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The aim of this article is to illustrate, on the Dwork hypersurfaces x n 1 +• • •+x n n -nψx1 . . . xn = 0 (with n an integer ≥ 3 and ψ ∈ F * q a parameter satisfying ψ n = 1), how the study of the representation of a finite group of automorphisms of a hypersurface in its etale cohomology allows to factor its zeta function.

Introduction

Let n be an integer ≥ 3 and F q a finite field of characteristic p = 2 not dividing n; to simplify the results, we will assume that q ≡ 1 mod n. We consider the projective hypersurface X ψ ⊂ P n-1 Fq given by

x n 1 + • • • + x n n -nψx 1 . . . x n = 0, where ψ is a non zero parameter belonging to F q . The zeta function of X ψ is defined as

Z X ψ /Fq (t) = exp +∞ r=1 #X ψ (F q r ) t r r .
We assume that ψ n = 1, so that X ψ = X ψ ⊗ Fq F q is nonsingular. As X ψ is a non-singular hypersurface of P n-1 , we know that the dimension of the etale ℓ-adic cohomology spaces H i et (X ψ , Q ℓ ) is zero for i > 2n -4 or i < 0 and that, for 0

≤ i ≤ 2n -4, dim H i et (X ψ , Q ℓ ) = δ i if i = n -2, δ i + (n-1) n +(-1) n (n-1) n if i = n -2,
where δ i = 0 if i is odd and δ i = 1 if i is even (see §2.2). As we will recall in Remark 2.3 page 3, the zeta function of X ψ is related to how the Frobenius acts on H n-2 et (X ψ , Q ℓ ). We set

A = {(ζ 1 , . . . , ζ n ) ∈ µ n (F q ) n | ζ 1 . . . ζ n = 1}/{(ζ, . . . , ζ)}; Â = {(a 1 , . . . , a n ) ∈ (Z/nZ) n | a 1 + • • • + a n = 0}/{(a, . . . , a)},
and denote by [ζ 1 , . . . , ζ n ] the class of (ζ 1 , . . . , ζ n ) in A and [a 1 , . . . , a n ] that of (a 1 , . . . , a n ) in Â. We will identify the group  with the group of characters of A taking values in F * q . The group A acts on X ψ by coordinatewise multiplication; the symmetric group S n acts on the right on X ψ by permutation of the coordinates [x 1 : . . . :

x n ] σ = [x σ(1) : . . . : x σ(n) ],

and on the left on A and  by

σ [ζ 1 , . . . , ζ n ] = [ζ σ -1 (1) , . . . , ζ σ -1 (n) ];
σ [a 1 , . . . , a n ] = [a σ -1 (1) , . . . , a σ -1 (n) ].

The semidirect product G = A ⋊ S n acts on the right on X ψ , and hence on the left on H n-2 et (X ψ , Q ℓ ) as the functor g → g * is contravariant.

The aim of this article is to describe the structure of H n-2 et (X ψ , Q ℓ ) as a Q ℓ [G]-module in order to deduce a factorization of the zeta function of X ψ . More precisely, we will show that the primitive part of H n-2 et (X ψ , Q ℓ ) (as defined in §2.2) admits an isotypic decomposition

a,ω W a,ω ⊗ Da V a,ω ,
where a describes (S n × (Z/nZ) × )\ Â, ω belongs to a certain set of roots of unity (see Corollary 5.12 page 19), W a,ω is a simple Q[G]-module which is independent of ℓ, D a is the division ring End Q[G] (W a,ω ) opp , and V a,ω is a free module over D a ⊗ Q Q ℓ whose rank is independent of ℓ. Because the Frobenius stabilizes these isotypic spaces, its characteristic polynomial splits in as many factors (the idea to use this method is inspired by an argument given in [Hulek et al., 2006, §6.2]). The first step is to decompose the Q ℓ [G]-module H n-2 et (X ψ , Q ℓ ); we follow the same method Brünjes used for the case ψ = 0 (Fermat hypersurface), but, thanks to a more powerful trace formula, we avoid the tedious induction of [Brünjes, 2004, Proposition 11.5]. Our methods can be generalized to other families of hypersurfaces, allow us to obtain factorizations slightly finer than those of [START_REF] Kloosterman | The zeta-function of monomial deformations of Fermat hypersurfaces[END_REF] (who uses the p-adic Monsky-Washnitzer cohomology), and also allow us to express each factor as the norm of a polynomial with coefficients in a certain finite extension of Q, hence explaining a numerical observation of Candelas, de la Ossa and Rodriguez-Villegas in the case n = 5 where this extension is Q( √ 5) (see [Candelas et al., 2003, Table 12.1 page 133] 1 ). Let us also mention that, in a recent article, [START_REF] Katz | Another Look at the Dwork Family[END_REF] studies the action of A (but not of A ⋊ S n ) on the cohomology of X ψ and establishes a motivic link between X ψ and objects of hypergeometric type.

The article is organized as follows. After preliminaries ( §2), we describe the structure of H n-2 et (X ψ , Q ℓ ) as a Q ℓ [A]-module ( §3) and then as a Q ℓ [G]-module ( §4). We then deduce the structure of the ) and explain the link between this structure and the existence of a factorisation of the zeta function of X ψ ( §6). An index of all notations introduced in the article is given in §A and a table of the main formulas appears in §B.

Q ℓ [G]-module H n-2 et (X ψ , Q ℓ ) ( §5

Preliminaries

We begin by recalling a Lefschetz-type trace formula by Deligne and Lusztig which allows to express the alternating sum of the traces of an automorphism on the ℓ-adic cohomology spaces as the Euler-Poincaré characteristic of the fixed-point scheme of this automorphism. We then recall the value of this Euler-Poincaré characteristic in the cases we will encounter in what follows (smooth projective hypersurfaces). Finally, we link the trace of an element of G to the Euler-Poincaré characteristic of a subscheme of fixed points.

Lefschetz trace formula

Let us recall that the Euler-Poincaré characteristic of a proper scheme over F p is given by

χ(X) = 2 dim X i=0 (-1) i dim H i et (X, Q ℓ ),
where ℓ is a prime number = p. It is an integer independent of ℓ.

Theorem 2.1. Let X be a proper scheme over F p . If f is an automorphism of X of finite order prime to p, and if X f denotes the fixed-point subscheme of f of the scheme X, then

2 dim X i=0 (-1) i tr(f * |H i et (X, Q ℓ )) = χ(X f ).
Proof. See [Deligne and Lusztig, 1976, Theorem 3.2, page 119].

Euler-Poincaré characteristic of a non-singular hypersurface

In this §2.2, exceptionally, we do not assume that n ≥ 3.

Theorem 2.2 (Hirzebruch formula). Let n be an integer ≥ 1 and f ∈ F p [x 1 , . . . , x n ] a homogeneous polynomial of degree d such that f , ∂f ∂x1 , . . . , ∂f ∂xn have no common zero in F n p except (0, . . . , 0). Then the hypersurface X ⊂ P n-1 Fp defined by f = 0 is non-singular (and irreducible if n ≥ 3) and its Euler-Poincaré characteristic is

χ(X) = (n -1) + (1 -d) n + (d -1) d .
Proof. If n ≥ 3, we use Corollary 7.5.(iii) of [SGA5, exposé VII]: indeed, the subscheme X of P n-1

Fp is smooth, connected and of dimension n -2; its Euler-Poincaré characteristic is hence

χ(X) = d n-2 i=0 (-1) n-i n i d n-2-i = 1 d n-2 i=0 (-1) n-i n i d n-i = (1 -d) n + nd -1 d ,
which is the announced formula. If n = 2, the hypersurface X of P 1 Fp consists of d distinct points and so χ(X) = d, which shows the result as (2 -1)

+ 1 d [(1 -d) 2 + (d -1)] = d.
Finally, if n = 1, X = ∅ and so χ(X) = 0, which also shows the result in this case.

Remark 2.3. When n ≥ 3, Theorem 2.2 can be refined as follows. We keep the same notations and denote by j the canonical injection X → P n-1

Fp

. By the Weak Lefschetz Theorem, (see for example [Freitag and Kiehl, 1988, Corollary 9.4, page 106]), for i < n -2 (respectively i = n -2), the linear map j * :

H i et (P n-1 Fp , Q ℓ ) → H i et (X, Q ℓ ) is bijective (respectively injective). If we set δ i = 0 if i odd and δ i = 1 if i is even, we thus have dim H i et (X, Q ℓ ) = δ i for i < n -2
, and this result stays valid for n -2 < i ≤ 2(n -2) by Poincaré duality. For i = n -2, the image of the map j * :

H n-2 et (P n-1 Fp , Q ℓ ) → H n-2 et (X, Q ℓ ) has dimension δ i . We will denote it by H n-2 et (X, Q ℓ ) inprim and set H n-2 et (X, Q ℓ ) prim = H n-2 et (X, Q ℓ )/H n-2 et (X, Q ℓ ) inprim .
Because the Frobenius acts as the multiplication by q (n-2)/2 on H n-2 et (X ψ , Q ℓ ) inprim and by multiplication by q i on each H 2i et (X ψ , Q ℓ ), we have

Z X ψ /Fq (t) = det(1 -t Frob * |H n-2 et (X ψ , Q ℓ ) prim ) (-1) n-1 (1 -t)(1 -qt) . . . (1 -q n-2 t) .

Character of G acting on H

n-2 et (X ψ , Q ℓ ) prim
The isomorphism class of a Q ℓ [G]-module is completely determined by its character. In this §2.3, we will express in terms of Euler-Poincaré characteristics the values of the character of the

Q ℓ [G]- module H n-2 et (X ψ , Q ℓ )
prim for the elements g ∈ G which are of order prime to p. Lemma 2.4. Each g ∈ G acts as the identity on

H n-2 et (X ψ , Q ℓ ) inprim and on H i et (X ψ , Q ℓ ) when i = n -2.
Proof. As g is the restriction of an automorphism of P n-1 Fq , it results from Remark 2.3 and the following lemma.

Lemma 2.5. If h is an automorphism of P n-1 Fq , then h * acts as the identity on

H i et (P n-1 Fq , Q ℓ ) for all i.
Proof. The group P GL n (F q ) acts on the right on

H i et (P n-1 Fq , Q ℓ ) by u → u * ; as H i et (P n-1 Fq , Q ℓ ) is of dimension 0 or 1,
this action is by homothety, and thus factors by an abelian quotient of P GL n (F q ). Since F q is algebraically closed, P GL n (F q ) is equal to its commutator subgroup and thus has no nonzero abelian quotient. Hence, for all u ∈ P GL n (F q ), u * = Id.

Theorem 2.6. If g ∈ G is of order prime to p, then

tr(g * |H n-2 et (X ψ , Q ℓ ) prim ) = (-1) n-1 (n -1) -χ(X g ψ ) .
(2.1)

Proof. Using the trace formula of Theorem 2.1, we can write

2 dim X i=0 (-1) i tr(g * |H i et (X ψ , Q ℓ )) = χ(X g ψ ).
By Lemma 2.4, we have (with, as previously, δ i = 0 if i is odd and

δ i = 1 if i is even) tr(g * |H i et (X ψ , Q ℓ )) = δ i if i = n -2, δ i + tr(g * |H i et (X ψ , Q ℓ ) prim ) if i = n -2,
and thus χ(X

g ψ ) = (n -1) + (-1) n-2 tr(g * |H n-2 et (X ψ , Q ℓ ) prim ), which is exactly the announced formula. 3 Action of A on H n-2 et (X ψ , Q ℓ ) prim
The irreducible representations over Q ℓ of the finite abelian group A are its characters (of degree 1).

Finding the structure of the

Q ℓ [A]-module H n-2 et (X ψ , Q ℓ ) hence amounts to figuring out the mul- tiplicity of each character of A in the representation g → g * of A in H n-2 et (X ψ , Q ℓ )
; it is the aim of this §3. The choice, in §3.1, of an isomorphism between µ n (F q ) and µ n (Q ℓ ) allows to identify  to the group of characters of A taking values in Q ℓ . After determining the character of the

Q ℓ [A]-module H n-2 et (X ψ , Q ℓ ) prim in §3.2, we will prove in §3.3 that the multiplicity of a ∈ Â is m a = #(Z/nZ \ {a 1 , . . . , a n }).

Characters of A with values in Q ℓ

As we only consider the case q ≡ 1 mod n, the group µ n (F q ) consisting of the n th roots of unity of F q is isomorphic to the group of n th roots of unity of Q ℓ . We call t an isomorphism of µ n (F q ) onto µ n (Q ℓ ) and use it to identify the group  with the group of characters of A taking values in

Q ℓ thanks to the isomorphism [a 1 , . . . , a n ] → ([ζ 1 , . . . , ζ n ] → t(ζ 1 ) a1 • • • t(ζ n ) an ).

Character values of the

Q ℓ [A]-module H n-2 et (X ψ , Q ℓ ) prim
As p is prime to n by assumption, the elements of A have an order prime to p; we may thus use Formula (2.1) to obtain the values taken by the characters of the

Q ℓ [A]-module H n-2 et (X ψ , Q ℓ ) prim . Theorem 3.1. Consider (ζ 1 , . . . , ζ n ) ∈ µ n (F q ) n such that ζ 1 . . . ζ n = 1 and let g be the correspond- ing element [ζ 1 , . . . , ζ n ] of A. For all ζ ∈ µ n (F q ), denote by k(ζ) the number of i ∈ [[1; n]] such that ζ i = ζ. We have tr(g * |H n-2 et (X ψ , Q ℓ ) prim ) = (-1) n n ζ∈µ n (Fq) (1 -n) k(ζ) . (3.1)
Proof. A point of X ψ with homogeneous coordinates [x 1 : . . . :

x n ] is a fixed point of g if and only if (x 1 , . . . , x n ) is proportional to (ζ 1 x 1 , . . . , ζ n x n ).
The proportionality coefficient is necessarily a root of unity ζ ∈ µ n (F q ), and we must have

x i = 0 if ζ i = ζ.
Hence, the subscheme of fixed points of g of X ψ is the disjoint union over ζ ∈ µ n (F q ) of the subvarieties

Y ζ = {x ∈ X ψ | x i = 0 if ζ i = ζ}. If k(ζ) = n, we have Y ζ = X ψ . If 2 ≤ k(ζ) ≤ n -1, Y ζ is isomorphic to the hypersurface of P k(ζ)-1 defined by y n 1 + y n 2 + • • • + y n k(ζ) = 0. Finally, if k(ζ) = 0 or 1, Y ζ is empty.
In each of these cases, we can apply Theorem 2.2 and obtain

χ(Y ζ ) = k(ζ) -1 + (1 -n) k(ζ) + n -1 n = k(ζ) - 1 n + (1 -n) k(ζ) n .
Consequently, since ζ∈µ n (Fq) k(ζ) = n and ζ∈µ n (Fq)

1 n = 1, χ(X g ψ ) = ζ∈µ n (Fq) χ(Y ζ ) = n -1 + ζ∈µ n (Fq) (1 -n) k(ζ) n .
Using trace formula (2.1) page 4, we deduce the announced result.

Remark 3.2. A recent preprint proves, in a more general setting, formulas of the type given in Theorem 3.1 and Theorem 4.12 page 10; see [Chênevert, 2009, Corollary 2.5].

Decomposition in irreducible representations

The following theorem gives a simple expression for the multiplicity m a of a character a ∈ Â in the 

Q ℓ [A]-module H n-2 et (X ψ , Q ℓ ) prim . Theorem 3.3. The multiplicity of the irreducible character a = [a 1 , . . . , a n ] of A in the Q ℓ [A]- module H n-2 et (X ψ , Q ℓ ) prim is m a = #(Z/nZ \ {a 1 , . . . , a n }) = n -(number of distinct a i ). Proof. Consider (ζ 1 , . . . , ζ n ) ∈ µ n (F q ) n such that ζ 1 . . . ζ n =
(g * |H n-2 et (X ψ , Q ℓ ) prim ) = a∈ Â m a ζ a1 1 . . . ζ an n = 1 n (a1,...,an)∈(Z/nZ) n a1+•••+an=0 m a ζ a1 1 . . . ζ an n .
We will show that if we replace m a by the number of elements of Z/nZ \ {a 1 , . . . , a n } in the right hand side, we recover Formula (3.1) above, which will show the announced result. We write 

(1 -n) k(ζ) .
Proof. We proceed by induction on r. For r = 1, the equality is the relation

0 = - 1 n (1 -n) 1 + (n -1)(1 -n) 0 .
We now assume that r ≥ 2 and that the result is known for r -1. We write

a1,...,ar∈(Z/nZ)\{0} a1+•••+ar =0 ζ a1 1 . . . ζ ar r = a1,...,ar-1∈(Z/nZ)\{0} a1+•••+ar-1 =0 ζ a1 1 . . . ζ ar-1 r-1 ζ -a1-•••-ar-1 r = a1,...,ar-1∈(Z/nZ)\{0} ζ 1 ζ r a1 . . . ζ r-1 ζ r ar-1 - a1,...,ar-1∈(Z/nZ)\{0} a1+•••+ar-1=0 ζ a1 1 . . . ζ ar-1 r-1 .
Given ζ ∈ µ n (F q ), we have

a∈(Z/nZ)\{0} ζ a = -1 if ζ = 1, n -1 if ζ = 1.
This little remark allows to compute the first sum: a1,...,ar-1∈(Z/nZ)\{0}

ζ 1 ζ r a1 . . . ζ r-1 ζ r ar-1 = (-1) r-k(ζr) (n -1) k(ζr )-1 ,
where k(ζ) = k (ζ1,...,ζr ) (ζ). To compute the second sum, we use the induction assumption:

a1,...,ar-1∈(Z/nZ)\{0} a1+•••+ar-1=0 ζ a1 1 . . . ζ ar-1 r-1 = (-1) r-1 n ζ =ζr (1 -n) k(ζ) + (1 -n) k(ζr )-1 .
We conclude by noting that

(-1) r-k(ζr ) (n -1) k(ζr )-1 - (-1) r-1 n (1 -n) k(ζr )-1 = - (-1) r n(1 -n) k(ζr )-1 n + (-1) r n (1 -n) k(ζr )-1 = (-1) r n (1 -n) k(ζr ) .
Remark 3.5. As a consequence of Theorem 3.3, the multiplicity m a of the character a ∈ Â is nonzero unless a belongs to the orbit of [0, 1, 2, . . . , n -1] under S n (which imposes n odd, or else

1 + 2 + • • • + (n -1) is not divisible by n). 4 Action of G on H n-2 et (X ψ , Q ℓ ) prim 4.1 A decomposition of the Q ℓ [G]-module H n-2 et (X ψ , Q ℓ ) prim
For every a belonging to  identified to the group of characters of A taking values in Q ℓ , we denote by H a the isotypic component relatively to a of the [Bourbaki, 1958, §3.4]). It is a Q ℓ -vector space of dimension m a , where m a is the multiplicity computed in §3.3, and we have

Q ℓ [A]-module H n-2 et (X ψ , Q ℓ ) prim (see
H n-2 et (X ψ , Q ℓ ) prim = a∈ Â H a .
The group G acts on the left on A by inner automorphisms, and thus acts on the left on Â: if g ∈ Aσ, with σ ∈ S n , and if a = [a 1 , . . . , a n ], we have g a = σ a = [a σ -1 (1) , . . . , a σ -1 (n) ].

Consider a ∈ Â. Denote by a the orbit of a under S n . The stabilizer G a of a in G is equal to A ⋊ S a , where S a = {σ ∈ S n | σ a = a}. We have gH a = Hg a for all g ∈ G and the space H a is stable by G a . The subspace

a ′ ∈ a H a ′ of H n-2 et (X ψ , Q ℓ ) prim is stable by G; it is a Q ℓ [G]-module canonically isomorphic to Ind G Ga H a .
We thus deduce the following result.

Theorem 4.1. Denote by R ⊂ Â a set of representatives of S n \ Â. The Q ℓ [G]-module H n-2 et (X ψ , Q ℓ ) prim is isomorphic to a∈R Ind G Ga H a .
The aim of the rest of this §4 is to determine how the group S a acts on H a . The strategy is the following: after showing that S a is a semi-direct product S ′ a ⋊Σ a ( §4.2), we compute tr(σ * |H n-2 et (X ψ , Q ℓ ) prim ) for σ a generator of S ′ a and compare it to the trace of the identity ( §4.4) to deduce that S ′ a acts as ǫ(σ) Id Ha on H a (see §4.5). We then show, using a method similar to §3, that Σ a acts as a multiple of the regular representation ( §4. 6-4.8).

The approach we use to study the action of S ′ a is the same that Brünjes used in [Brünjes, 2004, Proposition 11.5, page 197] for the case ψ = 0, the only difference being that our trace formula allows us to avoid a tedious proof by induction.

Structure of S a

Consider a = [a 1 , . . . , a n ] ∈ Â, where (a 1 , . . . , a n ) is an element of (Z/nZ) n such that a 1 +• • •+a n = 0. The set of j ∈ Z/nZ such that (a 1 + j, . . . , a n + j) is a permutation of (a 1 , . . . , a n ) is a subgroup of Z/nZ; it can be written as n ′ a Z/nZ for some integer n ′ a ≥ 1 dividing n; let d a = n/n ′ a be the order of this group. These two integers only depend on a and not on the choice of a 1 , . . . , a n . From the definition, we have a σ(i) = a i + n ′ a and, inspecting the orbits of each of the

∈ S n such that a) if 1 ≤ i ≤ n, we have a σ(i) = a i + n ′ a ; b) σ is the product of n ′ a disjoint
a i under b → b + n ′ a , we see that σ is a product of n ′ a disjoint cycles of length d a .
Denote by S ′ a the fixator of (a 1 , . . . , a n ) ∈ (Z/nZ) n in S n ; it is a group which can be identified with b∈Z/nZ S I(b) (it is hence generated by transpositions) and we set γ a = [S n : S ′ a ]. Consider σ ∈ S n satisfying the conditions of the preceding lemma and let Σ a = σ be the cyclic subgroup of order d a of S n generated by σ.

Proposition 4.4. The fixator S a of a = [a 1 , . . . , a n ] ∈ Â can be written as the semi-direct product

S a = S ′ a ⋊ Σ a .
Proof. If s ∈ S a , there exists a unique j ∈ n ′ a Z/nZ such that s (a 1 , . . . , a n ) = (a 1 + j, . . . , a n + j). This element only depends on a, not on the choice of a 1 , . . . , a n ; we denote it by j a (s). The map j a : S a → n ′ a Z/nZ thus defined is a group homomorphism. This homomorphism is surjective and its kernel is the fixator S ′ a of (a 1 , . . . , a n ) ∈ (Z/nZ) n in S n . Moreover, as a σ(i) = a i + n ′ a and thus a σ -1 (i) = a i -n ′ a , we have j a (σ) = -n ′ a by construction, hence j a induces an isomorphism of Σ a = σ onto the image n ′ a Z/nZ of j a , which shows that

S a = S ′ a ⋊ Σ a .
Remarks 4.5. a) In particular, the group S ′ a is a normal subgroup of S a and the quotient group S a /S ′ a is isomorphic to n ′ a Z/nZ and hence of order d a . b) Let us insist on the fact that n ′ a , d a , S ′ a and j a only depend on a and not on the choice of the representative (a 1 , . . . , a n ) ∈ Z/nZ. The group Σ a also only depends on a, but its construction is not canonical as it depends on an arbitrary choice of numbering.

c) Let us also note that if k ∈ (Z/nZ) × , then d ka = d a , n ′ ka = n ′ a , S ′ ka = S ′ a and S ka = S a , but j ka = kj a .

Character values on a transposition τ

Theorem 4.6. For any transposition τ ∈ S n , we have

tr(τ * |H n-2 et (X ψ , Q ℓ ) prim ) = (-1) n (1 -n) n-1 + (n -1) n -δ n , (4.1)
where, as previously, δ n = 0 if n is odd and δ n = 1 if n is even.

Proof. We may assume that τ = (1, 2). We look for the fixed points of τ , i.e. the set of points [x 1 : . . . :

x n ] such that [x 1 : x 2 : x 3 : . . . :

x n ] = [x 2 : x 1 : x 3 : . . . :

x n ] and

x n 1 + • • •+ x n n -nψx 1 . . . x n = 0. For such a point, we have x 2 1 = x 2 2
, so that we are in one of the following two cases. a) We have

x 1 = x 2 and 2x n 2 + x n 3 + • • • + x n n -nψx 2 2 x 3 . . . x n = 0.
The hypersurface of P n-2 defined by this equation is smooth because ψ n = 1 and its Euler-Poincaré characteristic is

(n -2) + 1 n [(1 -n) n-1 + (n -1)] (Theorem 2.2). b) We have x 1 = -x 2 = 0, in which case x 3 = • • • = x n = 0 and x n 1 + x n 2 = 0.
This can only happen if n is odd and [x 1 : . . . :

x n ] = [1 : -1 : 0 : . . . : 0]. The Euler-Poincaré characteristic of the fixed-point subvariety of τ of X ψ is thus χ(X τ ψ ) = (n -2) + (1 -n) n-1 + (n -1) n + 1 -δ n = (n -1) + (1 -n) n-1 + (n -1) n -δ n ,
and consequently, as τ is of order 2 and F q is of characteristic = 2, Theorem 2.6 applies:

tr(τ * |H n-2 et (X ψ , Q ℓ ) prim ) = (-1) n-1 (n -1) -χ(X τ ψ ) = (-1) n (1 -n) n-1 + (n -1) n -δ n .
4.4 Sum of the dimensions of the spaces H a for a ∈ Âτ 

m a = (-1) n-1 (1 -n) n-1 + (n -1) n -δ n ,
where, as previously, δ n = 0 if n is odd and δ n = 1 if n is even.

Proof. We may assume that τ = (1, 2). Denote by

B the set of elements (b 1 , . . . , b n ) ∈ (Z/nZ\{0}) n such that b 1 = b 2 and b 1 +• • •+b n = 0. The map (b 1 , . . . , b n ) → [b 1 , . . . , b n ] from B to
Âτ is surjective and each element a ∈ Âτ has exactly m a elements in its preimage. We thus have a∈ Âτ m a = #B and conclude thanks to the following lemma.

Lemma 4.8. Let r be an integer ≥ 2. The number of r-uples

(b 1 , . . . , b r ) belonging to (Z/nZ \ {0}) r such that b 1 = b 2 and b 1 + • • • + b r = 0 is (-1) r-1 (1 -n) r-1 + (n -1) n -δ n .
Proof. Denote by u r the number we want to compute. We have u 2 = δ n and u r +u r+1 is the number of

(r + 1)-uples (b 1 , . . . , b r , b r+1 ) ∈ (Z/nZ \ {0}) r × Z/nZ such that b 1 = b 2 and b 1 + • • • + b r+1 = 0, that is, u r + u r+1 = (n -1) r-1 .
We deduce the announced result by induction on r.

Action of S ′ a on H a

We start with a general result on automorphisms of finite order with trace equal to the dimension of the space.

Lemma 4.9. Let k be a field of characteristic zero, V a vector space of finite dimension over k and u an automorphism of V of finite order. If tr u = dim V , then u = Id V .

Proof. Let M be the matrix of u in a certain basis of V over k. The subfield k ′ of k generated by the coefficients of M embeds itself in C; we can thus restrict ourselves to the case k = C. Let λ 1 , . . . , λ m (where m = dim V ) be the (complex) eigenvalues of M , each repeated with multiplicity. They are all roots of unity. As we have, according to the assumptions of the lemma,

|λ 1 + • • • + λ m | = |tr u| = m = |λ 1 | + • • • + |λ m |,
the λ i 's are positively proportional, hence equal. As their sum is m, they are all equal to 1. The endomorphism u of V is thus unipotent; as it is of finite order, it is equal to Id V .

Remark 4.10. Let k be a field having characteristic zero, and (V i ) i∈I a finite sequence of vector space of finite dimensions over k. For each i ∈ I, let u i be an automorphism of V i of finite order.

If i∈I tr u i is equal to i∈I dim V i (respectively to -i∈I dim V i ), then u i = Id Vi (respectively u i = -Id Vi )
for all i ∈ I. This results from Lemma 4.9 applied to the automorphism

u of V = i∈I V i which is equal to u i (respectively to -u i ) over V i for all i ∈ I. Let τ ∈ S n be a transposition. As H n-2 et (X ψ , Q ℓ ) prim = a∈ Â H a and as τ * sends H a into Hτ a , we have tr(τ * |H n-2 et (X ψ , Q ℓ ) prim ) = a∈ Âτ tr(τ * |H a ).
By Theorem 4.6 and Proposition 4.7, we also have

tr(τ * |H n-2 et (X ψ , Q ℓ ) prim ) = - a∈ Âτ dim H a .
We thus deduce from Remark 4.10 that, for each a ∈ Âτ , τ * acts on H a by -Id Ha .

Theorem 4.11. Consider a ∈ Â and σ ∈ S ′ a . If we denote by ǫ(σ) the signature of σ, we have

σ * |H a = ǫ(σ) Id H a .
Proof. The subgroup S ′ a of S n is generated by the transpositions τ satisfying τ a = a (see §4.2) and we have just seen that τ * |H a = -Id Ha = ǫ(τ ) Id Ha .

Character values on

Aσ where σ is a product of n ′ disjoint cycles of length d

Let n ′ and d be integers

≥ 1 such that n ′ d = n and let σ ∈ S n be a product of n ′ disjoint cycles of length d. Let ζ 1 , . . . , ζ n be elements of µ n (F q ) such that ζ 1 . . . ζ n = 1 and denote by g the element [ζ 1 , . . . , ζ n ]σ of G = A ⋊ S n . Let O 1 , . . . , O n ′ be the n ′ orbits of σ in {1, . . . , n} and, for each ζ ∈ µ n (F q ), denote by k(ζ) the number of j ∈ {1, . . . , n ′ } such that i∈Oj ζ i = ζ.
The following theorem generalizes Theorem 3.1 (which is recovered by taking d = 1 and n ′ = n i.e. σ = Id).

Theorem 4.12. Under the preceding assumptions,

tr(g * |H n-2 et (X ψ , Q ℓ ) prim ) = (-1) n n ′ ζ∈µ n ′ (Fq) (1 -n) k(ζ) .
Proof. We may assume that σ is the product of ((j -1)d + 1, . . . , jd) for 1 ≤ j ≤ n ′ and that O j = {(j -1)d + 1, . . . , jd}. The fixed points of g in X ψ (F q ) are the points [x 1 : . . . :

x n ] of X ψ (F q ) such that [ζ σ -1 (1) x σ -1 (1) : . . . : ζ σ -1 (n) x σ -1 (n) ] = [x 1 : . . . : x n ] i.e. [ζ 1 x 1 : . . . : ζ n x n ] = [x σ(1) : . . . : x σ(n) ].
The subscheme X g ψ of these fixed points is thus the disjoint union, over λ ∈ F * q , of the closed subschemes Y λ of X ψ defined by

(Y λ ) x n 1 + • • • + x n n -nψx 1 . . . x n = 0, x σ(i) = λζ i x i for 1 ≤ i ≤ n. Let j ∈ {1, . . . , n ′ }. If i∈Oj ζ i = λ -d , the second relation shows that x i = 0 for all i ∈ O j . If i∈Oj ζ i = λ -d , we have λ ∈ µ nd (F q ) and the second relation shows that i∈Oj x n i = x n jd d i=1 (λ n ) i = dx n jd if λ ∈ µ n (F q ), 0 if λ / ∈ µ n (F q ). Consider λ ∈ F * q and let ζ = λ -d (as n = n ′ d, we have ζ n ′ = 1 ⇐⇒ λ n = 1). Denote by J the set of j ∈ {1, . . . , n ′ } such that i∈Oj ζ i = ζ and let y j = x jd for each j ∈ J. If ζ / ∈ µ n (F q ), J is empty and hence Y λ is empty. Assume now that ζ ∈ µ n (F q ). The number of elements of J is k(ζ).
We consider two cases.

a) First case: ζ ∈ µ n ′ (F q ).
According to what we have just done, the scheme Y λ is isomorphic to the hypersurface of P

k(ζ)-1 Fq defined by d j∈J y n j = 0 if J = {1, . . . , n ′ }, d(y n 1 + • • • + y n n ′ ) -nψ ′ y d 1 . . . y d n ′ = 0 if J = {1, . . . , n ′ },
where ψ ′ is the product of ψ by an element of µ n (F q ). This hypersurface is smooth (because, in the second case, we have (ψ ′ ) n = ψ n = 1 and thus (ψ ′ ) n ′ = 1), hence, by Theorem 2.2 page 3, we have

χ(Y λ ) = k(ζ) -1 + (1 -n) k(ζ) + (n -1) n = k(ζ) + (1 -n) k(ζ) -1 n . b) Second case: ζ ∈ µ n (F q ) \ µ n ′ (F q ). This time, the scheme Y λ is isomorphic to P k(ζ)-1 Fq if J = {1, . . . , n ′ } and to the hypersurface of P n ′ -1 Fq defined by (y 1 . . . y n ′ ) d = 0 if J = {1, . . . , n ′ }.
In the first case, we have χ(Y λ ) = k(ζ). In the second case, we necessarily have n ′ ≥ 2 and the Euler-Poincaré characteristic of Y λ is equal to that of Y red λ , which is the union in P n ′ -1

Fq of the hyperplanes defined by y j = 0, hence

χ(Y λ ) = L⊂{1,...,n ′ } L =∅ (-1) #L-1 (n ′ -#L) = n ′ l=1 (-1) l-1 n ′ l (n ′ -l) = n ′ n ′ -1 l=1 (-1) l-1 n ′ -1 l = n ′ (1 -(1 + (-1)) n ′ -1 ) = n ′ = k(ζ).
For each ζ ∈ µ n (F q ), there exists exactly d values of λ such that λ

-d = ζ. Thus χ(X g ψ ) = λ∈F * q χ(Y λ ) = d ζ∈µ n (Fq) k(ζ) + d ζ∈µ n ′ (Fq) (1 -n) k(ζ) -1 n = dn ′ + ζ∈µ n ′ (Fq) (1 -n) k(ζ) -1 n ′ = n -1 + ζ∈µ n ′ (Fq) (1 -n) k(ζ) n ′ .
The order of g divides nd and hence is prime to q; thus, by Theorem 2.6, tr(g

* |H n-2 et (X ψ , Q ℓ ) prim ) = (-1) n-1 (n -1) -χ(X g ψ ) = (-1) n n ′ ζ∈µ n ′ (Fq) (1 -n) k(ζ) .
4.7 Trace of a product σ of n ′ disjoint cycles of length d acting on H a when a ∈ Âσ

We keep the notations of §4.6.

Lemma 4.13. If σ ∈ S n is a product of n ′ disjoint cycles of length d, a∈ Â such that σ∈S ā′ a(ζ 1 , . . . , ζ n )m a = (-1) n ′ n ′ ζ∈µ n ′ (Fq) (1 -n) k(ζ) . Proof. Denote by B the set of (b 1 , . . . , b n ) ∈ ((Z/nZ) \ {0}) n such that b 1 + • • • + b n = 0 and σ (b 1 , . . . , b n ) = (b 1 , . . . , b n ). The image of the map B → Â, (b 1 , . . . , b n ) → [b 1 , . . . , b n ] is the set of a ∈ Â such that σ ∈ S ′ a ;
such an element a has exactly m a elements in its preimage. The sum we must compute can hence be rewritten as

(b1,...,bn)∈B ζ b1 1 . . . ζ bn n . If (b 1 , . . . , b n ) ∈ B, all the b i , for i belonging to an orbit O j of σ, are equal to a common c j ∈ (Z/nZ) \ {0} and we have d(c 1 + . . . c n ′ ) = 0 in Z/nZ i.e. c 1 + • • • + c n ′ ∈ n ′ Z/nZ. Our sum can thus be rewritten as c1,...,c n ′ ∈(Z/nZ)\{0} c1+•••+c n ′ ∈n ′ Z/nZ µ c1 1 . . . µ c n ′ n ′ ,
where µ j = i∈Oj ζ i . We conclude by using the following generalization of Lemma 3.4 (which is recovered by taking d = 1 and n ′ = n i.e. σ = Id).

Lemma 4.14. Let r be an integer ≥ 1 and µ 1 , . . . , µ r elements of µ n (F q ). For each ζ ∈ µ n (F q ), we denote by k(ζ) the number of j ∈ {1, . . . , r} such that µ j = ζ. We have

c1,...,cr∈(Z/nZ)\{0} c1+•••+cr∈n ′ Z/nZ µ c1 1 . . . µ cr r = (-1) r n ′ ζ∈µ n ′ (Fq) (1 -n) k(ζ) .
Proof. We prove the result by induction on r. For r = 1, we have

c1∈n ′ Z/nZ\{0} µ c1 1 = d -1 = -1 n ′ ((1 -n) 1 + (n ′ -1)(1 -n) 0 ) if µ 1 ∈ µ n ′ (F q ), -1 = -1 n ′ (n ′ (1 -n) 0 ) if µ 1 / ∈ µ n ′ (F q ),
hence the result in that case. Assume now that r ≥ 2 and that the result is proved for r -1. We write

c1,...,cr∈(Z/nZ)\{0} c1+•••+cr ∈n ′ Z/nZ µ c1 1 . . . µ cr r + c1,...,cr-1∈(Z/nZ)\{0} c1+•••+cr-1∈n ′ Z/nZ µ c1 1 . . . µ cr-1 r-1 = c1,...,cr-1∈(Z/nZ)\{0} cr∈Z/nZ c1+•••+cr∈n ′ Z/nZ µ c1 1 . . . µ cr r = c1,...,cr-1∈(Z/nZ)\{0} l∈n ′ Z/nZ µ c1 1 . . . µ cr-1 r-1 µ l-c1-•••-cr-1 r = c1,...,cr-1∈(Z/nZ)\{0} µ 1 µ r c1 . . . µ r-1 µ r cr-1 l∈n ′ Z/nZ µ l r .
The sum l∈n ′ Z/nZ µ l r is equal to d if µ r ∈ µ n ′ (F q ) and to 0 otherwise whereas ci∈(Z/nZ)\{0} ( µi µr ) ci is equal to n -1 if µ i = µ r and to -1 otherwise. The product of all these sums is thus equal to (-1) r-1 d(1 -n) k(µr )-1 if µ r ∈ µ n ′ (F q ) and to 0 otherwise.

Taking into account the induction assumption, we obtain

c1,...,cr∈(Z/nZ)\{0} c1+•••+cr∈n ′ Z/nZ µ c1 1 . . . µ cr r = ζ∈µ n ′ (Fq) ζ =µr (-1) r (1 -n) k(ζ) n ′ + ζ∈µ n ′ (Fq) ζ=µr (-1) r (1 -n) k(ζ)-1 n ′ -d(-1) r (1 -n) k(ζ)-1 = (-1) r n ′ ζ∈µ n ′ (Fq) (1 -n) k(ζ) . Theorem 4.15. If σ is a product of n ′ disjoint cycles of length d and if a ∈ Âσ , then tr(σ * |H a ) = (-1) n-n ′ m a if σ ∈ S ′ a , 0 if σ ∈ S a \ S ′ a . Proof. As H n-2 et (X ψ , Q ℓ ) prim = a∈ Â H a and as σ * sends H a into Hσ a , we have, for each (ζ 1 , . . . , ζ n ) ∈ µ n (F q ) n satisfying ζ 1 . . . ζ n = 1, tr(([ζ 1 , . . . , ζ n ]σ) * |H n-2 et (X ψ , Q ℓ ) prim ) = a∈ Âσ a(ζ 1 , . . . , ζ n ) tr(σ * |H a ).
Moreover, by Theorem 4.12 and Lemma 4.13,

a∈ Â such that σ∈S ′ a (-1) n-n ′ m a a(ζ 1 , . . . , ζ n ) = a∈ Âσ tr(σ * |H a ) a(ζ 1 , . . . , ζ n )
As this is valid for all (ζ 1 , . . . , ζ n ) ∈ µ n (F q ) n satisfying ζ 1 . . . ζ n = 1, we may identify the coefficients, which gives the announced result.

Action of S a on H a

Let's recapitulate the results of § §4.3-4.7. We keep the notations of §4.2: a = [a 1 , . . . , a n ] is an element of Â, n ′ a Z/nZ is the set of j ∈ Z/nZ such that (a 1 + j, . . . , a n + j) is a permutation of (a 1 , . . . , a n ) and d a = n/n ′ a ; the fixator S a of a in S n can be written as

S a = S ′ a ⋊ Σ a
where S ′ a is the fixator of (a 1 , . . . , a n ) in S n , and Σ a = σ is a cyclic group of order d a , with σ a product of n ′ a disjoint cycles of length d a . The dimension m a of H a is, by Theorem 3.3, equal to #(Z/nZ \ {a 1 , . . . , a n }). It is a multiple of d a as {a 1 , . . . , a n } is stable by translation by elements of n ′ a Z/nZ; we can thus write m a = d a m ′ a .

Theorem 4.16. The group S a acts on H a as follows:

• an element s ∈ S ′ a acts by ǫ(s) Id Ha ;

• an element s ∈ Σ a acts by m ′ a copies of the regular representation of Σ a .

Proof. The first assertion results from Theorem 4.11 and the second from Theorem 4.15: the trace of σ i acting on H a is zero if 1 ≤ i ≤ n -1 and equal to m a = dim H a if i = 0 (note that (-1) n-n ′ a = 1 since both n and n ′ a are odd), hence Σ a acts as m ′ a = m a /d a copies of the regular representation.

This completely determines the structure of the Q ℓ [S a ]-module H a . From the considerations of §4.1, we deduce the structure of the

Q ℓ [G]-module H n-2 et (X ψ , Q ℓ ) prim : H n-2 et (X ψ , Q ℓ ) prim ≃ a∈R Ind G A⋊Sa (a ⊗ ǫ ⊗ reg m ′ a Sa/S ′ a ), (4.2) 
where reg Sa/S ′ a is the regular representation of S a /S ′ a (let us recall that R ⊂ Â is a set of representative elements of S n \ Â; see §4.1).

Action of

G on H n-2 et (X ψ , Q ℓ ) prim
We begin by giving a canonical construction of cyclotomic fields and characters attached to cyclic groups.

The cyclotomic field attached to a cyclic group

Let C be a cyclic group of order m ≥ 1. Denote by

Q[C] the group algebra of C over Q and by m C the ideal of Q[C] generated by the sums x∈C ′ [x] for C ′ a subgroup = {1} of C. Theorem 5.1. The ideal m C of Q[C] is maximal and the field K C = Q[C]/m C is isomorphic to the cyclotomic field Q(µ m ) of m th roots of unity.
Proof. We may assume that C = Z/mZ so that the algebra

Q[C] can be identified with Q[X]/(X m - 1)Q[X]. We have X m -1 = d|m Φ d , where Φ d is the d th cyclotomic polynomial. The polynomials Φ d are paiwise prime in Q[X].
From the chinese remainder theorem, we deduce that Q

[X]/(X m - 1)Q[X] is isomorphic to d|m Q[X]/Φ d Q[X]
. We now proceed to show that m C is the kernel of the projection φ :

Q[X]/(X m -1)Q[X] → Q[X]/Φ m Q[X]
. Let d = m be an integer dividing m and C d = dZ/mZ the unique subgroup of C with index d; the element

x∈C d [x] of Q[C] has projection 0 on Q[X]/Φ m Q[X] and projection = 0 (equal to m/d) on Q[X]/Φ d Q[X]
, which shows the result.

The field K C is called the cyclotomic field attached to the cyclic group C. The compound map Let C 1 and C 2 be two cyclic groups of same order m and φ : Denote by n a the order of a in the group Â; it only depends on ā and not on a. If m is an integer, we have ma = 0 if and only if all the ma i are equal, i.e. if and only if m(a i -a i ′ ) = 0 for all i and i ′ between 1 and n. The subgroup of Z/nZ generated by the elements a i -a i ′ only depends on ā and not on a or on the choice of a 1 , . . . , a n ; it can be written as f a Z/nZ where f a divides n and its order is n a , hence n = n a f a . The integer f a only depends on ā, not on a.

C → Q[C] → K C = Q[C]/m C is a canonical character χ C of C
C 1 → C 2 and isomorphism of C 1 onto C 2 . The homomorphism Q[C 1 ] → Q[C 2 ] extending φ factors as an isomorphism K φ : K C1 → K C2 and we have K φ • χ C1 = χ C2 • φ, i.e. the following diagram is commutative C 1 φ ----→ C 2 χC 1     χC 2 K C1 K φ ----→ K C2 5.2 The simple Q[A]-
Following §3.1, we identify the group  to the group of characters of A taking values in F q , the element a ∈  corresponding to the character [ζ 1 , . . . , ζ n ] → ζ a1 1 . . . ζ an n . If N a and E a denote the kernel and the image of this character, E a ≃ A/N a is a cyclic subgroup of order n a . Let us note that E a and N a only depend on ā, not on a.

Denote by K a the cyclotomic field attached to the cyclic group E a (see §5.1) and χ a the compound character

A ։ A/N a ∼ → E a ֒→ K a ,
where the third arrow is the canonical character of E a from §5.1.

Remarks 5.3. a) Consider k ∈ (Z/nZ) × . We have ka = a if and only if k ≡ 1 mod n a Z.

b) The cyclotomic field K a only depends on ā and not on a, but χ ka = χ k a .

Proposition 5.4. The character χ a defines a structure of simple Q[A]-module on K a whose endomorphism ring is canonically isomorphic to the field K a .

5.3

The stabilizer S ā in S n of an element ā ∈ (Z/nZ) × \ Â

The group S n acts on  by σ [a 1 , . . . , a n ] = [a σ -1 (1) , . . . , a σ -1 (n) ]. This action commutes to that of (Z/nZ) × and factors as an action of S n on (Z/nZ) × \ Â. We designate by S ā the fixator of ā in S n . If σ ∈ S ā, there exists a unique k ∈ (Z/n a Z) × such that σ a = ka; we denote it by k a (σ). The map k a : S ā → (Z/n a Z) × defined in that way is a group homomorphism which is not surjective in general2 . Its kernel is the group S a from §4.2; in particular, S a is a normal subgroup of S ā. Let us note that the map k a only depends on ā, not on a.

From the definition of n ′ a , there is an i such that a 1 = a i + n ′ a , i.e. n ′ a = a 1 -a i ∈ f a Z/nZ. Thus, there is an integer e a such that n ′ a = e a f a and we have n = d a e a f a and n a = d a e a . The integer e a only depends on ā, not on a.

Theorem 5.5. The image of the homomorphism k a : S ā → (Z/n a Z) × contains the elements of (Z/n a Z) × which are ≡ 1 mod e a and is thus the preimage of a subgroup of (Z/e a Z) × by the canonical surjection (Z/n a Z) × → (Z/e a Z) × .

Proof. Given k ∈ (Z/nZ) × such that k ≡ 1 mod e a , we must find a permutation σ ∈ S n such that σ a = ka. We only need to show that there exists j such that, for all b ∈ Z/nZ, the sets I(kb + j) and I(b) have the same number of elements. The following lemma shows that we may take j = -ka 1 + a 1 .

Lemma 5.6. If k ≡ 1 mod e a , then, for all b ∈ Z/nZ, I(kb -ka 1 + a 1 ) has the same number of elements as I(b).

Proof. Consider b ∈ Z/nZ. Suppose that b ≡ a 1 mod f a , so that (kb -ka 1 + a 1 )-b = (k -1)(b -a 1 ) is a multiple of e a f a = n ′
a and thus kb -ka 1 + a 1 ≡ b mod n ′ a ; by Remark 4.2, this implies that I(kb -ka 1 + a 1 ) has the same number of elements as I(b).

Suppose now that b ≡ a 1 mod f a (and thus I(b) = ∅); in that case, kb -ka 1 is non zero mod f a and so, from the definition of f a , kb -ka 1 + a 1 is not one of the a i 's, which shows that I(kb -ka 1 + a 1 ) is empty.

We now determine the structure of S ā. Let us recall (see Remark 4.5) that S ′ a and S a depend only on ā, not on a.

Theorem 5.7. The group S ′ a is a normal subgroup of S ā and the following short exact sequence splits 1 → S ′ a → S ā → S ā/S ′ a → 1. Proof. From the definition of f a , it is possible to choose the representative (a 1 , . . . , a n ) of a in (Z/nZ) n such that each a i is a multiple of f a ; because f a n a = n, the elements wa i and wf a , where w ∈ (Z/n a Z) × , are well-defined in Z/nZ. If σ ∈ S ā, there is a unique pair (u σ , v σ ) ∈ Z/n a Z × (Z/n a Z) × such that, for all i, we have a σ(i) = v σ a i + u σ f a . The uniqueness of v σ comes from the fact that, as we have already seen (Remark 5.3), a k such that ka = σ a is defined mod n a and the uniqueness of u σ comes from the fact that u σ f a is unique mod n.

The map φ : σ → (u σ , v σ ) is a group homomorphism from S ā to Z/n a Z ⋊ (Z/n a Z) × (the group law being (u, v)(u ′ , v ′ ) = (u + vu ′ , vv ′ )); its kernel is S ′ a which is thus a normal subgroup of S ā. For each b ∈ Z/nZ, we choose a numbering i 1 (b), . . . , i #I(b) (b) of the elements of I(b). Given (u, v) ∈ φ(S ā), if I(b) is non-empty, then b is a multiple of f a (by assumption) and I(b) has the same number of elements than I(vb + uf a ) as a σ(i) = va i + uf a for all σ ∈ S ā satisfying φ(σ) = (u, v). Thus, there is a permutation σ u,v ∈ S n sending i l (b) on i l (vb + uf a ) for all b ∈ Z/nZ and 1 ≤ l ≤ #I(b). From its definition, this permutation belongs to S ā and φ(σ u,v ) = (u, v). Moreover, the map (u, v) → σ u,v is a group homomorphism since we have

v ′ (vb + uf a ) + u ′ f a = (v ′ v)b + (u ′ + v ′ u)f a .
This shows that (u, v) → σ u,v is a splitting map for φ and thus the short exact sequence 1 → S ′ a → S ā → S ā/S ′ a → 1 splits.

Remarks 5.8. a) Even though S a is a normal subgroup of S ā, the exact short sequence 1 → S a → S ā → S ā/S a → 1 does not always splits. Indeed, consider the case n = 24 and the sequence (a 1 , . . . , a 24 ) with four times each of the numbers 0, 2, 12, 14 and two times each of the numbers 1, 7, 13, 19; we have n a = 24, but, even though 5 is of order 2 in (Z/24Z) × , the only elements (u, v) of the image of φ such that v = 5 are (2, 5) and (14, 5) which are of order 4. b) When σ ∈ S a , we have v σ = 1 and u σ ∈ e a Z/n a Z; indeed, if σ ∈ S a , then v σ = 1 and so a σ(i) -a i = u σ f a ; thus, from the definition of n ′ a , u σ f a is a multiple of n ′ a = e a f a and hence u σ is a multiple of e a . c) With the notations of §4.2, we have, for all s ∈ S a , j a (s) = f a u s . More precisely, j a : S a → n ′ a Z/nZ is the compound of the homomorphism σ → u s sending S a into e a Z/n a Z and of the isomorphism of e a Z/n a Z onto n ′ a Z/nZ deduced from the multiplication by f a .

Construction of Q[G]

-modules and study of their extension of scalars to Q ℓ

The aim of this §5.4 is to construct Q[G]-modules which, after extension of scalars to Q ℓ , will give back the representations considered in §4.

Before we begin, let us recall that the field K a only depends on ā, not on a, but that χ ka = χ k a (see Remark 5.3). If v ∈ (Z/n a Z) × , we denote by θ v the automorphism of the field K a sending every n a th root of unity onto its v th power. Consider a ∈ Â; we choose a representative (a 1 , . . . , a n ) ∈ (Z/nZ) n of a such that the a i are all multiple of f a and continue to use the notations of §5.3 concerning the integers u σ and v σ .

Proposition 5.9. If ω is a n a th root of unity in K a , the following map defines a representation of

A ⋊ S ā into K a µ a,ω : A ⋊ S ā → End Q (K a ) (ζ, σ) → χ a (ζ)ǫ(σ)ω uσ θ vσ
Let M a,ω be the Q[A ⋊ S ā]-module K a thus defined. It has rank φ(n a ) (where φ is Euler's totient function), and, up to isomorphism, it is independent of the choice of the representative (a 1 , . . . , a n ) of a such that each a i is divisible by f a .

Proof. Let us first check that µ a,ω is a group homomorphism. We have

µ a,ω (ζ, σ)µ a,ω (ζ ′ , σ ′ ) = χ a (ζ)ǫ(σ)ω uσ θ vσ χ a (ζ ′ )ǫ(σ ′ )ω u σ ′ θ v σ ′ = χ a (ζ)χ a (ζ ′ ) vσ ǫ(σ)ǫ(σ ′ )ω uσ +u σ ′ vσ θ vσv σ ′ , and 
µ a,ω ((ζ, σ)(ζ ′ , σ ′ )) = µ a,ω (ζ σ ζ ′ , σσ ′ ) = χ a (ζ σ ζ ′ )ǫ(σσ ′ )ω uσ +vσ u σ ′ θ vσ v σ ′ = χ a (ζ)χ a ( σ ζ ′ )ǫ(σ)ǫ(σ ′ )ω uσ+vσ u σ ′ θ vσ v σ ′ .
To prove these two quantities are equal, we need to show that χ a (

σ ζ ′ ) = χ a (ζ ′ ) vσ : χ a ( σ ζ ′ ) = χ σ -1 a (ζ ′ ) = χ vσ a (ζ ′ ) = χ a (ζ ′ ) vσ .
We now proceed to show that µ a,ω does not depends, up to isomorphism, on the choice of the representative (a 1 , . . . , a n ) of a such that each a i is a multiple of f a . If (a ′ 1 , . . . , a ′ n ) is another representative, there exists j such that a ′ i = a i + jf a for all i, and so

a ′ σ(i) = a σ(i) + jf a = v σ a i + u σ f a + jf a = v σ a ′ i + (u σ + j(1 -v σ ))f a . Thus, v ′ σ = v σ and u ′ σ = u σ + j(1 -v σ ), hence µ ′ a,ω (ζ, σ) = χ a (ζ)ǫ(σ)ω uσ +j(1-vσ ) θ vσ = ω j µ a,ω (ζ, σ) ω -j .
We now study the extension of scalars M a,ω ⊗ Q Q ℓ . We use the isomorphism t from §3.1 between µ n (F q ) and µ n (Q ℓ ); there exists a unique embedding ι a of K a in Q ℓ such that the following diagram is commutative:

E a ֒---→ µ n (F q ) t ֒---→ µ n (Q ℓ ) ֒--→ E a ֒---→ K a ֒---→ ιa Q ℓ .
This embedding only depends on ā, not on a. Moreover, if we identify a ∈ Â to a character A → µ n (F q ), the following diagram is commutative:

A a ֒---→ µ n (F q ) t ֒---→ µ n (Q ℓ ) ֒--→ A ֒---→ χa K a ֒---→ ιa Q ℓ .
In the remainder of this §5.4, we identify K a to the subfield ι a (K a ) of Q ℓ thanks to ι a . With this identification, we have an isomorphism

δ : K a ⊗ Q Q ℓ ∼ → Q (Z/naZ) × ℓ k ⊗ λ → (θ v (k)λ) v∈(Z/naZ) × Because k ⊗ λ µa,ω (ζ,σ)⊗Id Q ℓ ----------→ χ a (ζ)ǫ(σ)ω uσ θ vσ (k) ⊗ λ δ ----------→ (χ a (ζ) v ǫ(σ)ω vuσ θ vvσ (k)λ) v∈(Z/naZ) × , the endomorphism of Q (Z/naZ) × ℓ deduced from µ a,ω (ζ, σ) ⊗ Id Q ℓ by the isomorphism δ is given by (x v ) v∈(Z/naZ) × → (χ va (ζ)ǫ(σ)ω vuσ x vvσ ) v∈(Z/naZ) × .
(5.1)

Proposition 5.10. Let u a be the homomorphism σ → u σ of S a into e a Z/n a Z; it does not depend on the choice of the representative (a 1 , . . . , a n ) of a and we have u ka = ku a for all k ∈ (Z/n a Z) × (see Remarks 5.8.c and 4.5.c)

. The Q ℓ [A ⋊ S ā]-module M a,ω ⊗ Q Q ℓ is isomorphic to k∈(Z/naZ) × / Im ka Ind A⋊Sā A⋊Sa (ka ⊗ ǫ ⊗ ω u ka ).
Proof. Formula (5.1) above shows that the isotypic components of the

Q ℓ [A]-module M a,ω ⊗ Q Q ℓ are of the form ka for k ∈ (Z/n a Z) × (as in §3.
1, we identify a to a character taking values in Q ℓ ); each of these isotypic components is a direct sum of representations of dimension 1 isomorphic to ka.

Let's now determine the action of the group S a . As S ka = S a for all k ∈ (Z/nZ) × , the group S a stablizes each one-dimensional piece isomorphic to ka of the Q ℓ [A]-module M a,ω ⊗ Q Q ℓ and, by Formula (5.1), S a acts on a piece isomorphic to ka by multiplication by ǫ(σ)ω kuσ = ǫ(σ)ω u ka .

This shows that the

Q ℓ [A ⋊ S a ]-module M a,ω ⊗ Q Q ℓ is isomorphic to k∈(Z/naZ) × (ka ⊗ ǫ ⊗ ω u ka ).
(5.2)

From Formula (5.1) and the fact that S ā/S a = Im k a = {v σ | σ ∈ S ā}, we have the following isomorphism of Q ℓ [A ⋊ S ā]-modules:

k∈Im ka (ka ⊗ ǫ ⊗ ω u ka ) ≃ Ind A⋊Sā A⋊Sa (a ⊗ ǫ ⊗ ω ua ).
From this, we get the announced result.

We deduce the following three corollaries.

Corollary 5.11. Up to isomorphism, M a,ω only depends on the d a th root of unity ω ea . More precisely, M a,ω ≃ M a ′ ,ω ′ ⇐⇒ a ′ ∈ (Z/nZ) × a and ω ea = ω ′ea .

Proof. As two representations isomorphic after extension of scalars are also isomorphic before (see [Curtis and Reiner, 1962, Theorem 29.7, page 200]), we only have to show the result for M a,ω ⊗ Q Q ℓ .

From Formula (5.2), we have

M a,ω ⊗ Q Q ℓ | A ≃ k∈(Z/naZ) × ka, which shows that, if M a,ω ⊗ Q Q ℓ ≃ M a ′ ,ω ′ ⊗ Q Q ℓ , then a ′ ∈ (Z/nZ) × a.
Let us now assume that a ′ ∈ (Z/nZ) × a so that e a = e a ′ . Recall (see Remark 5.8.b as well as the proof of Proposition 4.4) that u a is a surjection of S a onto e a Z/n a Z with u ka = ku a . By Formula (5.2), we have

M a,ω ⊗ Q Q ℓ | Sa ≃ ǫ ⊗ k∈(Z/naZ) × ω kua , hence, if M a,ω ⊗ Q Q ℓ ≃ M a ′ ,ω ′ ⊗ Q Q ℓ , we have {ω kua | k ∈ (Z/n a Z) × } = {ω ′kua | k ∈ (Z/n a Z) × }
and so there exists κ ∈ (Z/n a Z) × such that ω ea = ω ′κea . Conversely, we assume that a ′ ∈ (Z/nZ) × a and that there exists κ ∈ (Z/n a Z) × such that ω ea = ω ′κea and prove that M a,ω

⊗ Q Q ℓ ≃ M a ′ ,ω ′ ⊗ Q Q ℓ if and only if κ = 1. We write a ′ = k ′ a so that we have an isomorphism of Q ℓ [A ⋊ S a ]-modules M a ′ ,ω ′ ⊗ Q Q ℓ ≃ k∈(Z/naZ) × (kk ′ a ⊗ ǫ ⊗ ω ′u kk ′ a ) = k∈(Z/naZ) × (κka ⊗ ǫ ⊗ ω ′u κka ) = k∈(Z/naZ) × (κka ⊗ ǫ ⊗ ω u ka ). This shows that M a ′ ,ω ′ ⊗ Q Q ℓ ≃ M a,ω ⊗ Q Q ℓ implies κ = 1. Conversely, if κ = 1, the isomorphism from Proposition 5.10 shows that M a ′ ,ω ′ ⊗ Q Q ℓ ≃ k∈(Z/naZ) × / Im ka Ind A⋊Sā A⋊Sa (kk ′ a ⊗ ǫ ⊗ ω u kk ′ a ) ≃ k∈(Z/naZ) × / Im ka Ind A⋊Sā A⋊Sa (ka ⊗ ǫ ⊗ ω u ka ) ≃ M a,ω ⊗ Q Q ℓ .
Corollary 5.12. For each d a th root of unity η ∈ K a , we denote by ω(η) ∈ K a a n a th root of unity satisfying ω(η) ea = η. We have an isomorphism of

Q ℓ [A ⋊ S ā]-modules η∈µ da (Ka) M a,ω(η) ⊗ Q Q ℓ ≃ k∈(Z/naZ) × / Im ka Ind A⋊Sā A⋊Sa (ka ⊗ ǫ ⊗ reg Sa/S ′ a ).
Proof. According to the previous proposition, we only have to check that, for all k ∈ (Z/n a Z) × , η∈µ da (Ka) ω(η) u ka = reg Sa/S ′ a .

From Remark 5.8.b, we may write u a = e a u ′ a where u ′ a :

S a → Z/d a Z is a group homomorphism. We have u ′ a (σ) = 0 ⇐⇒ u a (σ) = 0 ⇐⇒ σ ∈ S ′ a as j a = -f a u a (Remark 5.8.c). Consequently, if σ ∈ S a , η∈µ da (Ka) ω(η) u ka (σ) = η∈µ da (Ka) ω(η) kua (σ) = η∈µ da (Ka) η ku ′ a (σ) = d a if σ ∈ S ′ a , 0
otherwise, which proves the announced result.

Corollary 5.13. We keep the notations of the previous corollary. We have an isomorphism of

Q ℓ [G]-modules H n-2 et (X ψ , Q ℓ ) prim ≃ a∈(Z/nZ) × ×Sn\ Â m ′ a Ind G A⋊Sā η∈µ da (Ka) M a,ω(η) ⊗ Q Q ℓ .
Proof. As a consequence of the previous corollary and of the results of §4.8, we have

H n-2 et (X ψ , Q ℓ ) prim ≃ a∈(Z/nZ) × ×Sn\ Â m ′ a Ind G A⋊Sā η∈µ da (Ka) M a,ω(η) ⊗ Q Q ℓ .
We deduce the announced result over Q ℓ thanks to the same argument as in Corollary 5.11: two representations isomorphic after extension of scalars are also isomorphic before.

Endomorphism rings of the representations

Denote by W a,ω the Q[G]-module Ind G A⋊Sā M a,ω ; the aim of this §5.5 is to show that it is a simple module and identify its endomorphism ring.

Theorem 5.14. The Q[G]-module W a,ω is simple. Moreover, if we identify the group Gal(K a /Q) with (Z/n a Z) × , the endomorphism ring of W a,ω identifies with the unique subfield D a of K a such that Gal(K a /D a ) = Im k a . That is to say, D a is the subfield of K a consisting of the elements fixed by all the θ vσ for σ ∈ S ā. In particular, D a is commutative.

Proof. Since a Q[G]-module is simple if and only if its endomorphism ring is a division ring, we only need to show the second assertion.

We have W a,ω = Ind G A⋊Sā M a,ω where M a,ω is just K a with the structure of Q[A ⋊ S ā]-module given by the representation µ a,ω . We may write W a,ω = s∈Sn/Sā sM a,ω . From the definition of S ā, each sM a,ω is stable by A and the Q[A]-modules sM a,ω are disjoint. Consequently, the endomorphism ring of W a,ω stabilizes M a,ω and u → u| Ma,ω defines an isomorphism between the endomorphism ring of W a,ω and the endomorphism ring of the Q[A ⋊ S ā]-module M a,ω .

We now need to show that the endomorphism ring of the Q[A⋊S ā]-module M a,ω is the subfield of K a fixed by all the θ vσ for σ ∈ S ā. The endomorphism ring of the Q

[A]-module M a,ω is canonically isomorphic to K a via x → (λ → xλ) since the Q[A]-module M a,ω is K a .
We deduce that the endomorphism ring of the Q[A ⋊ S ā]-module M a,ω is the subfield of K a consisting of the elements x such that λ → xλ commutes with each µ a,ω (ζ, σ) i.e. with each θ vσ . Because λ → xλ commutes with θ vσ if and only if θ vσ (x) = x, the ring D a = End Q[G] (W a,ω , W a,ω ) is the subfield of K a fixed by each θ vσ for σ ∈ S ā.

Remarks 5.15.

a) The field D a is independent of the choice of ω.

b) The field D a has dimension φ(na) #Im ka over Q. When (Z/n a Z) × is cyclic (e.g. when n is prime and n a = n), this dimension characterizes D a . c) As (Z/e a Z) × ⊂ Im k a , we have D a ⊂ K ′ a where K ′ a is the subfield of K a generated by the e a th roots of unity. In general, D a = K ′ a as we may see by taking n = 5 and a = [0, 0, 1, 1, 3]: we have n a = e a = 5 and so [0, 0, 0, 0, 0, 0, 0], [0, 1, 2, 3, 4, 5, Q

K a = K ′ a = Q(µ 5 ) whereas D a = Q( √ 5 
[0, 0, 0, 0, 1, 2, 4], [0, 0, 1, 1, 3, 3, 6] Q( √ -7) [0, 0, 0, 0, 0, 1, 6], [0, 0, 0, 1, 1, 1, 4] [0, 0, 0, 1, 1, 6, 6], [0, 0, 0, 1, 2, 5, 6] Q(µ 7 ) + [0, 0, 1, 1, 3, 4, 5], [0, 0, 1, 1, 2, 4, 6] 
[0, 0, 0, 0, 1, 1, 5], [0, 0, 0, 1, 1, 2, 3] Q(µ 7 )

Theorem 5.17. We have

W a,ω ≃ W a ′ ,ω ′ ⇐⇒ a ∈ ((Z/nZ) × × S n )a ′ and ω ea = ω ′ea .
Proof. As two representations isomorphic after extension of scalars are also isomorphic before (see [Curtis and Reiner, 1962, Theorem 29.7, page 200]), we only need to show the result for W a,ω ⊗ Q Q ℓ . Following Proposition 5.10, we have

W a,ω ⊗ Q Q ℓ = s∈Sn/Sā sM a,ω ⊗ Q ℓ ≃ s∈Sn/Sā s k∈(Z/naZ) × (ka ⊗ ǫ ⊗ ω u ka ) .
If a and a ′ are the same mod the action of (Z/nZ) × × S n , this formula shows that W a,ω ⊗ Q ℓ and W a ′ ,ω ′ ⊗ Q ℓ are not isomorphic.

If a ∈ ((Z/nZ) × × S n )a ′ , as the group A ⋊ S ā stabilizes each copy of sM a,ω an thus stabilizes M a,ω , we deduce, thanks to Corollary 5.11, that if

ω ea = ω ′ea , then W a,ω ⊗ Q ℓ and W a ′ ,ω ′ ⊗ Q ℓ are not isomorphic. Finally, if a ∈ ((Z/nZ) × × S n )a ′ and ω ea = ω ′ea , then the previous formula shows that W a,ω ⊗ Q ℓ ≃ W a ′ ,ω ′ ⊗ Q ℓ .

Consequence for the factorization of the zeta function

The aim of this §6 is to show that H n-2 et (X ψ , Q ℓ ) prim is a direct sum of subspaces stable by the Frobenius and to deduce a factorization of the zeta function of X ψ . The idea of using this method comes from [Hulek et al., 2006, §6.2].

The subspaces we consider are the isotypic components of the Q[G]-module H n-2 et (X ψ , Q ℓ ) prim ; after describing them in §6.1, we study in §6.2 how the Frobenius acts on them and deduce that the characteristic polynomial of the restriction of the Frobenius is an integer power Q γa/da a,ω of a polynomial Q a,ω which has integer coefficients independent of ℓ (see §6.3). Finally, in §6.4, we deduce that the part of the zeta function of X ψ corresponding to H n-2 et (X ψ , Q ℓ ) prim is the product over a ∈ Â and η ∈ µ da (K a ) of the polynomials Q γa/da a,ω(η) (see Corollary 5.12 for the definition of ω(η)) and we show that each Q a,ω(η) factors over the field D a considered in §5.5. We end by explicitly treating the cases n = 3, 4, 5, and 7 in §6.5.

Isotypic decomposition of the

Q ℓ [G]-module H n-2 et (X ψ , Q ℓ ) prim
The aim of this §6.1 is to express, in terms of the representations W a,ω considered above, the isotypic components of the

Q[G]-module H n-2 et (X ψ , Q ℓ ) prim .
We keep the notations of §5.5.

Proposition 6.1. Let ω be a n a th root of unity. The

D a ⊗ Q Q ℓ -module V a,ω = Hom Q[G] (W a,ω , H n-2 et (X ψ , Q ℓ ) prim ) is free of rank m ′ a .
Proof. By Corollary 5.13, we have

H n-2 et (X ψ , Q ℓ ) prim ≃ a∈(Z/nZ) × ×Sn\ Â η∈µ da (Ka) W m ′ a a,ω(η) ⊗ Q Q ℓ .
We deduce the following isomorphisms of

D a ⊗ Q Q ℓ -modules: V a,ω = Hom Q[G] (W a,ω , H n-2 et (X ψ , Q ℓ ) prim ) ≃ a ′ ∈(Z/nZ) × ×Sn\ Â η ′ ∈µ da (Ka) Hom Q[G] (W a,ω , W m ′ a ′ a ′ ,ω(η ′ ) ⊗ Q Q ℓ ) ≃ Hom Q[G] (W a,ω , W m ′ a a,ω ⊗ Q Q ℓ ) ≃ (End Q[G] (W a,ω ) ⊗ Q Q ℓ ) m ′ a ≃ (D a ⊗ Q Q ℓ ) m ′ a .
This shows that V a,ω is a free

D a ⊗ Q Q ℓ -module of rank m ′ a .
Corollary 6.2. The map

w ⊗ v → v(w) of W a,ω ⊗ Da V a,ω into H n-2 et (X ψ , Q ℓ ) prim is Q ℓ [G]-linear and injective; its image is the W a,ω -isotypic component H ā,ω of the Q[G]-module H n-2 et (X ψ , Q ℓ ) prim .
Proof. We refer the reader to [Bourbaki, 1958, §3.4, Proposition 9, page 33] and [Bourbaki, 1958, §1.5, Theorem 1.b, page 15].

Remark 6.3. The link between the H α from §4.1 and the isotypic components H ā,ω from the previous corollary is given by

η∈µ da (Ka) H ā,ω(η) ⊗ Q ℓ Q ℓ ≃ α∈(Z/naZ) × / Im ka Ind G A⋊Sa H α .
6.2 Action of the Frobenius on each isotypic component Lemma 6.4. The Frobenius stablizes the

Q ℓ [G]-modules W a,ω ⊗ Da V a,ω .
Proof. As all the elements of G are automorphisms of X ψ defined over F q , the Frobenius endomorphism on H n-2 et (X ψ , Q ℓ ) commutes with the action of G; it thus stabilizes each isotypic components of the Q[G]-module H n-2 et (X ψ , Q ℓ ) prim , namely, each of the W a,ω ⊗ Da V a,ω (Corollary 6.2).

Proposition 6.5. The Frobenius acts on W a,ω ⊗ Da V a,ω by Id⊗v a,ω where v a,ω is the endomorphism

v → Frob * • v of the D a ⊗ Q Q ℓ -module V a,ω .
Proof. The action of the Frobenius on W a,ω ⊗ Da V a,ω is given by

Frob * (w ⊗ v) = Frob * (v(w)) = (Frob * • v)(w) = v a,ω (v)(w) = w ⊗ v a,ω (v) = (Id ⊗ v a,ω )(w ⊗ v).
The structure of

D a ⊗ Q Q ℓ -module of V a,ω = Hom Q[G] (W a,ω , H n-2 et (X ψ , Q ℓ ) prim ) is given by (d ⊗ λ)v = λ(v • d). We have Frob * • (λ(v • d)) = λ(Frob * • v) • d,
and hence the map v a,ω is an endomorphism of the

D a ⊗ Q Q ℓ -module V a,ω .
We deduce the following result, which describes the reciprocal polynomial of the characteristic polynomial of the Frobenius on each isotypic component. Proposition 6.6. Let ω be a n a th root of unity, and set

P a,ω (t) = det(1 -tv a,ω |V a,ω /D a ⊗ Q Q ℓ ) ∈ D a ⊗ Q Q ℓ [t]; Q a,ω (t) = N Da⊗Q ℓ [t]/Q ℓ [t] (P a,ω (t)) ∈ Q ℓ [t].
We have deg P a,ω = m ′ a and deg Q a,ω = φ(na) #Im ka m ′ a . The reciprocal polynomial of the characteristic polynomial of the Frobenius over W a,ω ⊗ Da V a,ω is given by

det(1 -t Frob * |W a,ω ⊗ Da V a,ω ) = Q a,ω (t) γa/da ,
where γ a is the number of permutations of (a 1 , . . . , a n ) and d a is the integer defined in §4.2.

Proof. As Frob * acts on W a,ω ⊗ Da V a,ω by Id ⊗ v a,ω , we have [Bourbaki, 1970, §8.6

, Example 3, page 101] det(1 -t Frob * |W a,ω ⊗ Da V a,ω /Q ℓ ) = det(1 -tv a,ω |V a,ω /Q ℓ ) dimD a Wa,ω = det(1 -tv a,ω |V a,ω /Q ℓ ) (dim Q Wa,ω )/[Da:Q] ,
with [Bourbaki, 1970, §9.4, Proposition 6, page 112] 

det(1 -tv a,ω |V a,ω /Q ℓ ) = N Da⊗ Q Q ℓ [t]/Q ℓ [t] (det(1 -tv a,ω |V a,ω /D a ⊗ Q Q ℓ )),
which shows the announced formula given the following remarks:

a) the degree of the polynomial P a,ω (t) is m ′ a = dim Da⊗ Q Q ℓ V a,ω ; b) the degree of the polynomial Q a,ω (t) is [D a : Q] • deg P a,ω = φ(na) #Im ka m ′ a ; c) the dimension of W a,ω over Q is φ(n a )[S n : S a ] = φ(na) #Im ka γa da = γa da [D a : Q],
and thus

dim Q Wa,ω [Da : Q] = γa da .

Rationality and independence of ℓ of the characteristic polynomials

The aim of this §6.3 is to show that the polynomials Q a,ω defined in Proposition 6.6 have rational coefficients an are independent of ℓ. We start with the following lemma, which we will use a couple of times in what follows.

Lemma 6.7. Let E be a finite dimensional vector space over Q ℓ and u an endomorphism of E.

The polynomial det(1 -tu) is an element of Q[t] independent of ℓ if and only if for all r ≥ 1 the number tr(u r ) belongs to Q and is independent of ℓ.

Proof. This is a straightforward consequence both of Viete's formulas (relating roots and coefficients of a polynomial) and of Newton's formulas.

The following lemma allows us to relate the independence of ℓ of Q a,ω to that of Q a,ω (t) γa/da . Lemma 6.8. Let P ∈ 1 + tQ[t] be a non-constant polynomial and γ ∈ N * . If, for each ℓ, there is a

Q ℓ ∈ 1 + tQ ℓ [t] such that Q γ ℓ = P , then Q ℓ belongs to 1 + tQ[t]
and is independent of ℓ.

Proof. Denote by γ √ P the unique element of 1 + tQ [[t]] such that ( γ √ P ) γ = P . We have

Q γ ℓ = ( γ √ P ) γ = P with Q ℓ ∈ 1 + tQ ℓ [[t]], which shows, as γ √ P is unique in 1 + tQ ℓ [[t]], that Q ℓ = γ √ P . Consequently, Q ℓ belongs to 1 + tQ[t]
and is independent of ℓ.

We now deal with the independence of ℓ of Q a,ω (t) γa/da thanks to an argument of projector. Proposition 6.9. For each a ∈ Â, the polynomial Q a,ω (t) γa/da has rational coefficients and is independent of ℓ.

Proof. Denote by ξ

a : g ∈ G → tr(g * |W a,ω /Q) the character of the simple Q[G]-module W a,ω . There is a projection π a of H n-2 et (X ψ , Q ℓ ) prim onto W a,ω ⊗ Da V a,ω of the form π a = λ #G g∈G ξ a (g -1 )g * , avec λ ∈ Q,
where λ is computed by taking the trace of both members of the equality

dim Q W a,ω = λ #G g∈G ξ a (g -1 )ξ a (g) = λ[D a : Q].
(Indeed, over Q ℓ , ξ a is the direct sum of [D a : Q] irreducible characters as we have seen in §5.) We thus have λ = dim Da W a,ω .

Because the image of the projection π a is W a,ω ⊗ Da V a,ω , we have

Q a,ω (t) γa/da = det(1 -t(π a • Frob * )|H n-2 et (X ψ , Q ℓ ) prim ).
Using Lemma 6.7, we only have to show that the powers of π a • Frob * have a trace belonging to Q and independent of ℓ. This results from the fact that these powers can be written as linear combinations with coefficients in Q of quantities of the type f * where f is an endomorphism of the variety X ψ which extends to P n-1 and from the following lemma, which is an adaptation of [Katz and Messing, 1974, Theorem 2.2, page 76] to the case of traces over the primitive part of the cohomology of an irreducible hypersurface (since n ≥ 3, X ψ is irreducible).

Lemma 6.10. Let X be a non-singular, irreducible hypersurface of P n-1 . If f : X → X is an endomorphism of X which extends into an endomorphism of P n-1 , then tr(f

* |H n-2 et (X, Q ℓ ) prim ) is an integer which is independent of ℓ. Proof. We have H n-2 et (X, Q ℓ ) ≃ H n-2 et (X, Q ℓ ) prim ⊕ H n-2 et (X, Q ℓ ) inprim with tr(f * |H n-2 et (X, Q ℓ )) and tr(f * |H n-2 et (X, Q ℓ ) inprim ) = tr(f * |H n-2 et (P n-1 Fq , Q ℓ )
) two integers independent of ℓ by [START_REF] Katz | Some Consequences of the Riemann Hypothesis for Varieties over Finite Fields[END_REF], Theorem 2.2, page 76]3 . Combining Lemma 6.8 and Proposition 6.9, we deduce the announced result.

Theorem 6.11. The polynomials Q a,ω (t) have rational coefficients and are independent of ℓ.

In §6.4, we will see a stronger result, namely that the polynomials P a,ω are independent of ℓ.

Factorization of the zeta function

From the preceding results, we can deduce a factorization over Q of the zeta function as well as the existence of a decomposition of some of the factors over finite extensions of Q. Theorem 6.12. The zeta function of the hypersurface X ψ of P n-1 Fq defined by

x n 1 + • • • + x n n - nψx 1 . . . x n = 0 (with ψ ∈ F * q satisfying ψ n = 1) factors over Q as Z X ψ /Fq (t) = a∈(Z/nZ) × ×Sn\ Â, η∈µ da (Ka) Q a,ω(η) (t) γa/da (-1) n-1 (1 -t)(1 -qt) . . . (1 -q n-2 t) .
(The notations are those of Corollary 5.12 and Proposition 6.6.)

Proof. The previous formula is just a reformulation of the results from § §6.1, 6.2 and 6.3.

Remarks 6.13. a) Let us recall that the factor corresponding to [0, 1, 2, . . . , n -1] does not intervene (see Remark 3.5 page 7).

b) The polynomials Q a,ω depend on ω ea . See Example 6.20 page 27. c) When n is a prime number (necessarily odd, as n ≥ 3), we have

d a = 1 if a = [0, 1, 2, . . . , n-1],
and thus ω(η) = 1; hence, in that case, the numbers ω(η) don't intervene.

d ) As we mentioned in the introduction, a similar result of factorization was proved by R. Kloosterman in a slightly different context, see [Kloosterman, 2007, Corollary 6.10, page 448]. The factorization he obtains is a bit coarser as it involves the polynomials R a (t) = η Q a,ω(η) (t); we refer the reader to Example 6.20 for an illustration of this phenomenon.

We now look how the polynomials Q a,ω behave over the field D a .

Proposition 6.14. The polynomials Q a,ω factor over D a as a product of [D a : Q] polynomials of degree m ′ a . Proof. As Q a,ω (t) = N Da⊗Q ℓ [t]/Q ℓ [t] (P a,ω (t)), the polynomial Q a,ω is the product of the conjugates of P a,ω .

The following theorem shows that this factorization is independent of ℓ.

Theorem 6.15. The polynomials P a,ω have coefficients in D a and are independent of ℓ.

Proof. Let us recall that P a,ω (t) = det(1 -tv a,ω |V a,ω /D a ⊗ Q Q ℓ ). Using the same argument as in Lemma 6.7, we only need to show the independence of ℓ of tr(

v r a,ω |V a,ω /D a ⊗ Q Q ℓ ) for every r ∈ N. As (x, y) → Tr Da⊗ Q Q ℓ /Q ℓ (xy) is a non-degenerate bilinear form, the independence of ℓ of tr(v r a,ω | V a,ω /D a ⊗ Q Q ℓ ) is equivalent to that of the element tr(dv r a,ω |V a,ω /Q ℓ ) ∈ Q ℓ for all d ∈ D a ; indeed: Tr Da⊗ Q Q ℓ /Q ℓ (d tr(v r a,ω |V a,ω /D a ⊗ Q Q ℓ )) = Tr Da⊗ Q Q ℓ /Q ℓ (tr(dv r a,ω |V a,ω /D a ⊗ Q Q ℓ )) = tr(dv r a,ω |V a,ω /Q ℓ ).
Because dv r a,ω is the map v → (Frob * ) r • v • d, thanks to Remark 6.18, we only need to show the following proposition. Proposition 6.16. Let X be a smooth projective variety over F q . Let G be a finite subgroup of Aut Fq (X/F q ), W a simple Q[G]-module, D (the opposite of ) its endomorphism ring, and i an integer

≥ 0. Denote by V the D ⊗ Q Q ℓ -module Hom Q[G] (W, H i et (X, Q ℓ )) and, given d ∈ D and r ≥ 1, denote by α the endomorphism v → (Frob * ) r • v • d of the Q ℓ -vector space V . The trace of α is an element of Q which is independent of ℓ. Proof. Denote by E the Q ℓ -vector space Hom Q (W, H i et (X, Q ℓ )), the action of G on E being g • v = g * • v • g -1
W where g W is the endomorphism of the Q-vector space W induced by g. Let π be the Q ℓ -linear map from E to itself defined by

π(v) = 1 #G g∈G g * • v • g -1 W . It is a projection with image E G = V . The map β : v → (Frob * ) r • v • d is an endomorphism of the Q ℓ -vector space E which stabilizes V ; the endomorphism of V induced by β is α and, because π is a projection of E onto V , we have tr(α) = tr(π • β),
where the endomorphism π • β can be written as

v → i∈I (Frob * ) r • g * i • v • f i ,
with I a finite set, g i some elements of G and f i some endomorphisms of the Q-vector space W , each of them independent of ℓ. We thus only need to show the following lemma.

Lemma 6.17. We keep the notations of the previous proposition.

If g ∈ G, f ∈ End Q (W ) and r ∈ N * , then the trace of v → (Frob * ) r • g * • v • f considered as an endomorphism of V is an element of Q independent of ℓ.
Proof. Let (e 1 , . . . , e k ) be a basis of W over Q; the map

v → (v(e 1 ), . . . , v(e k ))
is an isomorphism of the Q ℓ -vector space V onto the Q ℓ -vector space

H i et (X, Q ℓ ) k . It sends the endomorphism of V given by v → (Frob * ) r • g * • v • f to the endomorphism of H i et (X, Q ℓ ) k given by (h 1 , . . . , h k ) → k i=1 a i,j ((Frob * ) r • g * )(h i ) 1≤j≤k
, where (a i,j ) 1≤i,j≤k is the matrix of f in the basis (e i ) 1≤i≤k . Its trace is thus equal to

k i=1 a i,i tr((Frob * ) r • g * |H i et (X, Q ℓ )).
By [START_REF] Katz | Some Consequences of the Riemann Hypothesis for Varieties over Finite Fields[END_REF], Theorem 2.2, page 76], it is independent of ℓ.

Remark 6.18. In the previous lemma and proposition, it is possible, when X is a hypersurface, to replace H n-2 et (X, Q ℓ ) by H n-2 et (X, Q ℓ ) prim using Lemma 6.10 instead of [START_REF] Katz | Some Consequences of the Riemann Hypothesis for Varieties over Finite Fields[END_REF], Theorem 2.2, page 76] (indeed, Frob * and each g * , with g ∈ G, extend to P n-1 ). 

A List of notations

B Formulas

Here is a list of the most important formulas established throughout this article. dim Da (V a,ω ) = m ′ a .

dim 

Q (H ā,ω ) = m ′ a φ(n a ) #Im k a γ a d a = m ′ a [S n : S a ][D a : Q] dim Q ℓ (H n-2 et (X ψ , Q ℓ ) prim ) =

  Remark 4.2. For all b ∈ Z/nZ, denote by I(b) the set of i ∈ {1, . . . , n} such that a i = b. The set n ′ a Z/nZ is the set of j ∈ Z/nZ such that I(b + j) has the same number of elements as I(b) for all b ∈ Z/nZ. Lemma 4.3. There is a permutation σ

  cycles of length d a . Proof. Let us note that the condition 4.3.a is equivalent to the fact that σ(I(b)) = I(b + n ′ a ). For all b ∈ Z/nZ such that I(b) = ∅, choose a numbering i 1 (b), . . . , i #I(b) (b) of the elements of I(b) and denote by σ the element of S n which sends i l (b) to i l (b + n ′ a ) for all b ∈ Z/nZ and 1 ≤ l ≤ #I(b).

Proposition 4. 7 .

 7 Let τ ∈ S n be a transposition. Denote by Âτ the set of elements of  fixed by τ . We have a∈ Âτ

  taking values in K C . It induces an isomorphism between C and the group of m th roots of unity of K C . Proposition 5.2. The field K C is a simple Q[C]-module with endomorphism ring K C .

  ) (this is the same example as in the footnote to page 15). Examples 5.16. a) When a = [0, . . . , 0], we have D a = K a = Q. b) When n = 5 and ā is the class of [0, 0, 0, 1, 4] or [0, 0, 1, 1, 3], we have D a = Q( √ 5). c) When n = 7, we have the following possibilities concerning D a . class of ā D a

n

  = n ′ a d a = e a f a d a = n a f a , n ′a = e a f a , and n a = e a d a .[S n : S ′ a ] = γ a (number of permutations of (a 1 , . . . , a n ))[S n : S a ] = γ a d a [S n : S ā] = γ a #(Im k a )d a [S a : S ′ a ] = d a [S ā : S a ] = #Im k a (in fact, S ā/S a = Im k a ) [S ā : S ′ a ] = d a #Im k a dim H a = m a dim µ a,ω = dim M a,ω = dim K a = φ(n a ) = m ′ a φ(n a )[S n : S ā] = m Q D a = φ(n a ) #Im k a dim Q (W a,ω ) = φ(n a ) #Im k a γ a d a = [S n : S a ][D a : Q].

  deg P a,ω = m ′ a deg Q a,ω = (deg P a,ω )[D a : Q] = m ′ a φ(n a ) #Im k a

  module attached to an element of (Z/nZ) × \ Â

The group (Z/nZ) × acts on  by k × [a 1 , . . . , a n ] = [ka 1 , . . . , ka n ]. If a ∈ Â, we denote by ā the class mod (Z/nZ) × of a. Let us note that the integers d a and n ′ a defined in §4.2 only depend on ā and not on a (see Remark 4.5).

  , . . . , a n ) ∈ (Z/nZ) n | a 1 + • • • + a n = 0} quotiented by the diagonal {(a, . . . , a)}; can be identified with the group of characters of A Q ℓ ) inprim non-primitive part of the cohomology of a hypersurface of dimension n -2; is zero when the dimension is odd p. 3H n-2 et (X, Q ℓ ) prim primitive part of the cohomology of a hypersurface of dimension n -2 p. 3 Notations from §3. k(ζ) number of i ∈ {1, . . . , n} such that ζ i = ζ p. 5 m a multiplicity of the character a in the Q ℓ [A]-module H n-2 et (X ψ , Q ℓ ) prim p. 5 Notations from §4. H a a-isotypic component of the Q ℓ [A]-module H n-2 et (X, Q ℓ ) prim ; its dimension is m a [[1; n]] of the set of elements j ∈ Z/nZ such that (a 1 + j, . . . , a n + j) is a permutation of (a 1 , . . . , a n ) stabilizer in S n of a representative (a 1 , . . . , a n ) of a in (Z/nZ) n p. 8 γ a number of permutations of (a 1 , . . . , a n ); equal to [S n : S ′ a ] p. 8 Σ a group generated by σ; we have S a = S ′ a ⋊ Σ a p. 8 j a group homomorphism S a → n ′ a Z/nZ defined by s (a 1 , . . . , a n ) = (a 1 + j a (s), . . . , a n + j a (s)); satisfies j ka = kj a Âσ set of elements of  fixed by σ ∈ S n p. 9 O j orbits of a product of n ′ disjoint cycles of length d p. 10 k(ζ) number of j ∈ {1, . . . , n ′ } such that i∈Oj ζ i = ζ; this notation generalizes that from p. 5 order of a in Â; equal to the order of the group generated by a i -a i ′ ; also equal to the number of elements of the image of the character a cyclotomic field attached to the cyclic group A/N a ; its dimension over Q is φ(n a ); only depends on ā p. 15 χ a canonical character of the cyclic group A/N a considered as a character of A; takes values in K a and satisfies χ ka = χ k a p. 15 f a generator of the group generated by a i -a i ′ ; satisfies n ′ a = e a f a , n = e a f a d a and n = n a f a ′ a = e a f a ; satisfies n a = e a d a and n = e a f a d a p. 16 (u σ, v σ ) if σ ∈ S ā, unique pair (u σ , v σ ) ∈ Z/n a Z × (Z/n a Z) × such that a σ(i) = v σ a i + u σ f a p. 16 φ group homomorphism S ā → Z/n a Z ⋊ (Z/n a Z) × , σ → (u σ , v σ ); we have v σ = k a (σ) and f a u σ = j a (σ) p. 16θ v automorphism of the field K a sending the n a th roots of unity to theirv th power → χ a (ζ)ǫ(σ)ω uσ θ vσ of A ⋊ S ā in K a p. 17 M a,ω Q[A ⋊ S ā]-module K agiven by µ a,ω ; up to isomorphism, only depends on ω ea , not on ω p. 17W a,ω Q[G]-module simple Ind G A⋊Sā M a,ω p. 20 D a (opposite of the) endomorphism ring of W a,ω ; we have D a ⊂ K a (hence D a is commutative) and dim Q D a = φ(na) Hom Q[G] (W a,ω , H n-2 et (X ψ , Q ℓ ) prim ); is a free D a ⊗ Q Q ℓ -module of rank m ′ a ; W a,ω ⊗ Da V a,ω identifies with the W a,ω -isotypic component H ā,ω of the Q[G]-module H n-2 et (X ψ , Q ℓ ) prim p. 22 H ā,ω W a,ω -isotypic component of the Q[G]-module H n-2 et (X ψ , Q ℓ ) prim ; is isomorphic to W a,ω ⊗ Da V a,ω p. 22 v a,ω endomorphism of the D a ⊗ Q Q ℓ -module V a,ω such that Frob * |W a,ω ⊗ Da V a,ω = Id ⊗ v a,ω -tv a,ω |V a,ω /D a ⊗ Q Q ℓ ) having degree m ′ a ; has coefficients in D a and is independent of ℓ p. 23 Q a,ω polynomial N Da⊗Q ℓ [t]/Q ℓ [t] (P a,ω (t)) having degree m ′
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1 , . . . , ζ n ) ∈ µ n (F q ) n | ζ 1 . . . ζ n = 1} quotiented by {(ζ, . . . , ζ)}; is isomorphic to (Z/nZ)

n-2 a kernel of the homomorphism [ζ 1 , . . . , ζ n ] → ζ a1 1 . . . ζ an n p. 15 n a

They make this observation only in the case ψ = 0, but their numerical data in §13.3 suggests the same phenomenon happens when ψ = 0 and q ≡ 1 mod 5.

Consider n = 5 and a = [0, 0, 1, 1,

3]: we have na = 5, but there is no σ ∈ S 5 such that σ a = 2a.

On this subject, see also[Deligne and Lusztig, 1976, page 119] and[Illusie, 2006, §3.5, pages 112-113].

As mentioned in the introduction, they only make this observation in the case ψ = 0, but their numerical data supports it when ψ = 0 and q ≡ 1 mod
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Examples

In this §6.5, we detail the computations for the cases n = 3, n = 4, n = 5, and n = 7. In all these examples, we use the fact that, when n is prime and a = [0, 1, 2, . . . , n -1], we have ω = 1 and d a = 1, hence m ′ a = m a and γ a /d a = γ a . Let us recall that the degree of Q a,ω is (deg

#Im ka . In the tables, the lines appear by decreasing values of m a .

Example 6.19 (n = 3). This is the simplest non-trivial case. The elements of  are, up to permutation, [0, 0, 0] and [0, 1, 2]. The multiplicity of the latter is zero so only [0, 0, 0] gives rise to a factor in the zeta function. This factor has degree m ′ a = 2 and appears with a power γ a /d a = γ a = 1, so

In fact, in this case, X ψ is an elliptic curve, so the previous result doesn't give any new information.

Example 6.20 (n = 4). Here is a list of the elements of  mod the simultaneous actions of S n and (Z/nZ)

Consequently, we have the following factorization of the zeta function:

This result is in accordance with the numerical observations of [Kadir, 2004, §6.1.1, pages 112-116]; let us note that, according to her tables for q = p = 13, 17, 29, 37, 41 (we remind the reader that only the cases q ≡ 1 mod 4 fall in the framework of our study) and ψ = 2, 3, 2, 2, 2 respectively, we have {Q [0,0,2,2],1 (t), Q [0,0,2,2],-1 (t)} = {1 -pt, 1 + pt}, hence the two polynomials Q [0,0,2,2],1 and Q [0,0,2,2],-1 are not generally equal.

This example also illustrate the fact that our method gives a slightly finer factorization than that of [START_REF] Kloosterman | The zeta-function of monomial deformations of Fermat hypersurfaces[END_REF]: instead of finding a factor R 3 [0,0,2,2] with R [0,0,2,2] of degree 2, we find a factor Q [0,0,2,2],1 (t) 3 Q [0,0,2,2],-1 (t) 3 with Q [0,0,2,2],1 and Q [0,0,2,2],-1 of degree 1; thus, Kloosterman's polynomial R [0,0,2,2] factors over Q as a product of two polynomials of degree 1.

Example 6.21 (Cas n = 5). Here are all the elements of  (mod the simultaneous actions of S n and (Z/nZ) × ) which intervene in the zeta function:

We can thus write:

Moreover, the polynomials Q [0,0,0,1,4],1 and Q [0,0,1,1,2],1 factor over D a = Q( √ 5) into a product of two polynomials of degree 2 (namely, the corresponding P a,1 and its conjugate over Q( √ 5)).

We thus recover (and explain) the numerical observation that Candelas, de la Ossa and Rodriguez-Villegas made in [Candelas et al., 2003, Table 12.1, page 133] 4 . Example 6.22 (Cas n = 7). The elements of  mod the simultaneous actions of S n and (Z/nZ) × are those given in Example 5.16.c page 21. We complete the list with the useful informations concerning the factorization of the zeta function.