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Abstract—The aim of this paper is to compare strong and
weak coupling of the PEEC and MoM methods applied to the
modeling of magnetoharmonic problem, and to generalize the
weak coupling approach. MoM and PEEC are dedicated to the
modeling of specific parts of the overall device. As an example of
validation, we have chosen the modeling of a simple transformer.
Resolutions of several weak couplings are compared to the strong
coupling approach. A new strategy of weak coupling is proposed
to improve the time of resolution.

Index Terms—PEEC method, MoM method, weak/strong cou-
pling, iterative methods.

I. INTRODUCTION

THE MODELING of multiphysic systems needs powerful
modeling tools and simulation methods. In this context,

a specialized electric and magnetic method will be coupled
in order to model an electromagnetic device.

The PEEC (Partial Elements Equivalent Circuit) approach
has been proved to be excellent for the modeling of many
ranges of cabling and interconnections in electric structures.
The ferromagnetic materials can be modeled by FEM or
integral method like Method of Moments [1][2]. Couplings
of these methods have been done successfully in [3][4][5].

In the following sections, different coupling strategies of
PEEC and MoM method will be compared. The figure below
(Fig.1) shows the strategies commonly used for coupling
programs. 
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Fig. 1. Coupling strategies.

We have proposed an Optimal Weak Coupling
strategy based on tuning models to improve the simulation
performances. Both iterative and direct methods will be used
to solve each of strong and weak coupling.

II. PEEC AND MOM METHOD

A. The PEEC method

The principle of the PEEC method is to decompose electric
circuits into several parts, then calculate the mutual between
them also the contribution of each of these elementary circuits
to the total inductance [5]. The partial mutual between two
electric conductors i and j is calculated as follows (1)

Mpij =
µ0

4.π
· 1
SiSj

∫
Vj

∫
Vi

1
ri
· dVi · dVj (1)

From (1), we build the impedances matrix (2)

Zm =
[
R1 + jωL1 jωM12

jωM21 R2 + jωL2

]
(2)

The impedances matrix can be obtained directly with using
software as INCA3D to the modeling of the conductors and
a specific solver to extract the impedance matrix [6].

The source voltage formulation is defined as follows (3)

U = Zm · I + fem (3)

where fem is the well known electromotive force induced
by the electric current I in the conductors.

B. The Method of Moments

The MoM is an integral approach well adapted to the mod-
eling of magnetic and radiating regions with simple geometries
[1]. The global elements magnetic field is given by (4)

H = Hext +Hred (4)

where Hext and Hred are respectively the external magnetic
field generated by the source field and the reaction of the
material to the source field. In case of linear and unsaturable
material, the discretization gives us the magnetic field in any
point P of the material (5).

H(P ) = Hext(P ) +
1
4π

∫∫∫
Vmag

(3
~M.~r

r5
~r −

~M

r3
).dVmag (5)

With making M (Magnetization of the element P ) out of
the second term of the equation (5), we write the formulation
of the magnetic field for all mesh elements (6)

[H] = [Hext] + [g] · [M ] (6)
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The matrix [g] is called the magnetostatic matrix, it repre-
sents the interactions between the material elements. It can be
obtained directly with using some softwares specialized in the
modeling of magnetic devices like LOCAPI [6].

C. Coupling terms

Lenz-Faradays law
The impact of the material magnetization [M ] on the con-
ductor is the induced electromotive force [fem]. The vector
potential created by [M ] is given by (7)

~A =
µ0

4π

∫∫∫
Vmag

~M × ~r
||r||3

· dVmag (7)

The link between the potential vector and the electromotive
force is given below (8)

fem = jω

∫
lc

~A · dlc (8)

The matrix formulation of (8) is

[fem] = [LF ] · [M ] (9)

where [LF ] is calculated with the geometric parameters of
the system r and Vmag .

Biot-Savarts law
The impact of the conductor current I on the material is the
excitation magnetic field Hext. The magnetic field created by
the electric current I is given by (9)

Hext(P ) =
1
4π

∫∫∫
Vcond

~Js × ~r
||r||3

· dVcond (10)

where ~Js is the uniform density of the electric current I in
the conductor. The expression of Hext in (10) becomes

[Hext] = [BS] · [I] (11)

where [BS] is calculated with the geometric parameters of
the system.

III. THE PEEC-MOM COUPLING

The modeling of electromagnetic devices requires the mod-
eling of the electrical and magnetic part, but also the in-
teractions between them. This interaction is usually called
”Coupling”.

A. Weak Coupling

In this coupling, each method is available separately (Fig.2).
The electric and magnetic systems are solved successively, the
resolution of one is injected into the other and so that until
achievement of the accuracy requirements.

 

Currents linear solving (Ohm + PEEC) 

External field = f(I)  (Biot & Savart) 

Magnetization linear solving (MoM) 

M & I 
convergence

Induced voltage = f(M) (Faraday) 

inputs : V 
initializations : M, I 

 

 

 

 

 

Fig. 2. Algorithm of weak coupling iterative approach.

B. Strong Coupling

The strong PEEC-MoM coupling developed in [2] aimed at
grouping in one global matrix the overall modeling as detailled
below.

We replace Hext in (6) by its formulation in (11), we obtain

[H] = [BS][I] + [g][M ] (12)

The material law says that (µr−1)H = M so if we multiply
the equation (12) by (µr − 1), we obtain

([Id]− (µr − 1)[g])[M ]− (µr − 1)[BS][I] = 0 (13)

Lets consider :
{

([Id]− (µr − 1)[g]) = [MM ]
−(µr − 1)[BS] = [BSm]

then (13) becomes

[MM ][M ] + [BSm][I] = 0 (14)

The electric model (15) is built by replacing the formulation
of fem in (3) by that of (9)

[LF ][M ] + [Zm][I] = U (15)

Now, it is possible to group the magnetic (14) and electric
(15) model in one global matrix system, which represents the
overall model of the system (16)[

MM BSm

LF Zm

]
·
[
M
I

]
=
[

0
U

]
(16)

The resolution of the system (16) gives as
[
M
I

]
vector

of unknowns composed by magnetizations of the material
elements and the electric currents in the conductors, according

to the sources vector
[

0
U

]
.

8.  COUPLED PROBLEMS 2



IV. APPLICATION
A. Device description

The application example is the modeling of a simple trans-
former (Fig.2) with 2 current unknowns and a variable number
of magnetization unknowns from 500 to 2000. Two square
conductors are placed on two parallel planes and a magnetic
core is placed through their center. The first conductor is
powered by an alternative source voltage (1V, 1kHz). The
second conductor is short-circuited.

 

V = 1volt  
f  = 1kHz 

Fig. 3. Geometry of the test device.

Note that the coupling models have been validated by a
finit element approach. For the same results of currents and
magnetizations, the time resolution and convergence between
the strong and weak coupling are compared.

B. First Results

The curves of the first results are plotted in the figure below
(Fig.4).

 

 

 

500 1000 1500 2000
0

1

2

3

4

5

6

7

8

9

Mesh

Ti
m

e 
re

so
lu

tio
n 

[s
]

 

 
WC Gauss-Seidel
SC Linear Solving
SC bicgstab
WC GaussLU

WC Jacobi
Coupling iterations

SC           [1   1   1   1 ]
WC Jac    [25 25 25 25]
WC GS    [16 16 16 16]
WC G-LU [20 20 20 20]

500 1000 1500 2000
0

1

2

3

4

5

6

Mesh

Ti
m

e 
re

so
lu

tio
n 

[s
]

 

 
WC Optimal GS
WC GaussLU 

WC GaussLU relaxed

WC Simple GS
SC bicgstab
SC Linear Solving

Coupling iterations

Jac optimal  [10 10 10 10]
GS optimal  [10 10 10 10]
G-LUrlx        [9  9  9  9]

Fig. 4. Performances of the methods.

Conclusion1
For a little mesh elements, the strong coupling using direct
methods is a good solution but for a fine mesh, the iterative
method like BiConjugate Gradient Stabilized Method is better
adapted.

The Gauss Seidel method combined with the weak coupling
shows very good performances comparing to the bicgstab
method because the subsystems conditioning in the weak
coupling is better than the conditioning of the overall system
in the strong coupling.

C. Convergence Study
Here, the convergence and the stability of the different

methods are studied and discussed.
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Fig. 5. Convergence of LU-Gauss, Jacobi and Gauss-Seidel method.

About the stability of the methods, oscillations appear when
using the LU-Gauss method (Fig.4) and the convergence of
the model is delayed until the 10th coupling iteration, unlike
the Jacobi and Gauss-Seidel method. The oscillations persist
even with using initial values very close to the truth values of
magnetization and electric currents.

Conclusion 2
The weak coupling using iterative methods like Jacobi and
Gauss-Seidel are more stable and converge faster than WC
LU-Gauss method. The convergence of the WC LU-Gauss
can be improved with using a parametric relaxation on the
magnetization and current.

D. Optimal parameters
In the weak coupling built before (Fig.1), for each coupling

iteration, we compute only once the electric and magnetic
model. We add two tuned loops to solve more than once the
electric and magnetic model (Fig.6). Now, for one coupling
iteration, we make iterM and iterI iterations on respectively
the magnetic and electric model.
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loop 
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Fig. 6. Adjustabe Weak coupling loop.

A test for 2000 mesh elements was performed to identify if
there is an optimal number of iteration can be made locally on
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the electric and magnetic model to reduce the time resolution.
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Fig. 7. Time resolution of WC G-S regarding the local iteration number.

From (Fig.7), the optimal number of iteration that reduces
the most the time resolution is 2 for Gauss-Seidel method.
An algorithm was implemented to find these parameters so
the overall model is automatically tuned with the optimal
parameters.

E. Improvement of time resolution

The overall model of the system is tuned with the optimal
parameters and solved. In the figure below (Fig.8), we have
plotted the new curves of time resolution regarding the number
of mesh elements and given the number of coupling iterations.
In the same figure we have let appear the curves obtained
before in order to compare between them.  
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Fig. 8. Performances of the methods tuned with optimal parameters.

Conclusion 3
By using the optimal parameters, we have reduced the time
resolution of the model comparing to the previous weak
coupling.

We have also minimized the number of iterations on
the coupling loop which is very important when coupling
softwares on network and where an iteration on coupling
takes a long time.

V. CONCLUSION

Different strategies of weak coupling of the PEEC and MoM
methods have been compared with the strong coupling. A
new strategy of weak coupling (Fig.6) is proposed, the results
obtained prove that our weak coupling is:

1) better in term of time resolution than the strong one.
We also improved the gain of the first weak coupling
(Fig.2) by 27% and 17% for respectively Gauss-seidel
and jacobi methods;

2) more stable than the weak coupling using direct meth-
ods; it speeds and relaxes the convergence of the model
and

3) minimizes the iteration on coupling loop, which is very
important in practice where we couple programs on
network.

Adding to these gains, this strategy presents other advan-
tages like, easy understanding because it repeats faithfully the
evolution of physical phenomena in the system, more flexible,
parallelizable tasks, and gives us the possibility to reuse the
codes developed.
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