qℓ-modules:

Va,ω = HomQ[G](Wa,ω, H
n−2
et (Xψ,Qℓ)

prim)

≃
⊕

a′∈(Z/nZ)××Sn\Â

(

⊕

η′∈µda
(Ka)

HomQ[G](Wa,ω ,W
m′

a′

a′,ω(η′) ⊗Q Qℓ)

)

≃ HomQ[G](Wa,ω,W
m′

a
a,ω ⊗Q Qℓ)

≃ (EndQ[G](Wa,ω) ⊗Q Qℓ)
m′

a

≃ (Da ⊗Q Qℓ)
m′

a .

This shows that Va,ω is a free Da ⊗Q Qℓ-module of rank m′
a.

Corollary 6.2. The map w ⊗ v 7→ v(w) of Wa,ω ⊗Da Va,ω into Hn−2
et (Xψ,Qℓ)

prim is Qℓ[G]-linear
and injective; its image is the Wa,ω-isotypic component Hā,ω of the Q[G]-module Hn−2

et (Xψ,Qℓ)
prim.

Proof. We refer the reader to [Bourbaki, 1958, §3.4, Proposition 9, page 33] and [Bourbaki, 1958,
§1.5, Theorem 1.b, page 15].

Remark 6.3. The link between the Hα from §4.1 and the isotypic components Hā,ω from the
previous corollary is given by

⊕

η∈µda
(Ka)

Hā,ω(η) ⊗Qℓ Qℓ ≃
⊕

α∈(Z/naZ)×/ Im ka

IndGA⋊Sa Hα.

6.2 Action of the Frobenius on each isotypic component

Lemma 6.4. The Frobenius stablizes the Qℓ[G]-modules Wa,ω ⊗Da Va,ω.

Proof. As all the elements of G are automorphisms of Xψ defined over Fq, the Frobenius endomor-
phism on Hn−2

et (Xψ,Qℓ) commutes with the action of G; it thus stabilizes each isotypic components
of the Q[G]-module Hn−2

et (Xψ,Qℓ)
prim, namely, each of the Wa,ω ⊗Da Va,ω (Corollary 6.2).

Proposition 6.5. The Frobenius acts on Wa,ω⊗DaVa,ω by Id⊗va,ω where va,ω is the endomorphism
v 7→ Frob∗ ◦ v of the Da ⊗Q Qℓ-module Va,ω.
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Proof. The action of the Frobenius on Wa,ω ⊗Da Va,ω is given by

Frob∗(w ⊗ v) = Frob∗(v(w)) = (Frob∗ ◦ v)(w) = va,ω(v)(w) = w ⊗ va,ω(v)

= (Id ⊗ va,ω)(w ⊗ v).

The structure of Da ⊗Q Qℓ-module of Va,ω = HomQ[G](Wa,ω, H
n−2
et (Xψ,Qℓ)

prim) is given by (d ⊗
λ)v = λ(v ◦ d). We have

Frob∗ ◦ (λ(v ◦ d)) = λ(Frob∗ ◦ v) ◦ d,
and hence the map va,ω is an endomorphism of the Da ⊗Q Qℓ-module Va,ω.

We deduce the following result, which describes the reciprocal polynomial of the characteristic
polynomial of the Frobenius on each isotypic component.

Proposition 6.6. Let ω be a na
th root of unity, and set

Pa,ω(t) = det(1 − tva,ω|Va,ω/Da ⊗Q Qℓ) ∈ Da ⊗Q Qℓ[t];

Qa,ω(t) = NDa⊗Qℓ[t]/Qℓ[t](Pa,ω(t)) ∈ Qℓ[t].

We have degPa,ω = m′
a and degQa,ω = φ(na)

#Imka
m′
a. The reciprocal polynomial of the characteristic

polynomial of the Frobenius over Wa,ω ⊗Da Va,ω is given by

det(1 − tFrob∗|Wa,ω ⊗Da Va,ω) = Qa,ω(t)γa/da ,

where γa is the number of permutations of (a1, . . . , an) and da is the integer defined in §4.2.

Proof. As Frob∗ acts on Wa,ω ⊗Da Va,ω by Id ⊗ va,ω, we have [Bourbaki, 1970, §8.6, Example 3,
page 101]

det(1 − tFrob∗|Wa,ω ⊗Da Va,ω/Qℓ)

= det(1 − tva,ω|Va,ω/Qℓ)
dimDa Wa,ω

= det(1 − tva,ω|Va,ω/Qℓ)
(dimQ Wa,ω)/[Da:Q],

with [Bourbaki, 1970, §9.4, Proposition 6, page 112]

det(1 − tva,ω|Va,ω/Qℓ) = NDa⊗QQℓ[t]/Qℓ[t](det(1 − tva,ω|Va,ω/Da ⊗Q Qℓ)),

which shows the announced formula given the following remarks:

a) the degree of the polynomial Pa,ω(t) is m′
a = dimDa⊗QQℓ Va,ω;

b) the degree of the polynomial Qa,ω(t) is [Da : Q] · degPa,ω = φ(na)
#Im ka

m′
a;

c) the dimension ofWa,ω over Q is φ(na)[Sn :Sa] = φ(na)
#Im ka

γa
da

= γa
da

[Da : Q], and thus
dimQ Wa,ω

[Da : Q] =
γa
da

.

6.3 Rationality and independence of ℓ of the characteristic polynomials

The aim of this §6.3 is to show that the polynomials Qa,ω defined in Proposition 6.6 have rational
coefficients an are independent of ℓ. We start with the following lemma, which we will use a couple
of times in what follows.

Lemma 6.7. Let E be a finite dimensional vector space over Qℓ and u an endomorphism of E.
The polynomial det(1 − tu) is an element of Q[t] independent of ℓ if and only if for all r ≥ 1 the
number tr(ur) belongs to Q and is independent of ℓ.
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Proof. This is a straightforward consequence both of Viete’s formulas (relating roots and coefficients
of a polynomial) and of Newton’s formulas.

The following lemma allows us to relate the independence of ℓ of Qa,ω to that of Qa,ω(t)γa/da .

Lemma 6.8. Let P ∈ 1 + tQ[t] be a non-constant polynomial and γ ∈ N∗. If, for each ℓ, there is a
Qℓ ∈ 1 + tQℓ[t] such that Qγℓ = P , then Qℓ belongs to 1 + tQ[t] and is independent of ℓ.

Proof. Denote by γ
√
P the unique element of 1 + tQ[[t]] such that ( γ

√
P )γ = P . We have Qγℓ =

( γ
√
P )γ = P with Qℓ ∈ 1 + tQℓ[[t]], which shows, as γ

√
P is unique in 1 + tQℓ[[t]], that Qℓ = γ

√
P .

Consequently, Qℓ belongs to 1 + tQ[t] and is independent of ℓ.

We now deal with the independence of ℓ of Qa,ω(t)γa/da thanks to an argument of projector.

Proposition 6.9. For each a ∈ Â, the polynomial Qa,ω(t)γa/da has rational coefficients and is
independent of ℓ.

Proof. Denote by ξa : g ∈ G 7→ tr(g∗|Wa,ω/Q) the character of the simple Q[G]-module Wa,ω . There
is a projection πa of Hn−2

et (Xψ ,Qℓ)
prim onto Wa,ω ⊗Da Va,ω of the form

πa =
λ

#G

∑

g∈G

ξa(g
−1)g∗, avec λ ∈ Q,

where λ is computed by taking the trace of both members of the equality

dimQWa,ω =
λ

#G

∑

g∈G

ξa(g
−1)ξa(g) = λ[Da : Q].

(Indeed, over Qℓ, ξa is the direct sum of [Da : Q] irreducible characters as we have seen in §5.) We
thus have λ = dimDaWa,ω.

Because the image of the projection πa is Wa,ω ⊗Da Va,ω, we have

Qa,ω(t)γa/da = det(1 − t(πa ◦ Frob∗)|Hn−2
et (Xψ ,Qℓ)

prim).

Using Lemma 6.7, we only have to show that the powers of πa ◦ Frob∗ have a trace belonging
to Q and independent of ℓ. This results from the fact that these powers can be written as linear
combinations with coefficients in Q of quantities of the type f∗ where f is an endomorphism of
the variety Xψ which extends to Pn−1 and from the following lemma, which is an adaptation of
[Katz and Messing, 1974, Theorem 2.2, page 76] to the case of traces over the primitive part of the
cohomology of an irreducible hypersurface (since n ≥ 3, Xψ is irreducible).

Lemma 6.10. Let X be a non-singular, irreducible hypersurface of Pn−1. If f : X → X is an
endomorphism of X which extends into an endomorphism of Pn−1, then tr(f∗|Hn−2

et (X,Qℓ)
prim) is

an integer which is independent of ℓ.

Proof. We have Hn−2
et (X,Qℓ) ≃ Hn−2

et (X,Qℓ)
prim ⊕ Hn−2

et (X,Qℓ)
inprim with tr(f∗|Hn−2

et (X,Qℓ))
and tr(f∗|Hn−2

et (X,Qℓ)
inprim) = tr(f∗|Hn−2

et (Pn−1
Fq

,Qℓ)) two integers independent of ℓ by [Katz and Messing,

1974, Theorem 2.2, page 76]3.

Combining Lemma 6.8 and Proposition 6.9, we deduce the announced result.

Theorem 6.11. The polynomials Qa,ω(t) have rational coefficients and are independent of ℓ.

In §6.4, we will see a stronger result, namely that the polynomials Pa,ω are independent of ℓ.

3On this subject, see also [Deligne and Lusztig, 1976, page 119] and [Illusie, 2006, §3.5, pages 112–113].
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6.4 Factorization of the zeta function

From the preceding results, we can deduce a factorization over Q of the zeta function as well as the
existence of a decomposition of some of the factors over finite extensions of Q.

Theorem 6.12. The zeta function of the hypersurface Xψ of Pn−1
Fq

defined by xn1 + · · · + xnn −
nψx1 . . . xn = 0 (with ψ ∈ F∗

q satisfying ψn 6= 1) factors over Q as

ZXψ/Fq(t) =

(

∏

a∈(Z/nZ)××Sn\Â, η∈µda
(Ka)

Qa,ω(η)(t)
γa/da

)(−1)n−1

(1 − t)(1 − qt) . . . (1 − qn−2t)
.

(The notations are those of Corollary 5.12 and Proposition 6.6.)

Proof. The previous formula is just a reformulation of the results from §§6.1, 6.2 and 6.3.

Remarks 6.13. a) Let us recall that the factor corresponding to [0, 1, 2, . . . , n − 1] does not
intervene (see Remark 3.5 page 7).

b) The polynomials Qa,ω depend on ωea . See Example 6.20 page 27.

c) When n is a prime number (necessarily odd, as n ≥ 3), we have da = 1 if a 6= [0, 1, 2, . . . , n−1],
and thus ω(η) = 1; hence, in that case, the numbers ω(η) don’t intervene.

d) As we mentioned in the introduction, a similar result of factorization was proved by R. Kloost-
erman in a slightly different context, see [Kloosterman, 2007, Corollary 6.10, page 448]. The
factorization he obtains is a bit coarser as it involves the polynomials Ra(t) =

∏

η Qa,ω(η)(t);
we refer the reader to Example 6.20 for an illustration of this phenomenon.

We now look how the polynomials Qa,ω behave over the field Da.

Proposition 6.14. The polynomials Qa,ω factor over Da as a product of [Da : Q] polynomials of
degree m′

a.

Proof. As Qa,ω(t) = NDa⊗Qℓ[t]/Qℓ[t](Pa,ω(t)), the polynomial Qa,ω is the product of the conjugates
of Pa,ω.

The following theorem shows that this factorization is independent of ℓ.

Theorem 6.15. The polynomials Pa,ω have coefficients in Da and are independent of ℓ.

Proof. Let us recall that Pa,ω(t) = det(1 − tva,ω|Va,ω/Da ⊗Q Qℓ). Using the same argument as in
Lemma 6.7, we only need to show the independence of ℓ of tr(vra,ω|Va,ω/Da⊗Q Qℓ) for every r ∈ N.

As (x, y) 7→ TrDa⊗QQℓ/Qℓ(xy) is a non-degenerate bilinear form, the independence of ℓ of tr(vra,ω|
Va,ω/Da ⊗Q Qℓ) is equivalent to that of the element tr(dvra,ω |Va,ω/Qℓ) ∈ Qℓ for all d ∈ Da; indeed:

TrDa⊗QQℓ/Qℓ (d tr(vra,ω|Va,ω/Da ⊗Q Qℓ))

= TrDa⊗QQℓ/Qℓ (tr(dvra,ω|Va,ω/Da ⊗Q Qℓ))

= tr(dvra,ω|Va,ω/Qℓ).

Because dvra,ω is the map v 7→ (Frob∗)r ◦ v ◦ d, thanks to Remark 6.18, we only need to show the
following proposition.

Proposition 6.16. Let X be a smooth projective variety over Fq. Let G be a finite subgroup of
AutFq(X/Fq), W a simple Q[G]-module, D (the opposite of) its endomorphism ring, and i an integer

≥ 0. Denote by V the D⊗Q Qℓ-module HomQ[G](W,H
i
et(X,Qℓ)) and, given d ∈ D and r ≥ 1, denote

by α the endomorphism v 7→ (Frob∗)r ◦ v ◦ d of the Qℓ-vector space V . The trace of α is an element
of Q which is independent of ℓ.
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Proof. Denote by E the Qℓ-vector space HomQ(W,Hi
et(X,Qℓ)), the action of G on E being g · v =

g∗ ◦ v ◦ g−1
W where gW is the endomorphism of the Q-vector space W induced by g. Let π be the

Qℓ-linear map from E to itself defined by

π(v) =
1

#G

∑

g∈G

g∗ ◦ v ◦ g−1
W .

It is a projection with image EG = V . The map β : v 7→ (Frob∗)r ◦ v ◦ d is an endomorphism of the
Qℓ-vector space E which stabilizes V ; the endomorphism of V induced by β is α and, because π is
a projection of E onto V , we have

tr(α) = tr(π ◦ β),

where the endomorphism π ◦ β can be written as

v 7→
∑

i∈I

(Frob∗)r ◦ g∗i ◦ v ◦ fi,

with I a finite set, gi some elements of G and fi some endomorphisms of the Q-vector space W ,
each of them independent of ℓ. We thus only need to show the following lemma.

Lemma 6.17. We keep the notations of the previous proposition. If g ∈ G, f ∈ EndQ(W ) and
r ∈ N∗, then the trace of

v 7→ (Frob∗)r ◦ g∗ ◦ v ◦ f
considered as an endomorphism of V is an element of Q independent of ℓ.

Proof. Let (e1, . . . , ek) be a basis of W over Q; the map

v 7→ (v(e1), . . . , v(ek))

is an isomorphism of the Qℓ-vector space V onto the Qℓ-vector space Hi
et(X,Qℓ)

k. It sends the
endomorphism of V given by

v 7→ (Frob∗)r ◦ g∗ ◦ v ◦ f
to the endomorphism of Hi

et(X,Qℓ)
k given by

(h1, . . . , hk) 7→
( k

∑

i=1

ai,j((Frob∗)r ◦ g∗)(hi)
)

1≤j≤k

,

where (ai,j)1≤i,j≤k is the matrix of f in the basis (ei)1≤i≤k. Its trace is thus equal to

( k
∑

i=1

ai,i

)

tr((Frob∗)r ◦ g∗|Hi
et(X,Qℓ)).

By [Katz and Messing, 1974, Theorem 2.2, page 76], it is independent of ℓ.

Remark 6.18. In the previous lemma and proposition, it is possible, when X is a hypersurface, to
replace Hn−2

et (X,Qℓ) by Hn−2
et (X,Qℓ)

prim using Lemma 6.10 instead of [Katz and Messing, 1974,
Theorem 2.2, page 76] (indeed, Frob∗ and each g∗, with g ∈ G, extend to Pn−1).
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6.5 Examples

In this §6.5, we detail the computations for the cases n = 3, n = 4, n = 5, and n = 7. In
all these examples, we use the fact that, when n is prime and a 6= [0, 1, 2, . . . , n − 1], we have
ω = 1 and da = 1, hence m′

a = ma and γa/da = γa. Let us recall that the degree of Qa,ω is

(degPa,ω)[Da : Q] = m′
a
φ(na)

#Imka
. In the tables, the lines appear by decreasing values of ma.

Example 6.19 (n = 3). This is the simplest non-trivial case. The elements of Â are, up to
permutation, [0, 0, 0] and [0, 1, 2]. The multiplicity of the latter is zero so only [0, 0, 0] gives rise to a
factor in the zeta function. This factor has degreem′

a = 2 and appears with a power γa/da = γa = 1,
so

Z/Fq(t) =
Q[0,0,0],1(t)

(1 − t)(1 − qt)
, with degQ[0,0,0],1(t) = 2.

In fact, in this case, Xψ is an elliptic curve, so the previous result doesn’t give any new information.

Example 6.20 (n = 4). Here is a list of the elements of Â mod the simultaneous actions of Sn

and (Z/nZ)×

class of ā degQa,ω γa/da Da ω
[0, 0, 0, 0] 3 1 Q 1
[0, 0, 2, 2] 1 3 Q ±1
[0, 0, 1, 3] 1 12 Q 1

Consequently, we have the following factorization of the zeta function:

Z/Fq(t) =
1

(1 − t)(1 − qt)(1 − q2t)

× 1

Q[0,0,0,0],1(t)Q[0,0,2,2],1(t)3Q[0,0,2,2],−1(t)3Q[0,0,1,3],1(t)12
.

This result is in accordance with the numerical observations of [Kadir, 2004, §6.1.1, pages 112–116];
let us note that, according to her tables for q = p = 13, 17, 29, 37, 41 (we remind the reader that
only the cases q ≡ 1 mod 4 fall in the framework of our study) and ψ = 2, 3, 2, 2, 2 respectively,
we have {Q[0,0,2,2],1(t), Q[0,0,2,2],−1(t)} = {1− pt, 1 + pt}, hence the two polynomials Q[0,0,2,2],1 and
Q[0,0,2,2],−1 are not generally equal.

This example also illustrate the fact that our method gives a slightly finer factorization than
that of Kloosterman [2007]: instead of finding a factor R3

[0,0,2,2] with R[0,0,2,2] of degree 2, we find a

factor Q[0,0,2,2],1(t)
3Q[0,0,2,2],−1(t)

3 with Q[0,0,2,2],1 and Q[0,0,2,2],−1 of degree 1; thus, Kloosterman’s
polynomial R[0,0,2,2] factors over Q as a product of two polynomials of degree 1.

Example 6.21 (Cas n = 5). Here are all the elements of Â (mod the simultaneous actions of Sn

and (Z/nZ)×) which intervene in the zeta function:

class of ā degQa,1 γa/da Da

[0, 0, 0, 0, 0] 4 1 Q

[0, 0, 0, 1, 4] 4 20 Q(
√

5)

[0, 0, 1, 1, 3] 4 30 Q(
√

5)

We can thus write:

Z/Fq(t) =
Q[0,0,0,0,0],1(t)Q[0,0,0,1,4],1(t)

20Q[0,0,1,1,3],1(t)
30

(1 − t)(1 − qt)(1 − q2t)(1 − q3t)
.

Moreover, the polynomials Q[0,0,0,1,4],1 and Q[0,0,1,1,2],1 factor over Da = Q(
√

5) into a product of

two polynomials of degree 2 (namely, the corresponding Pa,1 and its conjugate over Q(
√

5)).
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We thus recover (and explain) the numerical observation that Candelas, de la Ossa and Rodriguez-
Villegas made in [Candelas et al., 2003, Table 12.1, page 133]4.

Example 6.22 (Cas n = 7). The elements of Â mod the simultaneous actions of Sn and (Z/nZ)×

are those given in Example 5.16.c page 21. We complete the list with the useful informations
concerning the factorization of the zeta function.

class of ā degQa,1 γa/da Da

[0, 0, 0, 0, 0, 0, 0] 6 1 Q

[0, 0, 0, 0, 0, 1, 6] 12 42 Q(µ7)
+

[0, 0, 0, 0, 1, 1, 5] 24 105 Q(µ7)
[0, 0, 0, 1, 1, 1, 4] 12 140 Q(µ7)

+

[0, 0, 0, 1, 1, 6, 6] 12 210 Q(µ7)
+

[0, 0, 0, 0, 1, 2, 4] 6 210 Q(
√
−7)

[0, 0, 0, 1, 1, 2, 3] 18 420 Q(µ7)
[0, 0, 1, 1, 3, 3, 6] 6 630 Q(

√
−7)

[0, 0, 0, 1, 2, 5, 6] 6 840 Q(µ7)
+

[0, 0, 1, 1, 3, 4, 5] 6 1260 Q(µ7)
+

[0, 0, 1, 1, 2, 4, 6] 6 1260 Q(µ7)
+

As in the preceding cases, from this table, we can easily describe the factorization of the zeta
function in the case n = 7.
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A List of notations

General notations

#E number of elements of E
Fq finite field with q elements
Qℓ field of ℓ-adic numbers
K algebraic closure of the field K

µn(k) set of nth roots of unity belonging to the field k

φ Euler totient function
Sn permutation group of {1, . . . , n}
ǫ signature (of a permutation)

IndGH µ representation of G induced by the representation µ of H
[[1;n]] set of integers k satisfying 1 ≤ k ≤ n

Notations from the introduction

ψ parameter belonging to F∗
q p. 1

δi δi = 0 if i is even and δi = 1 if i is odd p. 1
A group {(ζ1, . . . , ζn) ∈ µn(Fq)

n | ζ1 . . . ζn = 1} quotiented by
{(ζ, . . . , ζ)}; is isomorphic to (Z/nZ)n−2

p. 1

4As mentioned in the introduction, they only make this observation in the case ψ = 0, but their numerical data
supports it when ψ 6= 0 and q ≡ 1 mod 5.
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Â group {(a1, . . . , an) ∈ (Z/nZ)n | a1 + · · · + an = 0} quotiented by the
diagonal {(a, . . . , a)}; can be identified with the group of characters
of A

p. 1

[ζ1, . . . , ζn] element of A p. 1

[a1, . . . , an] element of Â p. 1
G group A⋊ Sn p. 2

Notations from §2

Xf subscheme of fixed point of an automorphism f of X p. 3
χ(X) Euler–Poincaré characteristic of a scheme X p. 3
Hn−2

et (X,Qℓ)
inprim non-primitive part of the cohomology of a hypersurface of dimension

n− 2; is zero when the dimension is odd
p. 3

Hn−2
et (X,Qℓ)

prim primitive part of the cohomology of a hypersurface of dimension n−2 p. 3

Notations from §3.

k(ζ) number of i ∈ {1, . . . , n} such that ζi = ζ p. 5

ma multiplicity of the character a in the Qℓ[A]-module Hn−2
et (Xψ,Qℓ)

prim p. 5

Notations from §4.

Ha a-isotypic component of the Qℓ[A]-module Hn−2
et (X,Qℓ)

prim; its di-
mension is ma

p. 7

Ga stabilizer of a in G p. 7

〈a〉 orbit of a ∈ Â under Sn p. 7

R representative set ⊂ Â of the elements of Sn\Â p. 7
Sa stabilizer of a in Sn p. 7
n′
a generator ∈ [[1;n]] of the set of elements j ∈ Z/nZ such that (a1 + j,

. . . , an + j) is a permutation of (a1, . . . , an)
p. 8

da integer equal to n/n′
a p. 8

I(b) set of i ∈ [[1;n]] such that ai = b p. 8
σ element of Sa belonging to the preimage of a generator of the cyclic

group Sa/S
′
a

p. 8

S′
a stabilizer in Sn of a representative (a1, . . . , an) of a in (Z/nZ)n p. 8
γa number of permutations of (a1, . . . , an); equal to [Sn : S′

a] p. 8
Σa group generated by σ; we have Sa = S′

a ⋊ Σa p. 8
ja group homomorphism Sa → n′

aZ/nZ defined by s(a1, . . . , an) =
(a1 + ja(s), . . . , an + ja(s)); satisfies jka = kja

p. 8

Â
σ

set of elements of Â fixed by σ ∈ Sn p. 9
Oj orbits of a product of n′ disjoint cycles of length d p. 10
k(ζ) number of j ∈ {1, . . . , n′} such that

∏

i∈Oj
ζi = ζ; this notation gen-

eralizes that from p. 5
p. 10

m′
a m′

a = ma/da p. 14
reg regular representation of Sa/S

′
a p. 14

Notations from §5

KC cyclotomic field attached to a cyclic group C p. 15
χC canonical character of a cyclic group C; takes its values in KC p. 15
ā class mod (Z/nZ)× of a p. 15
Ea image of the homomorphism [ζ1, . . . , ζn] 7→ ζa1

1 . . . ζann p. 15
Na kernel of the homomorphism [ζ1, . . . , ζn] 7→ ζa1

1 . . . ζann p. 15

na order of a in Â; equal to the order of the group generated by ai − ai′ ;
also equal to the number of elements of the image of the character a

p. 15
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Ka cyclotomic field attached to the cyclic group A/Na; its dimension over
Q is φ(na); only depends on ā

p. 15

χa canonical character of the cyclic group A/Na considered as a character
of A; takes values in Ka and satisfies χka = χka

p. 15

fa generator of the group generated by ai − ai′ ; satisfies n′
a = eafa,

n = eafada and n = nafa

p. 15

Sā fixator of ā in Sn p. 15
ka group homomorphism Sā → (Z/naZ)× defined by σa = ka(σ)a; only

depends on ā
p. 15

ea integer such that n′
a = eafa; satisfies na = eada and n = eafada p. 16

(uσ, vσ) if σ ∈ Sā, unique pair (uσ, vσ) ∈ Z/naZ× (Z/naZ)× such that aσ(i) =
vσai + uσfa

p. 16

φ group homomorphism Sā → Z/naZ ⋊ (Z/naZ)×, σ 7→ (uσ, vσ); we
have vσ = ka(σ) and fauσ = ja(σ)

p. 16

θv automorphism of the field Ka sending the na
th roots of unity to their

vth power
p. 17

ω na
th root of unity p. 17

µa,ω representation (ζ, σ) 7→ χa(ζ)ǫ(σ)ωuσ θvσ of A⋊ Sā in Ka p. 17
Ma,ω Q[A⋊Sā]-module Ka given by µa,ω; up to isomorphism, only depends

on ωea , not on ω
p. 17

Wa,ω Q[G]-module simple IndGA⋊SāMa,ω p. 20
Da (opposite of the) endomorphism ring of Wa,ω ; we have Da ⊂ Ka

(hence Da is commutative) and dimQDa = φ(na)
#Im ka

p. 20

Notations from §6

Va,ω HomQ[G](Wa,ω , H
n−2
et (Xψ,Qℓ)

prim); is a free Da⊗Q Qℓ-module of rank
m′
a; Wa,ω ⊗Da Va,ω identifies with the Wa,ω-isotypic component Hā,ω

of the Q[G]-module Hn−2
et (Xψ ,Qℓ)

prim

p. 22

Hā,ω Wa,ω-isotypic component of the Q[G]-module Hn−2
et (Xψ,Qℓ)

prim; is
isomorphic to Wa,ω ⊗Da Va,ω

p. 22

va,ω endomorphism of the Da⊗QQℓ-module Va,ω such that Frob∗|Wa,ω⊗Da
Va,ω = Id ⊗ va,ω

p. 22

Pa,ω polynomial det(1− tva,ω|Va,ω/Da⊗Q Qℓ) having degree m′
a; has coef-

ficients in Da and is independent of ℓ
p. 23

Qa,ω polynomial NDa⊗Qℓ[t]/Qℓ[t](Pa,ω(t)) having degree m′
a
φ(na)

#Imka
and coef-

ficients in Q; is independent of ℓ
p. 23

B Formulas

Here is a list of the most important formulas established throughout this article.

n = n′
ada = eafada = nafa, n

′
a = eafa, and na = eada.

[Sn : S′
a] = γa (number of permutations of (a1, . . . , an))

[Sn : Sa] =
γa
da

[Sn : Sā] =
γa

#(Im ka)da
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[Sa : S′
a] = da

[Sā : Sa] = #Im ka (in fact, Sā/Sa = Im ka)

[Sā : S′
a] = da#Im ka

dimHa = ma

dimµa,ω = dimMa,ω = dim Ka = φ(na)

dimM
m′

a
a,ω = m′

aφ(na)

dimW
m′

a
a,ω = dim IndGA⋊SāM

m′

a
a,ω = m′

aφ(na)[Sn : Sā] = m′
a

φ(na)

#Im ka

γa
da

dim
⊕

η∈µda
(Ka)

IndGA⋊SāM
m′

a

a,ω(η) = ma
φ(na)

#Im ka

γa
da

.

dimQDa =
φ(na)

#Im ka

dimQ(Wa,ω) =
φ(na)

#Im ka

γa
da

= [Sn : Sa][Da : Q].

dimDa(Va,ω) = m′
a.

dimQ(Hā,ω) = m′
a

φ(na)

#Im ka

γa
da

= m′
a[Sn : Sa][Da : Q]

dimQℓ(H
n−2
et (Xψ,Qℓ)

prim) =
∑

a∈(Z/nZ)××Sn\Â

m′
a

φ(na)

#Im ka
γa =

∑

a∈(Z/nZ)××Sn\Â

ma
φ(na)

#Im ka

γa
da
.

degPa,ω = m′
a

degQa,ω = (degPa,ω)[Da : Q] = m′
a

φ(na)

#Im ka
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