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[sotypic Decomposition of the Cohomology and Factorization
of the Zeta Functions of Dwork Hypersurfaces

Philippe Goutet
December 10, 2009

Abstract

The aim of this article is to illustrate, on the Dwork hypersurfaces 7+ - -+, —nyxi ...z, =
0 (with n an integer > 3 and ¢ € F; a parameter satisfying ¢ # 1), how the study of the
representation of a finite group of automorphisms of a hypersurface in its etale cohomology
allows to factor its zeta function.

1 Introduction

Let n be an integer > 3 and I, a finite field of characteristic p # 2 not dividing n; to simplify the
results, we will assume that ¢ = 1 mod n. We consider the projective hypersurface X, C ]P}Zfl
given by

a4+ tay —nYxy .oz, =0,

where 1 is a non zero parameter belonging to IF,. The zeta function of X, is defined as

00 r
Zx (0 = exp( 3 #Xu(Er) ).
r=1

We assume that 9™ # 1, so that X, = Xy, ®]Fqu is nonsingular. As Xy is a non-singular hypersurface

of P! we know that the dimension of the etale f-adic cohomology spaces H, (X, Q) is zero for
1>2n—4 or i< 0 and that, for 0 <7 < 2n — 4,

ifi#£An-—2,
neDPHCED =D =y - 2,

51'4-(

e o

where §; = 0 if i is odd and ¢; = 1 if 7 is even (see §2.2). As we will recall in Remark page Bl
the zeta function of X, is related to how the Frobenius acts on HZ (X s, Qp).
We set

A={(C5Gn) €y (F)" [ G G = 1/{(G -5 O

(a1,...,an) € (Z/nZ)" | a1 + -+ an =0} /{(a,...,a)},

and denote by [(1,..., (] the class of (C1,...,(n) in A and [ay, ..., ay] that of (a1,...,a,) in A.
We will identify the group A with the group of characters of A taking values in Fy. The group A
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acts on Xy by coordinatewise multiplication; the symmetric group &,, acts on the right on X, by
permutation of the coordinates

and on the left on A and A by

7[C -5 Cnl = [Co-1(1)s -+ Com1(m) s

U[al, . . .,an] = [(Io.—l(l), cee ,ag—l(n)].

The semidirect product G = A x &,, acts on the right on Xy, and hence on the left on H;’t_2()_(¢,
Q) as the functor g — g* is contravariant.

The aim of this article is to describe the structure of H: %(X,, Q) as a Q[G]-module in order
to deduce a factorization of the zeta function of X,. More precisely, we will show that the primitive
part of H ?(Xy, Q) (as defined in §2.2) admits an isotypic decomposition

@ Wa,w ®Da Va,wa

a,w

where a describes (&, x (Z/nZ)*)\A, w belongs to a certain set of roots of unity (see Corol-
lary 512 page[19), W, ., is a simple Q[G]-module which is independent of ¢, D, is the division ring
Endgq (Wa,w)PP, and V, , is a free module over D, ®g Q¢ whose rank is independent of £. Because
the Frobenius stabilizes these isotypic spaces, its characteristic polynomial splits in as many factors
(the idea to use this method is inspired by an argument given in [Hulek et all, 12006, §6.2]).

The first step is to decompose the Q,[G]-module HZ *(X,,Q,); we follow the same method
Briinjes used for the case ¥ = 0 (Fermat hypersurface), but, thanks to a more powerful trace
formula, we avoid the tedious induction of [Briinjes, 2004, Proposition 11.5]. Our methods can be
generalized to other families of hypersurfaces, allow us to obtain factorizations slightly finer than
those of [Kloosterman [2007] (who uses the p-adic Monsky-Washnitzer cohomology), and also allow
us to express each factor as the norm of a polynomial with coefficients in a certain finite extension
of @, hence explaining a numerical observation of Candelas, de la Ossa and Rodriguez-Villegas in
the case n = 5 where this extension is Q(v/5) (see [Candelas et all, 2003, Table 12.1 page 133]1).
Let us also mention that, in a recent article, [Katz [2009] studies the action of A (but not of A x &,,)
on the cohomology of X, and establishes a motivic link between X, and objects of hypergeometric
type.

The article is organized as follows. After preliminaries (§2)), we describe the structure of H2 (X,
Q) as a Q/[A]-module (§3) and then as a Q,[G]-module (§4]). We then deduce the structure of the
Q¢[G]-module H2 (X, Q) (§8) and explain the link between this structure and the existence of
a factorisation of the zeta function of Xy (§6). An index of all notations introduced in the article
is given in Al and a table of the main formulas appears in §Bl

2 Preliminaries

We begin by recalling a Lefschetz-type trace formula by Deligne and Lusztig which allows to express
the alternating sum of the traces of an automorphism on the /-adic cohomology spaces as the Euler—
Poincaré characteristic of the fixed-point scheme of this automorphism. We then recall the value of
this Euler—Poincaré characteristic in the cases we will encounter in what follows (smooth projective
hypersurfaces). Finally, we link the trace of an element of G to the Euler—Poincaré characteristic
of a subscheme of fixed points.

1They make this observation only in the case 19 = 0, but their numerical data in §13.3 suggests the same
phenomenon happens when ¥ # 0 and ¢ =1 mod 5.



2.1 Lefschetz trace formula
Let us recall that the Euler—Poincaré characteristic of a proper scheme over E is given by

2dim X

X(X)= Y (1) dim Hi(X,Qp),

i=0
where £ is a prime number # p. It is an integer independent of £.

Theorem 2.1. Let X be a proper scheme over Fp. If f is an automorphism of X of finite order
prime to p, and if X denotes the fized-point subscheme of f of the scheme X, then

2dim X ‘ .
D (D) tr(fHE (X, Q) = x(XT).
i=0
Proof. See |Deligne and Lusztig, 1976, Theorem 3.2, page 119]. O

2.2 Euler—Poincaré characteristic of a non-singular hypersurface
In this §2.2 exceptionally, we do not assume that n > 3.

Theorem 2.2 (Hirzebruch formula). Let n be an integer > 1 and f € Fy[z1,...,2,] a homogeneous
polynomial of degree d such that f, (% PR % have no common zero in F; except (0,...,0).
Then the hypersurface X C ]P’;; U defined by f = 0 is non-singular (and irreducible if n > 3) and

its Buler—Poincaré characteristic is

N

Proof. If n > 3, we use Corollary 7.5.(ii%) of [SGAS, exposé VII]: indeed, the subscheme X of ]P’%;*l
is smooth, connected and of dimension n — 2; its Euler—Poincaré characteristic is hence

S () (e

B (1—d) +nd—1
= y ,

which is the announced formula. If n = 2, the hypersurface X of B ? consists of d distinct points

and so x(X) = d, which shows the result as (2 —1) + 3[(1 — d)? + (d — 1)] = d. Finally, if n = 1,
X = @ and so x(X) = 0, which also shows the result in this case. O

Remark 2.3. When n > 3, Theorem can be refined as follows. We keep the same notations and
denote by j the canonical injection X — Pg_l. By the Weak Lefschetz Theorem, (see for example
[Freitae: and Kiehl, 1988, Corollary 9.4, page 106]), for i < n — 2 (respectively i = n — 2), the linear
map j*: HY, (P~ 1, Q¢) — H!.(X,Qp) is bijective (respectively injective). If we set ¢; = 0 if i odd
and §; = 1 if i is even, we thus have dim H¢ (X, Q) = §; for i < n — 2, and this result stays valid
for n — 2 < i < 2(n — 2) by Poincaré duality. For i = n — 2, the image of the map j*: H‘?t*Q(IP’;:l,
Q¢) — HZ 2(X,Qy) has dimension §;. We will denote it by HZ ?(X, Q)™ and set HY *(X,
Qq)Prim = HI'~ 2(X Qe)/HZ (X, Qp)™Prim, Because the Frobenius acts as the multiplication by
q=2/2 on H2 (X, Qp)™P"™ and by multiplication by ¢' on each H2(X,,Qy), we have

; (t) - det(l _ tFl?Ob*|H$72()_(wu Qé)prim)(—l)"*l
xy /1) = (1—t)(1—qt)...(1—q"2t)




2.3 Character of G acting on H; (X, Q,)Prim

The isomorphism class of a Q¢[G]-module is completely determined by its character. In this §2.3]
we will express in terms of Euler—Poincaré characteristics the values of the character of the Q/[G]-
module H2 (X, Q¢)P"™ for the elements g € G which are of order prime to p.

Lemma 2.4. Each g € G acts as the identity on H' (X, Qo)™P™ and on H! (X y, Q) when
1#n—2.

Proof. As g is the restriction of an automorphism of Pﬁ’;_l, it results from Remark and the
following lemma. O

Lemma 2.5. If h is an automorphism of ]P’gfl, then h* acts as the identity on HZ, (Pg;fl, Qq) for
all 7.

Proof. The group PGL, (F,) acts on the right on HE (Pﬁ’;_l, Q) by u — u*; as Hét(IP’F’;_l, Q) is of
dimension 0 or 1, this action is by homothety, and thus factors by an abelian quotient of PGLn(Fq).
Since I, is algebraically closed, PGL,,(IF;) is equal _to its commutator subgroup and thus has no
nonzero abelian quotient. Hence, for all u € PGL,, (F,), v* = Id. O

Theorem 2.6. If g € G is of order prime to p, then
tr(g" | HE (K, @0P™) = (=1)" (0 = 1) = x(X)). (2.1)

Proof. Using the trace formula of Theorem 2.1l we can write

2dim X

Yo (1) (g HG (X, Qo)) = X(X).

=0

By Lemma 24 we have (with, as previously, 6; = 0 if 7 is odd and é; = 1 if 7 is even)

A — 0; ifi #£n—2,
tr(g*|H% (X, = R .
I‘(g | et( P Qf)) {51 + tr(g*|H§t(X¢,@e)p“m) 1f’L =n — 27
and thus
~9 n— * n—2/3y rim
X(Xd)) = (n - 1) + (_1) 2tl"(g |Het 2(Xw7@f)p )7
which is exactly the announced formula. O

3 Action of A on Hgt_Q()_(wj@é)prim

The irreducible representations over Q, of the finite abelian group A are its characters (of degree 1).
Finding the structure of the Q,[A]-module H2 *(X,,Q,) hence amounts to figuring out the mul-
tiplicity of each character of A in the representation g — ¢g* of A in HQ(Q()_(W@@); it is the aim
of this §3l The choice, in §3.1] of an isomorphism between g, (F,) and u,,(Q,) allows to identify
A to the group of characters of A taking values in Q. After determining the character of the
Qy[A]-module H %(X,,Q,)P"™ in §32 we will prove in §3.3 that the multiplicity of a € A is
me = #(Z/nZ\{a1,...,an}).

3.1 Characters of A with values in Q,

As we only consider the case ¢ =1 mod n, the group p,, (F,) consisting of the n'! roots of unity of
F, is isomorphic to the group of n*® roots of unity of Q,. We call ¢ an isomorphism of u,, (F,) onto
i, (@) and use it to identify the group A with the group of characters of A taking values in Q,
thanks to the isomorphism [aq,...,an] — ([C1,- .-, G — E(C)* -+ - t(Cn)%).



3.2 Character values of the Q,[A]-module H, *(X,,Q,)Prim

As p is prime to n by assumption, the elements of A have an order prime to p; we may thus use
Formula (Z)) to obtain the values taken by the characters of the Q,[A]-module H2 (X ;, Q,)Pr™.

Theorem 3.1. Consider (Ci,...,¢n) € p, (Fy)™ such that (1 ...¢, =1 and let g be the correspond-
ing element [C1,...,Cn) of A. For all ¢ € u,,(F,), denote by k({) the number of i € [1;n] such that
G = (. We have

* n—2/3% ) \prim (_1)77.
(g [H (X, Q™™ = 2= 3 (1-m)HO. (3.1)
CEM, (Fy)
Proof. A point of X, with homogeneous coordinates [z; :...:z,] is a fixed point of g if and only if
(z1,...,2n) is proportional to ({121, ..., &, ). The proportionality coefficient is necessarily a root

of glity ¢ € n,(F,), and we must have x; = 0 if ¢; # ¢. Hence, the subscheme of fixed points of g
of X is the disjoint union over ¢ € u,,(F,) of the subvarieties

Ye={ze Xy |z =0if G # (}.

If k(¢) = n, we have Yy = X . If 2 < k(¢) < n — 1, Y is isomorphic to the hypersurface of PF(¢)—1
defined by y1 +y3 + -+ - +yj) = 0. Finally, if k(¢) = 0 or 1, Y¢ is empty. In each of these cases,
we can apply Theorem and obtain

— kO 4y — — p)k(©
(1—=n)kO +n 1:k(<)_1+(1 n)’“‘.

n n n

X(Yo) = k(Q) -1+

Consequently, since -, ) k(C) =mnand 3 ., ") =1,

_ 1 —n) k(C)
W)= ¥ am=n-1e ¥
Cep, (Fy) Cep, (Fy)
Using trace formula (21) page d we deduce the announced result. O

Remark 3.2. A recent preprint proves, in a more general setting, formulas of the type given in
Theorem [B1] and Theorem 12| page [[0} see [Chénevert, 2009, Corollary 2.5].

3.3 Decomposition in irreducible representations

The following theorem gives a simple expression for the multiplicity m, of a character a € A in the
Q[A]-module HE™?(Xy, Q)P
Theorem 3.3. The multiplicity of the irreducible character a = [a1,...,a,] of A in the Q,[A]-
module HZ (X y, Qp)Pr™ is

mg = #(Z/nZ\{a1,...,a,}) =n — (number of distinct a;).

Proof. Consider ((1,...,¢,) € py,(F,)™ such that ¢;...¢, = 1 and let g be the corresponding
element [(1,...,(,] of A. From the definition, we have

(g B (K, TP ™) = 3 madi . ¢on
acA

_ % 3 MaCP ... COn.

(a1,-san)E(Z/nZ)"
a1+--+an,=0



We will show that if we replace m, by the number of elements of Z/nZ\ {a1,...,a,} in the right
hand side, we recover Formula (8I) above, which will show the announced result. We write

— > H#(Z/nZ\ {ar, ... an})C L GO

(a1,esan) E(Z/nZ)"
a14+a,=0

=% > ( > 1) @ (o

(a1,...,an)€(Z/nZ)" ™ KEZL/NL
a1+--+an,=0 Vi, a;i#k

= l ai An
n § E : 1 n
kEZ/nZ

(a1,....an)€(Z/nZ)"
a14fa,=0
Vi, ai;ﬁk

1 a an
== > oo

kE€EZ/nZ (ai,...,an)E(Z/nZ)™
a1+-+an,=0
Vi, aﬁéO

= > G

(a,...,an)E(Z/nZ)"
a1+-+ap=0
Vi, a;#0

= > a o (on,

ai,...,an€(Z/nZ)\{0}

a1+-+an,=0
We now conclude by using the following lemma. O
Lemma 3.4. Let r be an integer > 1 and (1, ..., G elements of p, (F,). If k(¢) = kc,,....c)(€)

denotes the number of i € [1;7] such that ¢; = ¢, then

> fi...ggr:(_l)r > (1=n)Ho.

ai,...,ar€(Z/nZ)\{0} CER, (Fy)
a1+--+ar=0

Proof. We proceed by induction on r. For » = 1, the equality is the relation

0= —l(a —n) (- 1)(1 - n)°).

n
We now assume that » > 2 and that the result is known for r — 1. We write

> G = > NG e

ai,...,ar€(Z/nZ)\{0} ai,...,ar—1€(Z/nZ)\{0}
a1+--+a,=0 a1+-+ar_17#0

Z (C_l)al (Cr_l)aTl
ar,....ar—1€(Z/nZ)\{0} b <
- > g,

ai,...,ar—1€(Z/nZ)\{0}
ar+--+ar—1=0

Given ¢ € p,,(F,), we have
S L
Cln-1 if¢=1.

a€(Z/nZ)\{0} n



This little remark allows to compute the first sum:

(%)al ' <<r1>‘1r1 _ (_1)7“71@(@)(” _ 1)k(gr),17

Cr
where k(¢) = k¢, ,....c,)(¢). To compute the second sum, we use the induction assumption:

Z mr = % ( Z (1-n)kO 41— n)k(cr)1>.

ai,...,ar—1€(Z/nZ)\{0} CHGr
ar+-+an—1=0

ai,...,ar—1€(Z/nZ)\{0}

We conclude by noting that

_1)r—1
1)k (g — 1)RC) -1 (7 1 — p)kE)-1
(1)K~ 1) S 1)

(=)l = pyke—t n (—1)T(1 B = (1= )k, 0

n n n

Remark 3.5. As a consequence of Theorem B3] the multiplicity m, of the character a € A is
nonzero unless a belongs to the orbit of [0,1,2,...,n — 1] under &,, (which imposes n odd, or else
14244+ (n—1) is not divisible by n).

4 Action of G on H (X ,,Q,)Pr™

4.1 A decomposition of the Q,[G]-module HZ, (X, Q,)Prim

For every a belonging to A identified to the group of characters of A taking values in Q,, we denote
by H, the isotypic component relatively to a of the Q,[A]-module H2 (X, Q,)P"™ (see [Bourbaki,
1958, §3.4]). It is a Q,-vector space of dimension m,,, where m,, is the multiplicity computed in §3.3,
and we have
H; 2(X1/J Q prlm @H
acA

The group G acts on the left on A by inner automorphisms, and thus acts on the left on A if
g € Ao, with 0 € &,,, and if a = [ay, ..., a,], we have 90 = %a = [a,-1(1), - -, Ag—1(n)]-

Consider a € A. Denote by (a) the orbit of @ under &, The stabilizer G, of a in G is equal to
A xS,, where S, = {o € 6, | %a = a} We have gH, = H,, for all g € G and the space H, is
stable by G,. The subspace /¢,y Ha of Hey™ (X, Q)P'™ is stable by G it is a Q,[G]-module

canonically isomorphic to Indga H,. We thus deduce the following result.

Theorem 4.1. Denote by R C A a set of representatives of G,\A. The Q,[G]-module H"*(X,,
Qy)Prim s isomorphic to
P mdg, H..

a€ER

The aim of the rest of this §dlis to determine how the group S, acts on H,. The strategy is the
following: after showing that S, is a semi-direct product S, x %, (§4.2)), we compute tr(o* | H * (X,
Q)Prim) for o a generator of S and compare it to the trace of the identity (§4.4) to deduce that
S, acts as e(0) Idg, on H, (see §4.5)). We then show, using a method similar to §3 that ¥, acts as
a multiple of the regular representation (§6HAR).

The approach we use to study the action of S is the same that Briinjes used in [Briinjed, 2004,
Proposition 11.5, page 197] for the case 1» = 0, the only difference being that our trace formula
allows us to avoid a tedious proof by induction.



4.2 Structure of S,

Consider a = [a1, . . .,a,] € A, where (a1, ..., ay) is an element of (Z/nZ)" such that a;+- - -+a,, = 0.
The set of j € Z/nZ such that (a1 +4,...,an + j) is a permutation of (aq,...,a,) is a subgroup of
Z/nZ; it can be written as n,Z/nZ for some integer n/, > 1 dividing n; let d, = n/n/, be the order
of this group. These two integers only depend on a and not on the choice of aq, ..., ay,.

Remark 4.2. For all b € Z/nZ, denote by I(b) the set of i € {1,...,n} such that a; = b. The set
n,Z/nZ is the set of j € Z/nZ such that I(b+ j) has the same number of elements as I(b) for all
b€ Z/nZ.

Lemma 4.3. There is a permutation o € &,, such that
a) if 1 <i <n, we have ay;) = a; +ny, ;
b) o is the product of n!, disjoint cycles of length d,.

Proof. Let us note that the condition [f3.dlis equivalent to the fact that o(I(b)) = I(b+n/). For all
b € Z/nZ such that I(b) # &, choose a numbering i1(b), ..., ixr@)(b) of the elements of I(b) and
denote by o the element of &,, which sends i;(b) to #;(b+n) for all b € Z/nZ and 1 <1 < #I(b).

From the definition, we have a,(;y = a; +n,, and, inspecting the orbits of each of the a; under
b+— b+ nl, we see that o is a product of n), disjoint cycles of length d,,. O

Denote by S the fixator of (a1, ...,an) € (Z/nZ)" in &,; it is a group which can be identified
with J]yez/n7 S1(p) (it is hence generated by transpositions) and we set v, = [6,, : S;]. Consider
o € 6, satisfying the conditions of the preceding lemma and let ¥, = () be the cyclic subgroup
of order d, of G,, generated by o.

Proposition 4.4. The fizator S, of a = [a1,...,a,] € A can be written as the semi-direct product
S, =5 %3,

Proof. If s € S,, there exists a unique j € n,Z/nZ such that *(a1,...,a,) = (a1 + 7,...,an + J).
This element only depends on a, not on the choice of ay, ..., a,; we denote it by j,(s). The map
Ja: Sq — nLZ/nZ thus defined is a group homomorphism. This homomorphism is surjective and
its kernel is the fixator S’ of (a1,...,an) € (Z/nZ)" in G,

Moreover, as a,(;y = a; + n;, and thus a,-1(; = a; — ng, we have j,(0) = —n;, by construction,
hence j, induces an isomorphism of ¥, = (o) onto the image n/,Z/nZ of j,, which shows that

S, =8/ %3, O

Remarks 4.5. a) In particular, the group S’ is a normal subgroup of S, and the quotient group
Sa/S!, is isomorphic to n),Z/nZ and hence of order d,.

b) Let us insist on the fact that ng, da, S; and j, only depend on a and not on the choice
of the representative (ai,...,a,) € Z/nZ. The group X, also only depends on a, but its
construction is not canonical as it depends on an arbitrary choice of numbering.

¢) Let us also note that if k € (Z/nZ)*, then di, = dq, N}, = 1l Sk, = S, and Sk, = S, but
jka - kja-
4.3 Character values on a transposition 7

Theorem 4.6. For any transposition T € &,,, we have

2 @) = (- (202D g ), (11)

where, as previously, 6, =0 if n is odd and 6, = 1 if n is even.



Proof. We may assume that 7 = (1,2). We look for the fixed points of 7, i.e. the set of points

For such a point, we have 2 = 23, so that we are in one of the following two cases.
a) We have 71 = z2 and 225 + 2% + -+ + 2% — nypa3zs3 ...z, = 0. The hypersurface of P"~?
defined by this equation is smooth because ¥ # 1 and its Euler—Poincaré characteristic is
(n—2)+ L[(1 = n)""' + (n — 1)] (Theorem ).

b) We have 1 = —x2 # 0, in which case 3 = -+ = z,, = 0 and 2} + x5 = 0. This can only
happen if n is odd and [z1:...:2,] =[1:=1:0:...:0].

The Euler—Poincaré characteristic of the fixed-point subvariety of 7 of X is thus

(1—n)""t4+(n-1)

X(Xy) = (n—2)+ +1-46,

(1—n)""t4+(n-1)

=(n-1)+

— 6,
and consequently, as 7 is of order 2 and F, is of characteristic # 2, Theorem [2.6] applies:
(B 2K Q)P = (1) (0= 1) = x(X7)
:(_1)n<(1—n)”l—i-(n—l)_én)' -

n

4.4 Sum of the dimensions of the spaces H, for a € AT

Proposition 4.7. Let 7 € G,, be a transposition. Denote by A7 the set of elements offl fized by T.

We have ((1 —— 0 )
D ma = (1) (e =)

~ n
acA”

where, as previously, 6, =0 if n is odd and 6, = 1 if n is even.

Proof. We may assume that 7 = (1,2). Denote by B the set of elements (b1, ...,b,) € (Z/nZ\{0})"
such that by = be and by +- - -+b, = 0. The map (b1,...,b,) — [b1,...,b,] from B to AT is surjective
and each element a € A” has exactly m, elements in its preimage. We thus have ) . i- m, = #B
and conclude thanks to the following lemma. O

Lemma 4.8. Let r be an integer > 2. The number of r-uples (b1, ...,b,) belonging to (Z/nZ\ {0})"
such that by = by and by +---+ b, =0 is

(—1)! ((1 —n) '+ (n-1) 6n).

n

Proof. Denote by u, the number we want to compute. We have ug = 6,, and u, + 41 is the number
of (r+1)-uples (b1,...,bp,b,41) € (Z/nZ\ {0})" X Z/nZ such that by = b and by + -+ -+ b1 =0,
that is, u, + uy4+1 = (n — 1)"~1. We deduce the announced result by induction on 7. O

4.5 Action of S’ on H,

We start with a general result on automorphisms of finite order with trace equal to the dimension
of the space.

Lemma 4.9. Let k be a field of characteristic zero, V' a vector space of finite dimension over k
and u an automorphism of V' of finite order. If tru = dim V', then u = Idy .



Proof. Let M be the matrix of u in a certain basis of V' over k. The subfield k’ of k generated by
the coefficients of M embeds itself in C; we can thus restrict ourselves to the case k = C.

Let A1, ..., A\ (where m = dim V') be the (complex) eigenvalues of M, each repeated with
multiplicity. They are all roots of unity. As we have, according to the assumptions of the lemma,

|/\1+...+)\m|:|tru|:m:|/\1|+"'+|/\m|v

the \;’s are positively proportional, hence equal. As their sum is m, they are all equal to 1. The
endomorphism u of V' is thus unipotent; as it is of finite order, it is equal to Idy . o

Remark 4.10. Let k be a field having characteristic zero, and (V;);er a finite sequence of vector
space of finite dimensions over k. For each i € I, let u; be an automorphism of V; of finite order.
If > ,c;tru; is equal to ), ., dim V; (respectively to — 3, ; dimV;), then u; = Idy, (respectively
u; = —1Idy,) for all ¢ € I. This results from Lemma applied to the automorphism u of V' =
;< Vi which is equal to u; (respectively to —u;) over V; for all i € I.

Let 7 € G, be a transposition. As H:t_2()_(¢,,@l)p“m = ®aEA H, and as 7* sends H, into Hnq,
we have o
tr(7* [HJ 2 (X, Q)P™) = > (7| Ha).
acAT
By Theorem and Proposition [£.7] we also have

tr(r [ HE (X, Q™) = = 3 dim
acAT

We thus deduce from Remark [£10 that, for each a € AT, 7* acts on H, by — Idﬁa.

Theorem 4.11. Consider a € A and o € S! . If we denote by €(o) the signature of o, we have
o*|H, = (o) ldg, .

Proof. The subgroup S, of &,, is generated by the transpositions 7 satisfying "a = a (see §4.2) and

we have just seen that 7*[H, = —Idgz = €(7)ldg, . O

4.6 Character values on Ao where o is a product of n’ disjoint cycles of

length d
Let n’ and d be integers > 1 such that n’d = n and let o € &,, be a product of n’ disjoint cycles of
length d. Let (1, ..., ¢, be elements of p,, (F,) such that ¢;...¢, =1 and denote by g the element
[(1,...,Cn]o of G = A X &,,. Let Oq, ..., O, be the n’ orbits of o in {1,...,n} and, for each

¢ € py(Fy), denote by k(C) the number of j € {1,...,n} such that [[;co, ¢i = ¢. The following
theorem generalizes Theorem Bl (which is recovered by taking d = 1 and n’ = n i.e. o =Id).

Theorem 4.12. Under the preceding assumptions,

* n—2/% 0 rim —1)"
(" > (Ko, ) = C S o),

CEMR, (Fy)
Proof. We may assume that o is the product of ((j —1)d +1,...,jd) for 1 < j < n’ and that
O; ={(j—1)d+1,...,jd}. The fixed points of g in Xy (F,) are the points [z1:...:zy] of Xy ()
such that

[Co.fl(l)xa-fl(l) ..... Ca.—l(n).’lio.—l(n)] = [.’L‘l e :xn]

i.e.



The subscheme )_(‘Zj of these fixed points is thus the disjoint union, over A € F; , of the closed
subschemes Y of X, defined by

P+ —nYxy .oz, =0,
(Yx) .
To(i) = AGx; for 1 <i<n.

Let j € {1,....n'}. If [[;c0, Gi # A~4, the second relation shows that z; = 0 for all i € O;. If
Hieoj G =A% we have A\ € p,,,4(F,) and the second relation shows that
d .
dz?, if A F,
> ap=aly (Z ()\")Z> { a4 N b ().
i€0; i=1 0 if A ¢ l’l’n(Fq)
Consider A € F; and let ¢ = A=% (as n = n'd, we have (" =1 <= A" = 1). Denote by .J the
set of j € {1,...,n'} such that [];cp. ¢ = ¢ and let y; = xjq for each j € J. If ¢ ¢ p,(Fy), J is

empty and hence Y) is empty. Assume now that ¢ € p,, (IF,). The number of elements of J is k(¢).
We consider two cases.

a) FIRST CASE: ¢ € p,,,(F,). According to what we have just done, the scheme Y} is isomorphic
to the hypersurface of PFI: (©=1 defined by

d(zy;?) =0 ifJ#£{1,...,n},

jeJ
Ayt + -4+ y") =yl .yl =0 if J={1,...,n'},

where 1 is the product of ¢ by an element of u,, (F,). This hypersurface is smooth (because,
in the second case, we have (¢')" = ™ # 1 and thus (¢')™ # 1), hence, by Theorem
page Bl we have

(1 —n)kO) 4+ (n —1)

_ kO _
X(3) = ()~ 1+ . = ko) + T2

b) SECOND CASE: ¢ € p,(F,) \ p,,,(Fy). This time, the scheme Y is isomorphic to ]P’k(o Lif

J #{1,...,n'} and to the hypersurface of]P’%; ~defined by (y1 ...y )t =0if J = {1,...,n'}.
In the first case, we have x(Yy) = k(). In the second case, we necessarily have n’ > 2 and

the Euler—Poincaré characteristic of Y} is equal to that of Y4, which is the union in P%;/_l
of the hyperplanes defined by y; = 0, hence

NI SR PETRIR S Y () -

Lc{l,...,n"} =1

For each ¢ € p,,(F,), there exists exactly d values of A such that A=¢ = ¢. Thus

e RO
XXy =D x(M)=d > k+d > A-n)" -1

n
)\GF* CEM, (Fy) CEM (Fy)

—an' Y 1—”—0—1_ 1+ Y 1—”

CEP, (Fy) CEMR, (Fy)

©
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The order of g divides nd and hence is prime to g; thus, by Theorem 2.6]
" (T, TP ) = (1) (0= 1) — (K9

_=nn Z (1 — )R, O

’
CER, (Fy)

4.7 Trace of a product o of n' disjoint cycles of length d acting on H,
when a € A°

We keep the notations of §4.6

Lemma 4.13. If o € &, is a product of n' disjoint cycles of length d,

(=1)" K
Y g C S e
a€A such that €S,/ CERy, (Fy)

Proof. Denote by B the set of (b,...,b,) € ((Z/nZ) \ {0})"™ such that by +--- + b, = 0 and
(b1y...,bn) = (b1,...,by). The image of the map B — A, (b1,...,bn) — [b1,...,by] is the set of
a € A such that o € S’ such an element a has exactly m, elements in its preimage. The sum we
must compute can hence be rewritten as

b b
> g

If (b1,...,by) € B, all the b;, for ¢ belonging to an orbit O; of o, are equal to a common
¢; € (Z/nZ) \ {0} and we have d(ci +...¢p) =0in Z/nZ ie. c1 + -+ ¢ € W'Z/nZ. Our sum
can thus be rewritten as

> pst

C15sCnr €(Z/nZ)\{0}

citte, €EN'Z/nL
where p; = Hieoj ¢i- We conclude by using the following generalization of Lemma B4 (which is
recovered by taking d =1 and n’ = n ie. o =1d). O

Lemma 4.14. Let r be an integer > 1 and p1, ..., p, elements of p,(F,). For each ¢ € p,, (F,),
we denote by k(C) the number of j € {1,...,r} such that pu; = (. We have

) R R = SR ELC)

1,eerer€(Z/nZ)\{0} CEL (Fy)
cl+~~~+c,~€n’Z/nZ

Proof. We prove the result by induction on r. For » = 1, we have

3 #?_{d—l—%HG—NP+Oﬂ—UO—nW)iﬂhEﬂw@m

1= =L(n/(1—n)0 .
c1€n’Z/nZ\{0} 1=27(n'(1—n)") if p1 ¢ p,, (Fy),

hence the result in that case. Assume now that r > 2 and that the result is proved for r — 1. We

12



write

> Y+ > R Ty
c1,y..,¢r €(Z/nZ)\{0} c1y-yCr—1€(Z/nZ)\{0}
c1++er€n'Z/nZ citter_1€ENZ/NT

— c1 c
- § /1‘1 e /’LTT
c1y..yCr1€(Z/nZ)\{0}
cr€L/NZ
c1+»~+cTEn'Z/nZ
Cr—1 l—c1——cCpr_1

= > T T

Ctyrener—1€(Z/nZ)\ {0}
len'Z/nZ

SR O Co

C1,..,¢r—1€(Z/nZ)\{0} len'Z/nZ

The sum 3¢,z /7 . is equal to d if p, € p,,/ (F,) and to 0 otherwise whereas > i@\ {0} (%)C
is equal to n — 1 if p; = p, and to —1 otherwise. The product of all these sums is thus equal to
(=1)""td(1 — n)*mr) =1 if . € p,. (F,) and to O otherwise.

Taking into account the induction assumption, we obtain

S s

1 €@ IMIN {0}
ci++ere€n'Z/nZ

1y (1— n)k(C)

T S (e e (R

CEMy (Fy)
C=pr

_ =D Z (1 — )M, -

CEM, (Fy)

Theorem 4.15. If o is a product of n' disjoint cycles of length d and if a € A%, then

* | TT (_1)n—n'ma ZfO’ € S{z:
trlo |H")_{o ifoeS.\S..

Proof. As H' %(X y, Q,)P"™ = D.oci H, and as o* sends H, into Ho,, we have, for each ({1, ...,
Cn) € p, (F,)™ satisfying ¢1...¢, =1,

(G-, Galo) [HE 2 (X, @)P™™) = Y alGas v Ga) tr(o” | Ha).

ac A’

Moreover, by Theorem .12 and Lemma [4.13]

> ()" " maa(G.....G) = Y te(o"[Ha)alCa,- - Gn)

a€A such that oces! ac A’

As this is valid for all (¢1,...,() € p,, (F,)™ satisfying (1 ... §, = 1, we may identify the coeflicients,
which gives the announced result. O
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4.8 Action of S, on H,

Let’s recapitulate the results of §§4.3HL7 We keep the notations of §4.2t a = [a1,...,a,] is an
element of A, n),Z/nZ is the set of j € Z/nZ such that (a1 + j,...,a, + j) is a permutation of
(a1,...,a,) and d, = n/nl; the fixator S, of a in &,, can be written as

S, =8! %Y, where S’ is the fixator of (ay,...,a,) in &,,

and X, = (o) is a cyclic group of order d,,

with o a product of ny, disjoint cycles of length d,.
The dimension m, of H, is, by Theorem B3] equal to #(Z/nZ\ {a1,...,a,}). It is a multiple
of dy as {as,...,ay} is stable by translation by elements of n),Z/nZ; we can thus write m, = d,m/,.

Theorem 4.16. The group S, acts on Hy as follows:

e an element s € S;, acts by €(s)ldg, ;

e an element s € X, acts by m!, copies of the reqular representation of .

Proof. The first assertion results from Theorem [.11] and the second from Theorem the trace
of ¢* acting on H, is zero if 1 < i < n — 1 and equal to m, = dimH, if i = 0 (note that
(=1)"""a = 1 since both n and n/, are odd), hence 3, acts as m/, = mq/d, copies of the regular
representation. O

This completely determines the structure of the Q [Sa]-module H,. From the considerations of
§411 we deduce the structure of the Q,[G]-module HZ (X ;, Q,)Prim:

Hgt_2()_(wv@l)prim = @ Indgxsa (a®e® regg:a/sé)v (4.2)
acR

where regg, /s, is the regular representation of S, /S, (let us recall that R C A is a set of represen-
tative elements of &, \ A; see §L1).

5 Action of G on Hgt_2()_(¢, Qy)Prim

We begin by giving a canonical construction of cyclotomic fields and characters attached to cyclic
groups.

5.1 The cyclotomic field attached to a cyclic group

Let C be a cyclic group of order m > 1. Denote by Q[C] the group algebra of C over Q and by m¢
the ideal of Q[C] generated by the sums ., [z] for C" a subgroup # {1} of C.

Theorem 5.1. The ideal me of Q[C] is mazimal and the field Ko = Q[C]/m¢ is isomorphic to
the cyclotomic field Q(p,,) of m* roots of unity.

Proof. We may assume that C' = Z/mZ so that the algebra Q[C] can be identified with Q[X]/(X™—
1)Q[X]. We have X™ — 1 = Hd|m 4, where ®, is the d*™® cyclotomic polynomial. The polynomials
®, are paiwise prime in Q[X]. From the chinese remainder theorem, we deduce that Q[X]/(X™ —
1)Q[X] is isomorphic to [[,,, Q[X]/®4Q[X]. We now proceed to show that mc is the kernel of
the projection ¢: Q[X]/(X™ — 1)Q[X] — Q[X]/®,,Q[X]. Let d # m be an integer dividing m
and Cy = dZ/mZ the unique subgroup of C' with index d; the element ) . [z] of Q[C] has
projection 0 on Q[X]/®,,Q[X] and projection # 0 (equal to m/d) on Q[X]/®,Q[X], which shows
the result. O
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The field K¢ is called the cyclotomic field attached to the cyclic group C. The compound map
C — Q[C] = K¢ =Q[C]/mc

is a canonical character xc of C taking values in K¢. It induces an isomorphism between C' and
the group of m'™ roots of unity of K.

Proposition 5.2. The field K¢ is a simple Q[C]-module with endomorphism ring Ke.

Let C7 and C5 be two cyclic groups of same order m and ¢: C7; — Cs and isomorphism of C; onto
(5. The homomorphism Q[C;] — Q[C5] extending ¢ factors as an isomorphism K,: Ko, — Ke,
and we have Ky o x¢, = x¢, © ¢, i.e. the following diagram is commutative

o, —2 . o

xer | [ xes

Ky
Kcl E— KC2

5.2 The simple Q[A]-module attached to an element of (Z/nZ)*\ A

The group (Z/nZ)* acts on Aby k x [a1,...,a,] = [ka1,... kay]. I a € A, we denote by a the
class mod (Z/nZ)* of a. Let us note that the integers d, and n/, defined in §4.2l only depend on a
and not on a (see Remark [4.5]).

Denote by n, the order of a in the group A it only depends on a and not on a. If m is an
integer, we have ma = 0 if and only if all the ma; are equal, i.e. if and only if m(a; —a;/) = 0 for all
i and ' between 1 and n. The subgroup of Z/nZ generated by the elements a; — a;s only depends
on @ and not on a or on the choice of a1, ..., a,; it can be written as f,Z/nZ where f, divides n
and its order is ng, hence n = ny f,. The integer f, only depends on a, not on a.

Following §3.1] we identify the group A to the group of characters of A taking values in F,, the
element a € A corresponding to the character [, ..., Ga) — ' ... ¢ If N, and E, denote the
kernel and the image of this character, E, ~ A/N, is a cyclic subgroup of order n,. Let us note
that F, and N, only depend on a, not on a.

Denote by K, the cyclotomic field attached to the cyclic group E, (see §5.1)) and x, the com-
pound character

A—» A/N, = E, — K,

where the third arrow is the canonical character of E, from §5.11
Remarks 5.3. a) Consider k € (Z/nZ)*. We have ka = a if and only if Kk =1 mod n,Z.

b) The cyclotomic field K, only depends on @ and not on a, but yr, = x*.

Proposition 5.4. The character x, defines a structure of simple Q[A]-module on K, whose endo-
morphism ring is canonically isomorphic to the field K,.

5.3 The stabilizer S; in &, of an element a € (Z/nZ)*\ A

The group 6&,, acts on A by ?la1, ..., an] = [ag-1(1); - -+, ag-1(n)]. This action commutes to that of
(Z/nZ)* and factors as an action of &, on (Z/nZ)*\ A. We designate by S the fixator of @ in &,,.

If 0 € Sg, there exists a unique k € (Z/n,Z)* such that “a = ka; we denote it by ke (o). The
map kq: Sz — (Z/neZ)* defined in that way is a group homomorphism which is not surjective in
generaﬂ Its kernel is the group S, from §4.2 in particular, S, is a normal subgroup of S;. Let us
note that the map k, only depends on a, not on a.

2Consider n =5 and a = [0,0, 1, 1, 3]: we have n, = 5, but there is no ¢ € S5 such that %a = 2a.
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From the definition of n/,, there is an ¢ such that a1 = a; +nl, i.e. n, = a1 —a; € foZ/nZ. Thus,
there is an integer e, such that n/ = e, f, and we have n = dye, f, and n, = d,e,. The integer e,
only depends on a, not on a.

Theorem 5.5. The image of the homomorphism kq: Sz — (Z/n,Z)* contains the elements of
(Z/noZ)* which are = 1 mod e, and is thus the preimage of a subgroup of (Z/e.Z)* by the
canonical surjection (Z/n,Z)” — (Z]/e Z)* .

Proof. Given k € (Z/nZ)* such that k = 1 mod e,, we must find a permutation o € &,, such
that “a = ka. We only need to show that there exists j such that, for all b € Z/nZ, the sets
I(kb+7) and I(b) have the same number of elements. The following lemma shows that we may take
j=—ka +ai. U

Lemma 5.6. If k =1 mod e,, then, for all b € Z/nZ, I(kb — ka1 + a1) has the same number of
elements as 1(b).

Proof. Consider b € Z/nZ. Suppose that b = a; mod f,, so that (kb—ka;+a1)—b=(k—1)(b—a1)
is a multiple of e, f, = n}, and thus kb — ka; + a; = b mod n/; by Remark [£2] this implies that
I(kb — kai + a1) has the same number of elements as I(b).

Suppose now that b # a; mod f, (and thus I(b) = ©@); in that case, kb — ka; is non zero
mod f, and so, from the definition of f,, kb — ka; + a; is not one of the a;’s, which shows that
I(kb — kay + ay) is empty. O

We now determine the structure of Sz. Let us recall (see Remark [£0]) that S/, and S, depend
only on a, not on a.

Theorem 5.7. The group S is a normal subgroup of S and the following short exact sequence
splits
1— 8 —8; — S;/8, — 1.

Proof. From the definition of f,, it is possible to choose the representative (a1,...,a,) of a in
(Z/nZ)™ such that each a; is a multiple of f,; because fun, = n, the elements wa; and wf,,
where w € (Z/n,Z)*, are well-defined in Z/nZ. If 0 € Sz, there is a unique pair (uy,v,) €
Z[naZ x (Z/n.Z)* such that, for all i, we have a,(;) = v50; + s fo. The uniqueness of v, comes
from the fact that, as we have already seen (Remark 53), a k such that ka = %a is defined mod n,
and the uniqueness of u, comes from the fact that u, f, is unique mod n.

The map ¢: 0 — (uy,vs) is a group homomorphism from Sz to Z/neZ x (Z/n.Z)* (the group
law being (u,v)(u',v") = (u 4+ vu’,vv")); its kernel is S/, which is thus a normal subgroup of ..

For each b € Z/nZ, we choose a numbering i1(b), ..., ix7)(b) of the elements of I(b). Given
(u,v) € ¢(Sz), if I(b) is non-empty, then b is a multiple of f, (by assumption) and I(b) has
the same number of elements than I(vb + ufs) as a,) = va; + uf, for all o € S satisfying
#(0) = (u,v). Thus, there is a permutation o, € &, sending i;(b) on i;(vb+ uf,) for all b € Z/nZ
and 1 < I < #I(b). From its definition, this permutation belongs to Sz and ¢(oy.,) = (u,v).
Moreover, the map (u,v) — 0y, is a group homomorphism since we have

V' (Vb +ufy) +u' fo = (WV0)b+ (U + V') fa.

This shows that (u,v) — 0y, is a splitting map for ¢ and thus the short exact sequence 1 — S/, —
Sz — Sz/S! — 1 splits. O

Remarks 5.8. a) Even though S, is a normal subgroup of Sz, the exact short sequence 1 —
Sa — Sa — Sa/S. — 1 does not always splits. Indeed, consider the case n = 24 and the
sequence (ai,...,a24) with four times each of the numbers 0, 2, 12, 14 and two times each
of the numbers 1, 7, 13, 19; we have n, = 24, but, even though 5 is of order 2 in (Z/247)*,
the only elements (u,v) of the image of ¢ such that v = 5 are (2,5) and (14,5) which are of
order 4.
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b) When o € S,, we have v, = 1 and u, € e,Z/n,Z; indeed, if ¢ € S,, then v, = 1 and so
Ao (i) — i = Ug fq; thus, from the definition of n', uy fq is a multiple of n/, = e, f, and hence
Uy is a multiple of e,.

¢) With the notations of §4.2] we have, for all s € S, ju(s) = faus. More precisely, jo: S, —
n! Z/nZ is the compound of the homomorphism o — u4 sending S, into e,Z/n,Z and of the
isomorphism of e,Z/n,Z onto n,,Z/nZ deduced from the multiplication by f,.

5.4 Construction of Q[G]-modules and study of their extension of scalars

to QZ

The aim of this §5.41is to construct Q[G]-modules which, after extension of scalars to Q,, will give
back the representations considered in §4l

Before we begin, let us recall that the field K, only depends on @, not on a, but that yx, = x*
(see Remark[B3). If v € (Z/n,Z)*, we denote by 0, the automorphism of the field K, sending every
na™ root of unity onto its v** power.

Consider a € A; we choose a representative (a1, ..., an) € (Z/nZ)" of a such that the a; are all

multiple of f, and continue to use the notations of §5.3] concerning the integers u, and v, .

Proposition 5.9. If w is a n,™

A x S5 into K,

root of unity in K,, the following map defines a representation of

Paw @ A xSz — Endg(K,)
(€,0) = Xa(Qe(o)w" b,
Let M, ., be the Q[A x Sz]-module K, thus defined. It has rank ¢(n,) (where ¢ is Euler’s totient

function), and, up to isomorphism, it is independent of the choice of the representative (ai,...,an,)
of a such that each a; is divisible by f,.

Proof. Let us first check that p, ., is a group homomorphism. We have
Ma,w (Ca U)Ma,w (Cla UI) = Xa (C)E(U)wuv 6‘1)(, Xa(CI)E(OJ)qu/ 911(,/
= Xa(OXa(() " e(0)e(o ) 7 o b,
and
Na,w((Ca o) (Clu U/)) = Haw (¢ “, 00/) = Xa(C UCI)E(UU/)WUU-i_UUuU/ eva%/
= Xa(O)Xa (¢ )e(0)e(0”)w" 7" Oy,

To prove these two quantities are equal, we need to show that x,(°¢") = xa(¢')%:

Xa(gc/) = Xa*la(cl) = nga(cl) = Xa(C/)”"-

We now proceed to show that p, . does not depends, up to isomorphism, on the choice of
the representative (a1, ..., a,) of a such that each a; is a multiple of f,. If (a],...,al,) is another
representative, there exists j such that a) = a; + jf, for all ¢, and so

air(i) = Qg (4) +jfa = Voa; +Usfo+ jfa = 'Uaa; + (UG +.7(1 - Ua))fa'

Thus, v., = v, and u/, = u, + j(1 — v, ), hence

,U:z.,w (¢, o) = Xa(Oe(U)WuUJrj(li%)ova = Wj.ua-,w(Ca o) w7, U
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We now study the extension of scalars M, ., ®q Qy. We use the isomorphism ¢ from §3.1] between
., (Fy) and p,,(Qy); there exists a unique embedding ¢, of K, in @, such that the following diagram
is commutative:

By —— p,(F,) —— p,(@))

H |

E,— K, —— @g.

La

This embedding only depends on a, not on a. Moreover, if we identify a € A to a character
A — p, (F,), the following diagram is commutative:

A (F) —— 1, (@)

H |

A—ems K, — Q.
Xa la

In the remainder of this §5.41 we identify K, to the subfield ¢ (K,) of Q, thanks to t,.
With this identification, we have an isomorphism

§: Ko ®g Qp > Q7™

k@ X = (0u(k)N)vez/n.z)>
Because

Ha,w(<7o')®1d_
ko — 2y (O)e(o)w™ by, (k) @ A

6 v VU
> (Xa(Q)"€(0) 0" Oy, (k)/\)ve(z/naZ)Xa

Z/n.Z)

the endomorphism of @é deduced from pi4,,(¢,0) ® Id@/Z by the isomorphism § is given by

(J:v)ve(Z/naZ)>< = (Xva(g)e(o')wvuvxvva )UE(Z/naZ)X' (51)

Proposition 5.10. Let u, be the homomorphism o +— u, of S, into e, Z/n.Z; it does not depend
on the choice of the representative (ﬁl, ...yap) of a and we have ukq = kug for all k € (Z/n.Z2)*
(see Remarks[5.8.d and [{-5.d). The Q,[A x Sz]-module M, ., @q Q, is isomorphic to

@ Indﬁiﬁi(ka@ €@ wke),
kE(Z/naZ)* [/ Im kg

Proof. Formula (5.1]) above shows that the isotypic components of the Q,[A]-module M, ., ®g Q,
are of the form ka for k € (Z/n,Z)* (as in §3.1] we identify a to a character taking values in Q,);
each of these isotypic components is a direct sum of representations of dimension 1 isomorphic to
ka.

Let’s now determine the action of the group S,. As Sk, = S, for all k € (Z/nZ)*, the group
S, stablizes each one-dimensional piece isomorphic to ka of the Q,[A]-module M, . ®q Q, and, by
Formula (5.1)), S, acts on a piece isomorphic to ka by multiplication by e(o)wk%s = e(g)wre.

This shows that the Q,[A x S,]-module M, ., ®g Q, is isomorphic to

P (aoeawe). (5.2)

kE(Z/noZ)x
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From Formula (5.I)) and the fact that S3/S, = Imk, = {v, | ¢ € Sz}, we have the following
isomorphism of Q,[A x Sz]-modules:

@ (ka ® € ® whe) ~ Indjz:gz (a®e® w").
keIm ki,

From this, we get the announced result. O
We deduce the following three corollaries.

Corollary 5.11. Up to isomorphism, M, only depends on the do'™ root of unity w®. More
precisely,
Myw~My o < d €(Z/nZ) a and w = w'e.

Proof. As two representations isomorphic after extension of scalars are also isomorphic before (see
[Curtis and Reiner, 1962, Theorem 29.7, page 200]), we only have to show the result for M, ., ®g Q,.
From Formula (52)), we have
Ma,w ®Q QZ|A = @ ka7
ke(Z/naZ)>

which shows that, if M, ., ®g Q; ~ My ®g Qy, then a’ € (Z/nZ)*a. Let us now assume that
a' € (Z/nZ)*a so that e, = eyr. Recall (see Remark £.8.5] as well as the proof of Proposition [4.4))
that u, is a surjection of S, onto e,Z/n,Z with ug, = ku,. By Formula (5.2)), we have

Ma,w ®Q@Z|Sa ~eR @ wkua,
kE(Z/nq2)*
hence, if M, ., ®¢ Q; ~ My . @g Qp, we have {wFe | k € (Z/n,Z)*} = {w'k | k € (Z/n.Z)*}
and so there exists k € (Z/n,Z)* such that w® = w' .
Conversely, we assume that o’ € (Z/nZ)*a and that there exists k € (Z/n,Z)* such that
wf = w'™ and prove that M, ., ®q Q, ~ My, ®qg Q, if and only if k = 1. We write a’ = k'a so
that we have an isomorphism of Q,[A x S,]-modules

Ma’7w/ ®Q @g ~ @ (kk/a ReER w/ukk/a)
ke(Z/naZ)*

= @ (kka ® € ® W™k )
kE(Z/naZ)*

= @ (kka ® € @ w* ).

kE€(Z/n 2)*

This shows that My, ®g Qp ~ M, ., ®g Q, implies k = 1. Conversely, if x = 1, the isomorphism
from Proposition [5.10] shows that

My ®q Qp =~ @ Indﬁigj (kk'a ® € @ w"rr'a)
kE(Z/naZ)* [ Tm k,
~ @ Indfligz (ka @ € @ w')
kE(Z/naZ)* [ Im kg
~ me ®Q @g. D
Corollary 5.12. For each d,"* root of unity n € K,, we denote by w(n) € K, a n,™
satisfying w(n)®* = n. We have an isomorphism of Qe[A x Sz]-modules

@ Mg ) ®g Q ~ @ Ind‘;‘:gi(ka ® € ® regg, /s )-
n€pg, (Ka) kE€(Z/naZ)* /Imk,

root of unity
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Proof. According to the previous proposition, we only have to check that, for all k € (Z/n,Z)*,

@ w(n)"* = regg, /s; -

n€py, (Ka)

From Remark B8 we may write u, = equ/, where u’,: S, — Z/d,Z is a group homomorphism.
We have uj(0) =0 <= wu,(0) =0 < o € 5/ as j, = — faus (Remark £.8.d). Consequently, if

o €S,
Z w(n)uka(a) — Z w(n)kua(a) — Z nku;(a')
NEK, (Ka) NEK, (Ka) nEpg, (Ka)
_Jd, ifoeS,
o otherwise,
which proves the announced result. o

Corollary 5.13. We keep the notations of the previous corollary. We have an isomorphism of
Q¢[G]-modules

H;—z()?w’ Ql)prim ~ @ my, Indixsa ( @ Ma,w(n)) ®q Qs

a€(Z/nZ)* xS\ A €My, (Ka)

Proof. As a consequence of the previous corollary and of the results of §4.8 we have

H;_Q()_(wv @Z)prim ~ @ my, Indixsa ( @ Ma,w(n)) ®q Q-

a€(Z/nZ)* xS\ A €My, (Ka)

We deduce the announced result over Q, thanks to the same argument as in Corollary EITF two
representations isomorphic after extension of scalars are also isomorphic before. o

5.5 Endomorphism rings of the representations

Denote by W, ., the Q[G]-module Indixsf1 M, o; the aim of this §5.5]is to show that it is a simple
module and identify its endomorphism ring.

Theorem 5.14. The Q[G]-module W, ., is simple. Moreover, if we identify the group Gal(K,/Q)
with (Z/neZ)*, the endomorphism ring of W, identifies with the unique subfield D, of K, such
that Gal(K, /D) = Imk,. That is to say, D, is the subfield of K, consisting of the elements fized
by all the 0, for o € Sa. In particular, D, is commutative.

Proof. Since a Q[G]-module is simple if and only if its endomorphism ring is a division ring, we
only need to show the second assertion.

We have W, = Indﬁxsa M, ., where M, is just K, with the structure of Q[A x Sz]-module
given by the representation pq.. We may write W, = ®S€6n/Sa sMg,,. From the definition
of Sz, each sM,, is stable by A and the Q[A]-modules sM,, are disjoint. Consequently, the
endomorphism ring of W, ,, stabilizes M, , and u — u] M, defines an isomorphism between the
endomorphism ring of W, ,, and the endomorphism ring of the Q[A x Sz]-module M, .

We now need to show that the endomorphism ring of the Q[A x Sz]-module M, ,, is the subfield of
K, fixed by all the 6, for o € S;. The endomorphism ring of the Q[A]-module M, is canonically
isomorphic to K, via  — (A — zA) since the Q[A]-module M, is K,. We deduce that the
endomorphism ring of the Q[A x Sz]-module M, ., is the subfield of K, consisting of the elements
x such that A\ — xA commutes with each pq (¢, 0) i.e. with each 6, . Because A — A commutes
with 6, if and only if 6,, (z) = z, the ring D, = Endg(q)(Wa,w, Wa,w) is the subfield of K, fixed
by each 6, for o € S;. O
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Remarks 5.15. a) The field D, is independent of the choice of w.

b) The field D, has dimension zl(rzak)a over Q. When (Z/n,Z)* is cyclic (e.g. when n is prime

and n, = n), this dimension characterizes D,.

¢) As (Z/e,Z)* C Imk,, we have D, C K/ where K/, is the subfield of K, generated by the e,
roots of unity. In general, D, # K/ as we may see by taking n =5 and a = [0,0,1,1, 3]: we
have n, = e, = 5 and so K, = K/, = Q(u5) whereas D, = Q(v/5) (this is the same example
as in the footnote to page [I5]).

Examples 5.16. a) When a = [0, ...,0], we have D, =K, = Q.
b) When n = 5 and a is the class of [0,0,0,1,4] or [0,0,1,1,3], we have D, = Q(\/5).

¢) When n = 7, we have the following possibilities concerning D,

class of a D,
0,0,0,0,0,0,0],[0,1,2,3,4,5,
07070707172747 070717173737

6
I [ 6
0,0,0,0,0,1,6], [0,0,0,1,1,1,4
,0,0,1,1,6,6], [0,0,0,1,2,5,6
I, [ 6

I [ 3

[ ]
[ ]
[ ]
[ | Qu,)*
[ ]
[ ]

0
07071717374757 070717172747
07070707171757 070707171727 Q(N?)

Theorem 5.17. We have
Waow = Wa o < a€ ((Z/nZ)* x &)a’ and w = w'*.

Proof. As two representations isomorphic after extension of scalars are also isomorphic before (s_ee
|Curtis and Reiner, 11962, Theorem 29.7, page 200]), we only need to show the result for W, ,, ®q Q,.
Following Proposition [5.10] we have

Wa,w (90) @[ = @ SMa,w (024 @é ~ @ S ( @ (ka Re® wuka))'

s€6,/Sa 5€6,/Sa kE(Z/noZ)*

If a and o’ are the same mod the action of (Z/nZ)* x &,, this formula shows that W, , ® Q,
and Wy v ® @g are not isomorphic.

If a € ((Z/nZ)* x &y)d’, as the group A x Sz stabilizes each copy of sM, , an thus stabilizes
M, ,, we deduce, thanks to Corollary 5111 that if w® # w’® then W, , ® Q, and W/ ,» ® Q, are
not isomorphic.

Finally, if a € (Z/nZ)* x &,,)a’ and w® = w'®s, then the previous formula shows that W, , ®

@é =~ a’ w’ ®@é' O

6 Consequence for the factorization of the zeta function

The aim of this §8l is to show that H ?(X, Q)P"'™ is a direct sum of subspaces stable by the
Frobenius and to deduce a factorization of the zeta function of Xy,. The idea of using this method
comes from [Hulek et all, 2006, §6.2].

The subspaces we consider are the isotypic components of the Q[G]-module H? ?(X. by Qg)Prim;
after describing them in §6.01 we study in §6.2] how the Frobenius acts on them and deduce that
the characteristic polynomial of the restriction of the Frobenius is an integer power Qg‘f“{d“ of a
polynomial Q.. which has integer coeflicients independent of ¢ (see §6.3)). Finally, in §6.4 we
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deduce that the part of the zeta function of X, corresponding to H' *(X »> Qg)P™ is the product

overa € Aandn e 1y, (K,) of the polynomials QZ‘Z{ Ei;) (see Corollary[BI2 for the definition of w(n))

and we show that each Qg ., factors over the field D, considered in §5.51 We end by explicitly
treating the cases n = 3, 4, 5, and 7 in §6.5

6.1 Isotypic decomposition of the Q;[G]-module HJ *(X,, Q,)Prim

The aim of this §6.11is to express, in terms of the representations W, ., considered above, the isotypic
components of the Q[G]-module H2 (X ;, Q,)P"™. We keep the notations of §5.5]

Proposition 6.1. Letw be an,™ root of unity. The D,®@qQ-module V, ., = Homgq)(Wa,w, H:t_2()_(¢,
Q¢)Prim) s free of rank ml,.

Proof. By Corollary 513l we have

EOEeerts @ (@ Wiy eew)

a€(Z/nL)* xS, \A "~ n€pRq, (Ka)
We deduce the following isomorphisms of D, ®g Q,-modules:

Vaw = Homga)(Wa,w, HE 2 (X, Qe)P™)
~ D ( D Homoe (W W% B0 @4))
@ €(Z/nL)* xS \A 1 Epg, (Ka)
~ Homgg)(Wa,w, W(%} ®0 Q)
~ (Endgjq)(Wayw) ®g Q)™
~ (D, ®q Qé)m;.
This shows that V, , is a free D, ®g Qg-module of rank m/,. O

Corollary 6.2. The map w ® v — v(w) of Waw ®p, Vaw into Ho ?(Xy, Qe)P™ s Q¢[G]-linear
and injective; its image is the W, ,-isotypic component Hg , of the Q[G]-module H2 *(X , Qg)P™™.

Proof. We refer the reader to [Bourbaki, [1958, §3.4, Proposition 9, page 33] and |Bourbaki, 1958,
§1.5, Theorem 1.b, page 15]. O

Remark 6.3. The link between the H, from §4.1] and the isotypic components Hj ., from the
previous corollary is given by

@ Ha,(n) ®g, Qe @ Indfxsa H,.
nep,, (Ka) a€(Z/naZ)* [ Im kq

6.2 Action of the Frobenius on each isotypic component

Lemma 6.4. The Frobenius stablizes the Q¢[G]-modules W, ., @ p, Vaw-

B

Proof. As all the elements of G are automorphisms of X, defined over F,, the Frobenius endomor-
phism on H;l(z(Xw, Qp) commutes with the action of G; it thus stabilizes each isotypic components
of the Q[G]-module HZ %(X 4, Q¢)P"™ namely, each of the W, ., ®p, Va. (Corollary B.2). O

Proposition 6.5. The Frobenius acts on W o, ®p, Vo, by Id®vg,o, where vy, is the endomorphism
v — Frob* ov of the D, ®qg Q¢-module V, .
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Proof. The action of the Frobenius on W, ,, ®p, V4, is given by

Frob™(w ® v) = Frob™(v(w)) = (Frob® o v)(w) = vg,(v)(w) = w & Vg4 (v)
= (Id ® vg,0)(w @ v).
The structure of D, ®g Q;-module of V; ,, = HomQ[G](Wa)w, 1‘]:;2()_(1/}7 Q¢)P1im) is given by (d ®

AMv = A(v od). We have
Frob* o (A(v o d)) = A(Frob* ov) o d,

and hence the map v, , is an endomorphism of the D, ®q Q,-module V, . O

We deduce the following result, which describes the reciprocal polynomial of the characteristic
polynomial of the Frobenius on each isotypic component.

Proposition 6.6. Let w be a n,™ root of unity, and set
Pa,w (t) - det(l - tva,w|Va,w/Da ®Q QE) S Da ®Q Qg[t],
Qa.w(t) = Np, oot/ (Pa.w(t) € Qelt].

We have deg P, ., = m/!, and deg Qa0 = ;I(I:Ll“k) ml,. The reciprocal polynomial of the characteristic

polynomial of the Frobenius over Wy, ®p, Va,w 15 given by

det(1 — t Frob*| Wy o ®p, Vaw) = Qaw(t)?/%,
where 7y, s the number of permutations of (a1, ...,a,) and dq is the integer defined in §1.9

Proof. As Frob* acts on Wy, ®p, Vo by Id ® v, ., we have |Bourbaki, (1970, §8.6, Example 3,
page 101]

det(1 — t Frob™| Wy w ®b, Va,w/Qr)
= det(1 — tvg,w| Vi /Qp)dimPa Waw
= det(1 — t”a,wWa,w/Qg)(dim@ Waw)/[DaQ]

with [Bourbaki, 1970, §9.4, Proposition 6, page 112]
det(1 — tva,w|Va,w/Qr) = Np, et/ (det(l — tva,w|Va,w/Da @q Qr)),
which shows the announced formula given the following remarks:
a) the degree of the polynomial P, ,(t) is m|, = dimp, g.q, Va.w;

b) the degree of the polynomial Q. (t) is [D, : Q] - deg Py = ona)

FImk, "as

¢) the dimension of W, , over Qis ¢(ny)[6,, : Su] = ;I(rza) Je = 121D, : Q], and thus % =
Ta o
o

6.3 Rationality and independence of ¢ of the characteristic polynomials

The aim of this §6.3is to show that the polynomials Q, ., defined in Proposition [6.6] have rational
coefficients an are independent of £. We start with the following lemma, which we will use a couple
of times in what follows.

Lemma 6.7. Let E be a finite dimensional vector space over Qp and u an endomorphism of E.
The polynomial det(1 — tu) is an element of Q[t] independent of ¢ if and only if for all r > 1 the
number tr(u") belongs to Q and is independent of £.
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Proof. This is a straightforward consequence both of Viete’s formulas (relating roots and coefficients
of a polynomial) and of Newton’s formulas. O

The following lemma allows us to relate the independence of £ of @, ., to that of Qaw(t)%/ da

Lemma 6.8. Let P € 1 +tQ[t] be a non-constant polynomial and v € N*. If, for each £, there is a
Qe € 1+ tQy[t] such that Q) = P, then Qg belongs to 1+ tQt] and is independent of €.

Proof. Denote by VP the unique element of 1 + tQ[[t]] such that (VP)” = P. We have Q] =
(VP)Y = P with Q; € 1+ tQq[[t]], which shows, as v/P is unique in 1 + tQg[[t]], that Q, = V/P.
Consequently, Q¢ belongs to 1 + tQ[t] and is independent of . O

We now deal with the independence of £ of Qg ,(t)?*/% thanks to an argument of projector.

Proposition 6.9. For each a € fl, the polynomial Qa)w(t)%/da has rational coefficients and is
independent of .

Proof. Denote by &,: g € G — tr(g*|W,..,/Q) the character of the simple Q[G]-module W, ,,. There
is a projection 7, of H;;*Q()_(w, Qe)P™ onto W, ®p, Vaw of the form

A
Wazﬁzga(g_l)g*u avec)\e(@,

geG

where X is computed by taking the trace of both members of the equality

A
dimg Wo o, = G D &g )alg) = AlDa - Q.

geaG

(Indeed, over Qy, &, is the direct sum of [D, : Q] irreducible characters as we have seen in §5l) We
thus have A = dimp, W ...
Because the image of the projection 7, is Wy, ®p, Va,w, we have

Qa,w(t)’ra/da =det(1 — t(mq 0 Fro]o*)|1r1rcnt*2()_(w7 Ql)prim)'

Using Lemma 6.7 we only have to show that the powers of 7, o Frob* have a trace belonging
to Q and independent of ¢. This results from the fact that these powers can be written as linear
combinations with coefficients in Q of quantities of the type f* where f is an endomorphism of
the variety X, which extends to P"~! and from the following lemma, which is an adaptation of
|[Katz and Messing, [1974, Theorem 2.2, page 76] to the case of traces over the primitive part of the
cohomology of an irreducible hypersurface (since n > 3, Xy, is irreducible). O

Lemma 6.10. Let X be a non-singular, irreducible hypersurface of P*~1. If f: X — X is an
endomorphism of X which extends into an endomorphism of P*~1, then tr(f*|H% %(X, Qg)P™™) is
an integer which is independent of £.

Proof. We have HJ; *(X,Qq) ~ HL (X, Q)P'™ & HI (X, Qp)"P™ with tr(f*|Ha (X, Qr))
and tr(f*|HL 2 (X, Qp)mPrim) = tr(f* |H£72(P§;71, Q¢)) two integers independent of ¢ by [Katz and Messing,
1974, Theorem 2.2, page 76]@. O

Combining Lemma and Proposition [6.9] we deduce the announced result.
Theorem 6.11. The polynomials Qg . (t) have rational coefficients and are independent of €.

In §6.4] we will see a stronger result, namely that the polynomials P, ,, are independent of £.

30n this subject, see also [Deligne and Lusztig, [1976, page 119] and [Illusid, 2006, §3.5, pages 112-113].
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6.4 Factorization of the zeta function

From the preceding results, we can deduce a factorization over Q of the zeta function as well as the
existence of a decomposition of some of the factors over finite extensions of Q.

Theorem 6.12. The zeta function of the hypersurface X, of P;jl defined by ¥ + - + x] —
npzy ... xn =0 (with ¢ € F} satisfying Y™ # 1) factors over Q as

(=pnt
’Ya/da)
(Hae(Z/nZ)X xS, \A, nep,, (Ka) Qawn)(t)
(1-t) 1 —gqt)...(1—q"2t)
(The notations are those of Corollary [5.12 and Proposition [6.0)

Zx, k() =

Proof. The previous formula is just a reformulation of the results from §§6.11 and O

Remarks 6.13. a) Let us recall that the factor corresponding to [0,1,2,...,n — 1] does not
intervene (see Remark 3.5 page [)).

b) The polynomials Qg . depend on w®. See Example [6.20] page

¢) When n is a prime number (necessarily odd, asn > 3), we haved, = 1ifa #[0,1,2,...,n—1],
and thus w(n) = 1; hence, in that case, the numbers w(n) don’t intervene.

d) As we mentioned in the introduction, a similar result of factorization was proved by R. Kloost-
erman in a slightly different context, see [Kloosterman, 2007, Corollary 6.10, page 448]. The
factorization he obtains is a bit coarser as it involves the polynomials Rq(t) = ][, Qa.w(n) (t);
we refer the reader to Example [6.20] for an illustration of this phenomenon.

We now look how the polynomials ), ., behave over the field D,.

Proposition 6.14. The polynomials Qg . factor over D, as a product of [Dg : Q] polynomials of
degree m, .

Proof. As Qa,.(t) = Np,2,1)/0. (Paw(t)), the polynomial @, ., is the product of the conjugates
of Py - O
The following theorem shows that this factorization is independent of £.

Theorem 6.15. The polynomials P, ., have coefficients in D, and are independent of £.

Proof. Let us recall that P, ., (t) = det(1l — tvq,0|Va,w/Da @g Q¢). Using the same argument as in
Lemma [6.7] we only need to show the independence of ¢ of tr(v} |V w/Da ®g Qy) for every r € N.

As (2,y) = Trp,e.0,/0,(2y) is a non-degenerate bilinear form, the independence of £ of tr(vg .|
Vaw/Da ®q Qe) is equivalent to that of the element tr(dvy, ,|Va../Qe) € Qg for all d € D,; indeed:

TrDa®@Qz/Qe (d tr(vzrz,wlva,w/Da ®Q Qr))
= Trp,q0,/0, (t1(dvg o, |Vaw/Da ®g Q¢))
= tr(dv;wWa)w/Qg).

Because dv! , is the map v — (Frob*)” o v o d, thanks to Remark [6.18 we only need to show the

a,w

following proposition. O
Proposition 6.16. Let X be a smooth projective variety over Fy. Let G be a finite subgroup of
Auty, (X/F,), W a simple Q[G]-module, D (the opposite of ) its endomorphism ring, and i an integer
> 0. Denote by V' the D ®qQ¢-module Homgg) (W, H! (X,Qy)) and, givend € D andr > 1, denote

by a the endomorphism v — (Frob*)" ovod of the Qp-vector space V. The trace of « is an element

of Q which is independent of £.
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Proof. Denote by E the Qq-vector space Homg (W, HE (X, Qy)), the action of G on E being g-v =
gfowvo g;i,l where gy is the endomorphism of the Q-vector space W induced by g. Let m be the
Qg-linear map from F to itself defined by

1 . _
W(U)Z%Zg 0V O gyt

geqG

It is a projection with image E¢ = V. The map 3: v — (Frob*)" owvod is an endomorphism of the
Qg¢-vector space E which stabilizes V'; the endomorphism of V' induced by ( is « and, because 7 is
a projection of E onto V', we have

tr(a) = tr(m o B),
where the endomorphism 7 o 3 can be written as
VU Z (Frob*)" o gl owo f;,
il

with I a finite set, g; some elements of G and f; some endomorphisms of the Q-vector space W,
each of them independent of £. We thus only need to show the following lemma. O

Lemma 6.17. We keep the notations of the previous proposition. If g € G, f € Endgo(W) and
r € N*, then the trace of
v — (Frob™)" o g owo f

considered as an endomorphism of V is an element of Q independent of £.

Proof. Let (e1,...,er) be a basis of W over Q; the map

V= (U(el), ce ,v(ek))

is an isomorphism of the Q-vector space V onto the Q-vector space H’ (X, Q). It sends the
endomorphism of V' given by
v — (Frob*)" og*owo f

to the endomorphism of HE (X, Q)" given by

k
(hh e, hk) — (Z ai)j((Frob*)r o g*)(M)) < '<k,

i=1
where (a; j)1<i,j<k is the matrix of f in the basis (e;)1<i<k. Its trace is thus equal to

k
<Z am> tr((Frob*)" o g*|HZ (X, Q).
i=1
By |[Katz and Messing, (1974, Theorem 2.2, page 76], it is independent of £. O

Remark 6.18. In the previous lemma and proposition, it is possible, when X is a hypersurface, to
replace H %(X,Qy) by HZ (X, Q,)P"™ using Lemma .10 instead of [Katz and Messing, [1974,
Theorem 2.2, page 76] (indeed, Frob* and each g*, with g € G, extend to P"~1).
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6.5 Examples

In this §6.5] we detail the computations for the cases n = 3, n = 4, n = 5, and n = 7. In
all these examples, we use the fact that, when n is prime and a # [0,1,2,...,n — 1], we have
w =1 and d, = 1, hence m/, = m, and v,/d, = 4. Let us recall that the degree of Qg is

(deg Py.w)[Da : Q] =m), ;I(:fk) . In the tables, the lines appear by decreasing values of m,,.

Example 6.19 (n = 3). This is the simplest non-trivial case. The elements of A are, up to
permutation, [0,0,0] and [0, 1, 2]. The multiplicity of the latter is zero so only [0, 0, 0] gives rise to a
factor in the zeta function. This factor has degree m], = 2 and appears with a power 7, /d, = 7, = 1,

" Quoaa®)
_ [0,0,0],1
2 =T - gy

In fact, in this case, X. w is an elliptic curve, so the previous result doesn’t give any new information.

with  deg Qo,0,0),1(¢) = 2.

Example 6.20 (n = 4). Here is a list of the elements of A mod the simultaneous actions of &,
and (Z/nZ)*

classof @ | degQuw | Va/da | Do | w
[0,0,0,0] 3 1 Q 1
0,0,2,2 1 3 | Q | =1
0,0,1,3 1 2 | Q|1

Consequently, we have the following factorization of the zeta function:

1

Z g, (t) = (1—1t)(1 — qt)(1 — q3t)

1
x .
Q10,0,0,01,1(1)Q[0,0,2,2,1(1)3Q[0,0,2,2),—1(1)3Q10,0,1,3),1 (1) 2

This result is in accordance with the numerical observations of [Kadin, 2004, §6.1.1, pages 112-116];
let us note that, according to her tables for ¢ = p = 13, 17, 29, 37, 41 (we remind the reader that
only the cases ¢ =1 mod 4 fall in the framework of our study) and ¢ = 2, 3, 2, 2, 2 respectively,
we have {Q0,0,2,2,1(t), Qo,0,2,2,—1(t)} = {1 —pt, 14 pt}, hence the two polynomials Qg 2,21 and
Q0,0,2,2],—1 are not generally equal.

This example also illustrate the fact that our method gives a slightly finer factorization than
that of [Kloosterman [2007]: instead of finding a factor R?0,0,2,2] with R o,2,2) of degree 2, we find a
factor Q[0707272]71(t)BQ[0707272]7,1(t)3 with Qo,0,2,21,1 and Qo,0,2,2),—1 of degree 1; thus, Kloosterman’s
polynomial Rjg g 2 2 factors over Q as a product of two polynomials of degree 1.

Example 6.21 (Cas n = 5). Here are all the elements of A (mod the simultaneous actions of &,
and (Z/nZ)*) which intervene in the zeta function:

classof a | degQa1 | Va/da D,
[0,0,0,0,0] 1 1 Q
[0,0,0,1,4] 4 20 | Q(V5)
[0,0,1,1,3] 4 30 | Q(v5)

We can thus write:

2 (1) = Q10,0,0,0,0,1()Q[0,0,0.1 4],1(t)QOQ[o,o,l,l,?)],l(t)go

£ (t) =

& (1—6)(1 -1 - ¢2t)(1 — ¢3t)

Moreover, the polynomials Q,0,0,1,4),1 and Q[o,0,1,1,2],1 factor over D, = Q(v/5) into a product of
two polynomials of degree 2 (namely, the corresponding P, ; and its conjugate over Q(V5)).
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We thus recover (and explain) the numerical observation that Candelas, de la Ossa and Rodriguez-
Villegas made in |[Candelas et all, 2003, Table 12.1, page 133]@.

Example 6.22 (Cas n = 7). The elements of A mod the simultaneous actions of &,, and (Z/nZ)*
are those given in Example B.16.d page 211 We complete the list with the useful informations
concerning the factorization of the zeta function.

class of a deg Qa1 | Ya/da Da
[0,0,0,0,0,0,0] 6 1 Q
[0,0,0,0,0,1,6] 12 42| Quy) "
0,0,0,0,1,1,5] 24 105 | Q(py)
0,0,0,1,1,1,4] | 12 140 | Q(pr)*
0,0,0,1,1,6,6] | 12 210 | Q(pq)*
0,0,0,0,1,2,4] 6 210 | Q(vV-7)
0,0,0,1,1,2,3] 18 420 | Q(uy)
[0,0,1,1,3,3,6] 6 630 | Q(v/-7)
0,0,0,1,2,5,06| 6 840 | Q(ur)T
0,0,1,1,3,4,5] 6 1260 | Q(pr)*t
0,0,1,1,2,4,6] 6 1260 | Q(pr)*

As in the preceding cases, from this table, we can easily describe the factorization of the zeta
function in the case n = 7.
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A List of notations

General notations

#E number of elements of F

F, finite field with ¢ elements

Qy field of /-adic numbers

K algebraic closure of the field K

o, (k) set of n™ roots of unity belonging to the field k

10 Euler totient function

G permutation group of {1,...,n}

€ signature (of a permutation)

Indg o representation of G induced by the representation p of H
[1;n] set of integers k satisfying 1 <k <n

Notations from the [introductionl

P parameter belonging to F; p.O
0; 0; =0if 7 is even and §; = 1 if 7 is odd p.O
A group {(Cir-1Gn) € pn(E)" | CiooGo = 1} quotiented by p.[

{(¢,...,Q)}; is isomorphic to (Z/nZ)"~?

4 As mentioned in the introduction, they only make this observation in the case 1) = 0, but their numerical data
supports it when ¥ # 0 and ¢ =1 mod 5.
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[Clu"'agn]
[a1,...,an]

G

Notations from §2]

x/f

X(X )2 o
H;lt— (X, Qé)mprlm

Hglt*Q(X, Qé)prim

Notations from §3l

k(C)

Mq

group {(a1,...,as) € (Z/nZ)" | a1 + - - - + an = 0} quotiented by the p.
diagonal {(a,...,a)}; can be identified with the group of characters

of A

element of A p-
element of A p-
group A x G, p-
subscheme of fixed point of an automorphism f of X p-
Euler—Poincaré characteristic of a scheme X p-
non-primitive part of the cohomology of a hypersurface of dimension p.
n — 2; is zero when the dimension is odd

primitive part of the cohomology of a hypersurface of dimension n—2 p.
number of i € {1,...,n} such that ¢; = ¢ p-
multiplicity of the character a in the Q,[A]-module HZ (X ;, Q,)P"™  p.

Notations from §4l

H,

L

S
SIS

Notations from §5|

Ke
Xc
a
E,
N,
Mg

a-isotypic component of the Q,[A]-module H® ?(X,Q,)P"™; its di- p.

mension is my

stabilizer of a in G p-
orbit of @ € A under &, p-
representative set C A of the elements of 6n\A p-
stabilizer of a in &, p-
generator € [1;n] of the set of elements j € Z/nZ such that (a1 + 4, p.
...y an + j) is a permutation of (ay,...,an)

integer equal to n/n, p.
set of ¢ € [1;n] such that a; = b p.
element of S, belonging to the preimage of a generator of the cyclic p.
group S,/S;,

stabilizer in &,, of a representative (a1, ...,a,) of a in (Z/nZ)" p.
number of permutations of (ay,...,ay); equal to [&,, : S/] p-
group generated by o; we have S, = S’ x %, p-
group homomorphism S, — n/Z/nZ defined by ®(ai,...,a,) = p.
(a1 4+ ja(8), .-y an + Ja(s)); satisfies jro = kja

set of elements of A fixed by o € &, p-
orbits of a product of n’ disjoint cycles of length d p-

number of j € {1,...,n’} such that Hz‘eoj ¢i = (; this notation gen- p.

eralizes that from p.

ml, =mg/ds p.
regular representation of S, /S’ p-
cyclotomic field attached to a cyclic group C p-
canonical character of a cyclic group C; takes its values in Ko p-
class mod (Z/nZ)* of a p.
image of the homomorphism [¢1,...,(,] — (... ¢ p-
kernel of the homomorphism [(1,...,{y] — (... ¢om p.
order of a in fl; equal to the order of the group generated by a; — a;/; p.

also equal to the number of elements of the image of the character a
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cyclotomic field attached to the cyclic group A/N,; its dimension over
Q is ¢(ng); only depends on a

canonical character of the cyclic group A/N, considered as a character
of A; takes values in K, and satisfies xx, = x’;

generator of the group generated by a; — a;/; satisfies nl, = eqfa,
n=eqfqds and n =ng,f,

fixator of a in &,,

group homomorphism S; — (Z/n,Z)* defined by %a = k,(0)a; only
depends on a

integer such that n!, = e, fq; satisfies ng = e,d, and n = e, fodq

if o € S5, unique pair (uq,vy) € Z/naZ % (Z/n,2Z)* such that a, ;) =
Vo @i + Ug fo

group homomorphism Sz — Z/n,Z X (Z/n.Z)*, 0 — (us,Vs); We
have vy, = ko(0) and fous, = jo(o)

automorphism of the field K, sending the n,™ roots of unity to their
vt power

na™ root of unity

representation (¢, o) — xq(Q)e(o)w" 0, of Ax S; in K,

Q[A % Sz)-module K, given by p4..,; up to isomorphism, only depends
on w®, not on w

Q[G)-module simple Imdixsa Mg o

(opposite of the) endomorphism ring of W, ; we have D, C K,

#(na)
#Imk,

(hence D, is commutative) and dimg D, =

Notations from §6

Va,w

H&w

s
Va,w

Pa,w

Qaw

Homgg)(Waw, Hot ™ 2 (X y, Q)PH™); is a free D, ®g Qp-module of rank
mb; Wa.w ®p, Vi, identifies with the W, ,-isotypic component Hj
of the Q[G]-module HZ %(X , Q)Pri™

W, -isotypic component of the Q[G]-module HZ (X, Q)P'™; is
isomorphic to Wy, ®p, Va,w

endomorphism of the D, ®qgQ,-module V, ,, such that Frob*|W, ,®p,
Va,u.) =ld® Va,w

polynomial det(1 — tvg o |Va.w/Da ®g Q¢) having degree m/,; has coef-
ficients in D, and is independent of ¢

¢(na)
#Imk,

polynomial Np, gq,[1]/0.[](Pa.w(t)) having degree m;, and coef-

ficients in Q; is independent of ¢

B Formulas

Here is a list of the most important formulas established throughout this article.

!/

’
n= nada = eafada = nafaa ng, = eafau and n, = eqd,.

(&, : S.] = 74 (number of permutations of (ay,...,a,))

(G Sa] =12

6, :Sa] =

30

v v 9
B B H

v 9
HE

v 'O
EH

HEE B B

v v
SJ5|

p- 122
p.
p- 23

p. [29]



[Sa: S

a

| =da

[Sz : S.] = #lmk, (in fact, S5/S. = Imk,)
[Sa : S(/z] = do#Imk,

dim H, = m,

dim pg,, = dim M, ,, = dimK, = ¢(n,)

dim M,;n;,“ =m! d(ng)

dim W8 = dimIndS,, 5. Ma"s = mls¢(1n4)[S,, : Sa] = ml, :1(2:12@ 3_:
m’ Mg a
dim ne;SI?(Ka) %, My, =Ma 7;Z)I(m k)a ;ly_a'
Na
dimg D, = ;I(m k)a
dimg(We ) = ;I(rzak)a Z—Z = [6n : S][Da : Q.

!/

dimp, (Va,w) = my,.

. ¢(na) Ya
= e ! _— = / . .

dimg(Hz W) = my Ik, 4, m, (S, : Su][Ds : Q]

. n—2/y rim QZ/)(TLG)
dlm@e (Hct Q(X’LL')QE)P) ) = Z Am; #Im ka o=

a€(Z/nL)* xS\ A
deg Py, = m,
Qb(na)
— . . i

deg Qo = (deg Py w)[Da : Q] = m, T
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