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ABSTRACT 

Capability indices were introduced to compare the performance of various processes 
independently of their tolerance interval. The concept of performance, related at first to the 
proportion of conforming items (process yield), quickly evolved to take into account the 
process position in relation to its target (process centering), as well. If the links between 
capability indices and process centering have already been studied, those between capability 
indices and processes yield have only been partly studied. In this paper we clarify the links 
between the process yield and the indices " ( , )pC u v . 
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1. INTRODUCTION 
 

In any manufacturing process, the variable of interest is associated with a target T and a 
tolerance interval  ;L U . The process performance can be evaluated by taking various 

criterions into consideration. The oldest one is the process yield or percentage of conforming 
items, which we note Yield. The user often prefers to express this performance by using the 
percentage of nonconforming items, which we note NC, which is obviously defined by the 
relation NC = 1 – Yield. In the following study we will consider the most usual case where the 
variable of interest is normally distributed with mean  and standard deviation . In these 
conditions, the process yield is represented by the relation Yield = 

   ( ) / ( ) /U L       ,  in which  is the cumulative function of the standard 

normal distribution.  
However the process performance cannot only be related to the proportion of conforming 
items. Between two processes leading to the same number of conforming items, the more 
effective in the user’s mind will be the one whose mean value is on the target. The process 
centering, that is to say the ability to cluster around the target is thus another important fact to 
measure the process performance. The four basic capability indices pC , pkC , pmC , and pmkC  

have been widely used as unitless measures, which combine natural process variability, 
manufacturing tolerances, and the process centering. Vännman (1995) proposed a 
superstructure containing these four basic indices as 
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where m = (L + U)/2 stands for the midpoint of the tolerance interval, ( ) / 2d U L   stands 
for the half-length of the tolerance interval, and u and v are two non-negative parameters. 
However, if indices ( , )pC u v  are well adapted to the case of symmetrical tolerances (T = m), 

they have some undesirable properties when the tolerances are asymmetrical (T m ). To 
generalize the family  ( , )pC u v  to the case T m , Chen and Pearn (2001) suggested to use 

the family 

* *
"
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,  

in which  max ( ) , ( )u lA d T D d T D    ,  * * *max ( ) , ( )u lA d T D d T D    , 

uD U T  , lD T L  ,  * min ,u ld D D . Note that when 0u  , the calculation of  
" ( , )pC u v  can lead to negative values, which is hardly satisfactory to measure the process 

performance. In addition for u = 0, " ( , )pC u v  is obviously positive. Therefore, in the following 

part of this paper, we will only be interested in the case where " ( , ) 0pC u v  , in order not to 

increase the heaviness of the paper with the particular case where " ( , ) 0pC u v  .  

The choice of u and v allows us to attach more or less importance to the process yield or to the 
process centering. In order to enable the user to choose the best index according to his needs, 
the links which join indices, process yield and process centering, have to be known precisely. 
Links between capability indices and centering are given (Kotz and Lovelace, 1998, p.184) in 
the case of symmetrical tolerance by the relation  

         
3 ( , )p

d
T

C u v v u
  


.                                               (1) 

In the case of asymmetrical tolerances, Chen and Pearn (2001) suggest a generalization of this 
expression under the form  

                          
" "

(1 ) (1 )

3 ( , ) (1 ) 3 ( , ) (1 )
l u

p p

R D R D
T T

vC u v u R vC u v u R
 

   
   

,                       (2) 

in which |1 | /(1 )R r r   , and /l ur D D . Although it is not specified by the previous 

authors, note that the relations (1) and (2) are true for " ( , ) 0pC u v  , and ( , ) (0,0)u v  . When 

( , ) (0,0)u v  , these relations are expressed in the form     .  
On the other hand, the links between capability indices and processes yield have only been 
partly studied. In the following paragraph we explain the various results found in the 
literature.  
For ( ) / 6pC U L   , first index introduced by Juran (1974), we have 2 ( 3 ) 1pC NC     

(Pearn and Kotz, 2006, p.9), the lower bound being reached only when the process is well 
centered, that is to say when  is on m.  
For  min ( ) / 3 , ( ) / 3pkC U L      , index which takes into account the position of the 

mean inside the tolerance interval, we have ( 3 ) 2 ( 3 )pk pkC NC C       (Pearn and Kotz, 

2006, p.42). 
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For 2 2( ) / 6 ( )pmC U L T     , and under the usual assumption that T m , Ruczinski 

(1996) shows that when 1/ 3pmC   then 2 ( 3 ) 1pmC NC    , when 1/ 3 1/ 3pmC   then  

0 NC M   where M is the solution of an equation which can be solved numerically, and 

finally when 1/ 3pmC  , then 0 2 ( 3 )pmNC C    . 

For /pmk pk pm pC C C C , and T m , Pearn and Kotz (2006, p.114) quote a working paper of 

Pearn and Lin (2005) showing that when 2 / 3pmkC  , we have 0 2 ( 3 )pmkNC C    . 

Generally, when the tolerances are symmetrical, Vännman (1995) proposes the family 
( , )pC u v , where u and v are two positive or null parameters. Kotz and Lovelace (1998, p.184) 

indicate that 2 ( 3 ( , ))pNC C u v   , without taking into account the restrictions specified by 

Ruczinski (1996) for pmC  and by Pearn and Lin (2005) for pmkC . 

For asymmetrical tolerances, Chen and Pearn (2001) propose the family " ( , )pC u v . To study 

the process yield, these authors use the index 
1(1/ 3) {(1/ 2) (( ) / ) (1/ 2) (( ) / )}pkS U L           suggested by Boyles (1994) which 

is directly related to the proportion of nonconforming items by the relation 2 ( 3 )pkNC S   . 

After graphically noticing that " ( , )p pkC u v S , they conclude that if " ( , )pC u v c , the process 

yield must be no less than that corresponding to pkS c . In other words, the proportion of 

nonconforming must not be greater than "2 ( 3 ( , ))pC u v  . However it is possible to find 

values for which " ( , )p pkC u v S , which thus do not allow to obtain an upper bound of NC. For 

example, when ( , , ) (26,50,58)L T U  ,  = 59.3,  = 0.643, we have " (0.5,1) 0.06pC   and 

0.009pkS  . In these conditions, the proportion of nonconforming is equal to 0.98, a quantity 

which is not lower than "2 ( 3 (0.5,1))pC   = 0.86.  

In the particular case where ( , ) (1,1)u v  , Pearn, Lin and Chen (1999) show that 
"2 ( 3 )pmkNC C    supposing that "

pmk pmkC C . However it is possible to find values for 

which  "
pmk pmkC C . For example, when ( , , ) (26,50,58)L T U  ,  = 49,  = 0.5, we have 

" 3.07pmkC   and 2.68pmkC  .  

Lastly, when ( , ) (1,0)u v  , Pearn, Lin and Chen (2004), or Chang and Wu (2008), show that 

                      " "2 [ (3 / min{1, }) (3 max{1, })]pk pkNC C r C r    .           (3) 

As we have just seen, the results evoked in the literature concerning the links between 
capability indices and process yield include some errors or inaccuracies. Thus the purpose of 
this paper is to specify the relations between the " ( , )pC u v  indices and the proportion of 

conforming or nonconforming items, and this for any u, v   0, that we can obtain. In the 
following section, we will just study the case where  ;T m U , since the case  ;T L m  is 

considered in a similar way.  
 
2. PROCESS YIELD AND CAPABILITY INDICES 
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To take into account the position of T in the interval  ;m U , we note T m d   where 

 0,1  . To take into account the deviations of  we assume that T d    where  is 

unspecified. The relation (2) allows to see the field in which  is located, more accurately. In 
addition, since * / 1d d R  , (2) can still be written in the form  

                          
* *

" * " *3 ( , ) 3 ( , )
l u

p p

d D d D
T T

vdC u v ud vdC u v ud
   

 
.                  (4) 

The previous relation allows to specify the field of variation of ( ) /T d   ,  

        min max

0 0

1 1

( / ) ( / )l ud vd u d vd u
  

 
    

 
,        (5) 

where /u ud d D , /l ld d D , and * "
0 /(3 ( , ))pd C u v  . As noted in the previous section, the 

relation (5) is true for " ( , ) 0pC u v  , ( , ) (0,0)u v  , and in the case when ( , ) (0,0)u v  , the 

relation (5) remains true assuming that min    and max   . Reciprocally, it is not 

difficult to note that if min max    , then " ( , ) 0pC u v  . This is obvious when u = 0. When   

0u  , from (5) we have 1/( ) 1/( )l uud ud   . Consequently, if 0 1/( )uud  , 
*

"

2 2

(1 )
( , )

3 ( )
u

p

u

d u d
C u v

v dd


 





> 0, and if 1/( ) 0lud    ,  

*
"

2 2

(1 )
( , )

3 ( )
l

p

l

d u d
C u v

v dd


 





> 0. 

The four following lemmas allow us to study the variations of the process yield according 
to the values of  defined in (5), in a general way. The following sections will enable us to 
explain the behaviour of the process yield, in particular the existence of maxima and minima 
more clearly, by the distinction of various situations depending on the u and v values. 
 
Lemma 1 :  

 
 

1 22 2 2
0 max

1 22 2 2
0 min

( ) (1 ) ( ) 0

( ) (1 ) ( ) 0

u u u

l l l

u d v dd if

u d v dd if

      


      

      
    

 . 

Proof :  

If max0    , then   1 2" * 2 2( , ) (1 ) / 3 ( ) ( )p u u uC u v d u d v dd      , thus ( )u  . 

If min 0   , then   1 2" * 2 2( , ) (1 ) / 3 ( ) ( )p l l lC u v d u d v dd      , thus ( )l  .  

 
Lemma 2 :  
If ( , ) (0,0)u v  , then 

max min

lim ( ) lim ( ) 0u l   
   

 
  . 

Proof :  
Let ( , ) (0,0)u v  . According to lemma 1, we have 

 
max 0

1 22 2 2
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It is the same for ( )l  . 

 
Lemma 3 : 
a) If ( , ) (0,0)u v  , then 

   
   

max

min

( ) (1 ) / ( ) (1 ) / ( ) 0
( )

( ) (1 ) / ( ) (1 ) / ( ) 0

u u u

l l l

F d d if
Yield F

F d d if

          


          

            
         

. 

b) If ( , ) (0,0)u v  , then  

   0 0( ) (1 ) / (1 ) /Yield F d d               , for any  ,   . 

Proof :  
Since T d    and T m d  , we have (1 )U d      ,  and (1 )L d       , 

thus the lemma since Yield    ( ) / ( ) /U L        . 

 
Lemma 4 : 
a) If ( , ) (0,0)u v  , then ' ( )uF   has the sign of 

2 2 2 2 2 2( ) ( ) ( ( ) ( ) ( ) ) tanh( ( ) / ( ))u u u u u u uQ q v d d k q v d d d                   , 

where 2 2
0( ) (1 )u uk u d     and 2

0( ) (1 )u u uq ud u d    . 

b) If ( , ) (0,0)u v  , then ' ( )lF   has the sign of 
2 2 2 2 2 2( ) ( ) ( ( ) ( ) ( ) ) tanh( ( ) / ( ))l l l l l l lQ q v d d k q v d d d                   , 

where 2 2
0( ) (1 )l lk u d     and 2

0( ) (1 )l l lq ud u d     . 

c) If ( , ) (0,0)u v  , then ' ( )F   has the sign of 2 2
0( ) sinh( ( ) / )Q d      . 

Proof : 
a) From lemma 3, we have ( ) ( ( )) ( ( ))u u uF        , where  

( ) (1 ) / ( )u ud        , and ( ) (1 ) / ( )u ud         . 

From lemma 1, ' 2 2 2
0( ) ( (1 ) ) / ( )u u u u uud u d v d d          , thus 

' 2 2 2 2
0( ) [ ( ) (1 ){ (1 ) }/ ( )] / ( )u u u u u u ud d ud u d v d d                    

2 2 2 2 3
0[ ( ) (1 ){ (1 ) }] / ( )u u u u ud d ud u d v d d               . 

From lemma 1, we obtain 
' 2 2 2 2 2 2 3

0 0( ) [ { (1 ) ( ) } (1 ){ (1 ) }] / ( )u u u u u u ud u d v dd d ud u d v d d                     
2 2 2 2 2 3
0 0[ (1 ) (1 ) (1 ) (1 ) ] / ( )u u u u ud u d ud u d v d d                   

2 2 3[ ( ) (1 ) ( ) (1 ) ] / ( )u u u ud k q v d d              . 
' 2 2 2 2 3

0( ) [ ( ) (1 ){ (1 ) }] / ( )u u u u u ud d ud u d v d d                  
2 2 2 2 2 2 3
0 0[ (1 ) ( ) (1 ){ (1 ) }] / ( )u u u u u ud u d v dd ud u d v d d                   
2 2 2 2 2 3
0 0[ (1 ) (1 ) (1 ) (1 ) ] / ( )u u u u ud u d ud u d v d d                   

2 2 3[ ( ) (1 ) ( ) (1 ) ] / ( )u u u ud k q v d d              . 

Consequently,  
' ' '( ) '( ( )) ( ) '( ( )) ( )u u u u uF             
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   2 2
(1 ) / ( ) / 2 (1 ) / ( ) / 21/ 2 ' 1/ 2 '(2 ) ( ) (2 ) ( )u ud d

u ue e                     
2 2 2 2 2 2 2 2 2 2(1 ( ) ) /(2 ( )) ( ) / ( ) (1 ( ) ) /(2 ( )) ( ) / ( )1/ 2 ' 1/ 2 '(2 ) ( ) (2 ) ( )u u u ud d d d

u ue e e e                                
2 2 2 2 2 2 2(1 ( ) ) /(2 ( )) ( ) / ( ) ( ) / ( )1/ 2 ' '(2 ) [ ( ) ( )]u u ud d d

u ue e e                       
2 2 2 2 2(1 ( ) ) /(2 ( )) ( ) / ( )1/ 2 2 2 3(2 ) ( ( ) (1 ) ( ) (1 ) ) / ( )u ud d

u u u ue e d k q v d d                           

2 2( ) / ( ) 2 2 3( ( ) (1 ) ( ) (1 ) ) / ( )ud
u u u ue d k q v d d                     

2 2 2 2 2 2 2(1 ( ) ) /(2 ( )) ( ) / ( ) ( ) / ( )1/ 2 3 2 2(2 ) ( ) ( )( ( ) )u u ud d d
u u ud e e e q v d d                          

2 2 2 2( ) / ( ) ( ) / ( ) 2 2( )( ( ) ( ) ( ) )u ud d
u u ue e k q v d d                       

2 2 2(1 ( ) ) /(2 ( ))1/ 2 32 ( ) ud
ud e            

 2 2 2 2( ( ) )cosh( ( ) / ( ))u u uq v d d d         

2 2 2 2( ( ) ( ) ( ) )sinh( ( ) / ( ))u u u uk q v d d d                 

2 2 2(1 ( ) ) /(2 ( ))1/ 2 3 2 22 ( ) cosh( ( ) / ( )) ( )ud
u u ud e d Q               . 

Now 
2 2 2(1 ( ) ) /(2 ( ))1/ 2 3 2 22 ( ) cosh( ( ) / ( )) 0ud

u ud e d               . Thus ' ( )uF   has the sign 

of ( )uQ  . 

b) The proof is similar for ' ( )lF  . 

c) If ( , ) (0,0)u v  , from the lemma 3, 

   '
0 0 0( ) ( / )[ ' (1 ) / ' (1 ) / ]F d d d                 

   2 2
0 0(1 ) / / 2 (1 ) / / 21/ 2 1/ 2

0( / )[(2 ) (2 ) ]d dd e e                 
2 2 2 2 2 2 2

0 0 0(1 ( ) ) /(2 ) ( ) / ( ) /1/ 2
0( / )(2 ) [ ]d d dd e e e                   

2 2 2
0(1 ( ) ) /(2 )1/ 2 2 2

0 0( / ) 2 sinh( ( ) / )dd e d          
2 2 2

0(1 ( ) ) /(2 )1/ 2 1
02 ( )dd e Q        . 

Now 
2 2 2

0(1 ( ) ) /(2 )1/ 2 1
02 0dd e          . thus ' ( )F   has the sign of ( )Q  . 

 
2.1. Case ( , ) (0,0)u v   
 
When ( , ) (0,0)u v  , we have " " "( , ) (0,0)p p pC u v C C  . 

Theorem 1 : 

"
*

2 3 1p

d
C NC

d
     
 

. 

Proof: From the lemma 4, ' ( )F   has the sign of 2 2
0( ) sinh( ( ) / )Q d      .  

Thus '

0

( ) 0

0

si

F si

si

 
  

 

  
  
  

. 

Consequently ( )F   has a unique maximum at    , and this maximum is equal to 

"
*

( ) 2 3 1p

d
F C

d
      

 
. On the other hand,  

   0 0lim ( ) lim [ (1 ) / (1 ) / ]F d d
 

      
 

        ( ) ( ) 0      , 
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   0 0lim ( ) lim [ (1 ) / (1 ) / ]F d d
 

      
 

        ( ) ( ) 0      . 

Thus "
*

0 ( ) 2 3 1p

d
F C

d
      

 
, and  "

*
2 3 1p

d
C NC

d
     
 

. 

 
Particular case: If T m , we have *d d , "

p pC C , thus  2 3 1pC NC    , result well 

known, given for example by Pearn and Kotz (2006, p.9). 
 
2.2. Case ( , ) (1,0)u v   
 

When ( , ) (1,0)u v  , we have " " "( , ) (1,0)p p pkC u v C C  . 

Theorem 2 : 

" " " "
* * * *

min 3 , 3 3 3u l u l
pk pk pk pk

D D D D
C C NC C C

d d d d

                         
        

. 

Proof : 
If ( , ) (1,0)u v  , from (5), min max1/ 1/l ud d       . 

- Let 0 1/ ud  . We have 2 2( ) ( ) ( ( ) ( ) ( )) tanh( ( ) / ( ))u u u u uQ q k q d              , 

where 2 2
0( ) (1 )u uk d     and 2

0( ) (1 )u u uq d d    . 

( )uQ  2 2 2 2 2 2
0 0 0(1 ) { (1 ) ( ) (1 )}tanh( ( ) / ( ))u u u u u ud d d d d d                    

2 2 2
0 (1 )[ {(1 ) ( ) }tanh( ( ) / ( ))]u u u u ud d d d d                
2 2 2
0 (1 )[ (1 ) tanh( ( ) / ( ))]u u u ud d d d            
2 2 2
0 (1 ) [1 tanh( ( ) / ( ))]u u ud d d         ,  

since ( ) / ( ) / ( ) / 1 1/u uT m d T U U m d D d d d            .       (6) 

Now 2 20 tanh( ( ) / ( )) 1ud       , and 1 0ud  , thus ( ) 0uQ   , and from the lemma 4, 
' ( ) 0uF   , when 0 1/ ud  .  

- Let 1/ 0ld    . We have 2 2( ) ( ) ( ( ) ( ) ( )) tanh( ( ) / ( ))l l l l lQ q k q d              , 

where 2 2
0( ) (1 )l lk d     and 2

0( ) (1 )l l lq d d     . 
2 2 2 2 2 2
0 0 0( ) (1 ) { (1 ) ( ) (1 )}tanh( ( ) / ( ))l l l l l l lQ d d d d d d                      

2 2 2
0 (1 )[ { (1 ) ( ) }tanh( ( ) / ( ))]l l l l ld d d d d                   
2 2 2
0 (1 )[ ( 1 ) tanh( ( ) / ( ))]l l l ld d d d              

 2 2 2
0 1 [1 tanh( ( ) / ( ))]l l ld d d          ,  

since ( ) / ( ) / ( ) / 1/ 1l lT m d T L L m d D d d d           .        (7) 

Now 2 20 tanh( ( ) / ( )) 1ld       , and 1 0ld  , thus ( ) 0lQ   , and from the lemma 4, 
' ( ) 0lF   , when 1/ 0ld    .  

From the study of ' ( )F  , it results that ( )F   has a minimum at 0  , that is to say at 

T  , equal to " * " *(0) (3 / ) ( 3 / )u pk l pkF D C d D C d     and a maximum when max   or  

min  , equal to  
max min

max lim ( ), lim ( )u lF F
   

 
 

. Now when ( , ) (1,0)u v  , from lemma 1,  

0 0 0( ) (1 ) (1/ ) (1 )u u u u ud d d d                from (6), thus 

0(1 ) / ( ) 1/( )u ud       ,                  (8) 
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and 0 0 0( ) (1 ) (1/ ) (1 )l l l l ld d d d                from (7), thus 

0(1 ) / ( ) 1/( )l ld       .                 (9) 

From (8), (9) and from lemmas 2 and 3, we have  

max 1/ 1/
lim ( ) lim ( (1 ) / ( )) lim ( (1 ) / ( ))

u u
u u u

d d
F d d

   
        

  
          

" *
0( /( )) ( ) (3 / )u u pkd d D C d      , 

min 1/ 1/
lim ( ) lim ( (1 ) / ( )) lim ( (1 ) / ( ))

l l
l l l

d d
F d d

   
        

  
          

" *
0( ) ( /( )) (3 / )l l pkd d D C d       . 

Finally ( )F   has a lower bound equal to " * " *max( (3 / ), (3 / ))u pk l pkD C d D C d   
" *(3 / )l pkD C d  , since  ;T m U .  

Consequently " * " * " *( 3 / ) ( 3 / ) ( 3 / )l pk u pk l pkD C d NC D C d D C d        . 

Note that the lower bound depends on lD , only, and not on uD . For  ;T L m , a similar 

proof gives a minimum equal to " *( 3 / )u pkD C d  , thus the expression given in the theorem, 

valid for any position of  ;T L U . 

The upper bound given in Theorem 2 is identical to the one given by Chang and Wu (2008) in 
the expression (3). To reach that conclusion, we just need to observe that if u lD D , then 

1r  , *
ud D , and if u lD D , then 1r  , *

ld D .  

 
Particular case : If T m , we have *

u lD D d  , thus ( 3 ) 2 ( 3 )pk pkC NC C      , result 

well known, given for example by Pearn and Kotz (2006, p.42). 
 
2.3. Case ( 1, 0)u v  , and 1u   
 
Lemma 5: 
When 1u   and 0v  , or when 1u  ,  then

max min

lim ( ) lim ( ) 1u lF F
   

 
 

  . 

Proof : 
From lemma 3, we have 

max max

lim ( ) lim [ ( (1 ) / ( )) ( (1 ) / ( ))]u u uF d d
   

        
 

          

max

lim ( (1 ) / ( )) ( )ud
 

   


     
max

lim ( (1 ) / ( ))ud
 

   


    . 

On the other hand, from (5) and (6), max 0 0(1 ) ( ( 1) ) /( )ud D vd u vd u         . 

Since max0    , we have " ( , ) 0pC u v   and thus 0 0  . When 1u   and 0v  , or 1u  , 

thus we have max(1 ) 0d     , from where 
max

lim ( (1 ) / ( )) ( ) 1ud
 

   


       , and 

max

lim ( ) 1uF
 




 . 

From lemma 3, we have 

min min

lim ( ) lim [ ( (1 ) / ( )) ( (1 ) / ( ))]l l lF d d
   

        
 

          

min

( ) lim ( (1 ) / ( ))ld
 

   


       
min

1 lim ( (1 ) / ( ))ld
 

   


      . 

On the other hand, from (5) and (7), min 0 0(1 ) ( ( 1) ) /( )ld D vd u vd u           . 
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Since min 0   , we have " ( , ) 0pC u v   and thus 0 0  . When 1u   and 0v  , or 1u  , 

thus we have min(1 ) 0d      , from where 
min

lim ( (1 ) / ( )) ( ) 0ld
 

   


        , 

and
min

lim ( ) 1lF
 




 . 

 
Theorem 3 : 
When 1u   and 0v  , or when 1u  , we have 

" "
* *

0 3 ( , ) 3 ( , )u l
p p

D D
NC C u v C u v

d d
           
   

. 

Proof :  
We have " "( , ) ( , )p pC u x v y C u v   , for any x, y   0. Thus when 1u   and 0v  , or when 

1u  , " " "( , ) (1,0)p p pkC u v C C  .  

Thus from the theorem 2, 
" * " * " * " *( 3 / ) ( 3 / ) ( 3 ( , ) / ) ( 3 ( , ) / )pk u pk l p u p lNC C D d C D d C u v D d C u v D d          . This 

upper bound is reached at 0   since in this case, 0( ) ( )u l       according to lemma 1, 

0 0(0) ( (1 ) / ) ( (1 ) / )F d d          according to lemma 3, and from (6) and (7),  

(0)F  " * " *(3 ( , ) / ) ( 3 ( , ) / )p u p lC u v D d C u v D d   . Consequently, when 0  , 

1 (0)NC F  " * " *( 3 ( , ) / ) ( 3 ( , ) / )p u p lC u v D d C u v D d     . 

Moreover, ( )F   is always maximised by 1, value reached at min  and max  according to 

lemma 5. Thus NC  is minimized by 0, and the theorem.    
 
Particular cases : If T m , then *

u lD D d  , and " ( , ) ( , )p pC u v C u v . Thus when 1u  , 

0v  , or 1u  , we have 0 2 ( 3 ( , ))pNC C u v    . When ( , ) (1,1)u v  , this result 

supplements the one obtained by Pearn and Lin (2005) who restrict the relation to the values 

of 2 / 3pmkC  . In addition, when T m , and ( , ) (1,1)u v  , then " "(1,1)p pmkC C  and we have 

" "
* *

3 ( , ) 3 ( , )u l
p p

D D
NC C u v C u v

d d
          
   

"2 ( 3 )pmkC   . The result obtained by Pearn, 

Lin, and Chen (1999) is thus exact, although their proof is not true in all cases. 
 
2.4. Case 0 1u  , 0v   
 
Lemma 6 :  
When 0 1u   and 0v  , then 

max min

lim ( ) lim ( ) 0u lF F
   

 
 

  . 

Proof : 
From lemma 3 we have 

max max

lim ( ) lim [ ( (1 ) / ( )) ( (1 ) / ( ))]u u uF d d
   

        
 

          

max

lim ( (1 ) / ( )) ( )ud
 

   


     
max

lim ( (1 ) / ( ))ud
 

   


    . 

Now when 0 1u   and 0v  , from (5) we have max 1/ uud  , and from (6), max(1 )d     

( 1) / 0uD u u   , thus 
max

lim ( ) ( ) 0uF
 




    . 

From lemma 3 we have 
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min min

lim ( ) lim [ ( (1 ) / ( )) ( (1 ) / ( ))]l l lF d d
   

        
 

          

min

( ) lim ( (1 ) / ( ))ld
 

   


       
min

1 lim ( (1 ) / ( ))ld
 

   


      . 

Now when 0 1u   and 0v  , from (5) we have min 1/ lud   , and from (7), 

min(1 )d      ( 1) / 0lD u u    , thus  
min

lim ( ) 1 0lF
 




    . 

 
Theorem 4 :  
When 0 1u   and 0v  , 

a) If 
*

" 1 /1
( ,0) ln

3 2 1
u l

p

ud dd
C u

d u
    

, then 1lM NC  , 

b) If 
*

" 1 /1
( ,0) ln

3 2 1
u l

p

ud dd
C u

d u
    

, then  max , 1l uM M NC  ,  

with  

   
" "1 1

* *
1 1

3 ( ,0) 3 ( ,0)
1 1
l u l l

l p p
l l l l

d D d D
M C u C u

d u d d u d

 
 

    
             

, 

   
" "1 1

* *
1 1

3 ( ,0) 3 ( ,0)
1 1
u u u l

u p p
u u u u

d D d D
M C u C u

d u d d u d

 
 

    
             

, 

2
*

2 4 2
"

1 2
*

2 2
"

1
2 (1 ) ln

3 ( ,0) 1 /1

1
ln

3 ( ,0) 1 /

l l
p l u

l
l

l
p l u

d u
d d ud d u d

C u ud d

ud d u
u d

C u ud d





   
           

   
       

, 

2
*

2 4 2
"

1 2
*

2 2
"

1 /
2 (1 ) ln

3 ( ,0) 11

1 /
ln

3 ( ,0) 1

u l
u u

p

u
u

u l
u

p

ud dd
d d ud d u d

C u u

ud ud dd
u d

C u u





             
   
       

. 

Proof : 
We obviously have 0 ( ) 1F   . According to lemma 6 the lower bound 0 is reached at min  

and max . If there is a maximum less or equal to 1, it is necessarily obtained for the values of 

 min max,   , solutions of the equation ' ( ) 0uF    or ' ( ) 0lF   . 

- Study of ' ( )uF  . 

Let max0 1/ uud    . When v = 0 and from lemma 4, we have 
' ( ) 0 ( ) 0u uF Q    2 2( ) ( ( ) ( ) ( )) tanh( ( ) / ( )) 0u u u uq k q d                

2 2 2 2 2 2
0 0 0(1 ) ( (1 ) ( ) (1 )) tanh( ( ) / ( )) 0u u u u u uud u d u d ud u d d                     
2 2 2 2
0 0(1 ) (1 )(1 ) tanh( ( ) / ( )) 0u u u u uud u d u d ud d                

2 2 2
0 (1 )[ (1 ) tanh( ( ) / ( ))] 0u u u uu d ud ud d             

2 2(1 ) tanh( ( ) / ( )) 0u u uud ud d         , since 0 1/ uud  , 
2 2 2

0tanh( ( ) /[ (1 ) ]) /(1 )u u ud u d ud ud         , from lemma 1, 
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2 2 2 1
0( ) /( (1 ) ) tanh ( /(1 ))u u ud u d ud ud         . 

Assuming that 1tanh ( /(1 )) 0u u ut ud ud   , we have 
' ( ) 0uF    2 2 2

0( ) (1 )u ud t u d       
2 2 2 2 2 2 2 2
0 0 0(2 ) 0u u u u ut u d ud t d d t           ,                   (10) 

which is a second-degree polynomial of the variable .  
Since 4 2 2

04 (1 ) 0u u u ud t ud d u d      , we have two roots,  
2 2 2
0

1 2 2 2 2 2 2
0 0

2 1

2 2
u u u u

u
u u u u u

ud t d d

t u d ud t u d




 
    

   , 

2 2 2
0

2 2 2 2 2 2 2
0 0

2 1

2 2
u u u u

u
u u u u u

ud t d d

t u d ud t u d




 
    

   . 

As can be seen 2 max1/u uud    is not suitable in the studied field. To make 1u  become 

acceptable, we need to 1 max0 u   . Since 4
u d  , we have 1 max1/u uud   . In addition, 

since 2 0u  , for 1u  to be positive or null, the product of the roots of (10) has to be positive 

or null, or that 2 2
0 0ud t    " *( ,0) / /(3 )p uC u t d d  . Now 

1tanh ( /(1 ))u u ut ud ud 
1

ln 1 1
1 12

u u

u u

ud ud

ud ud 
    

           

1 (1 )1
ln

2 1 (1 )
u

u

ud

ud




  
    

1 /1
ln

2 1
u lud d

u

    
, from (6) and (7). Thus when 

*
" 1 /1
( ,0) ln

3 2 1
u l

p

ud dd
C u

d u
    

, there 

exists  1 max0,u   for which ' ( ) 0uF    and thus for which ( )uF   is maximum.  

Note that in the particular case where 
*

" 1 /1
( ,0) ln

3 2 1
u l

p

ud dd
C u

d u
    

, that is to say when 

2 2
0 0ud t    , we have 1 0u   and 2 2

0/ut d   . When v = 0,  from lemma 4, we have 

(0)uQ  2 2 2 2
0 0 0[ (1 ) tanh( / )] [ (1 ) tanh( )]u u u u uud ud d ud ud t           

2
0 [ (1 ) /(1 )] 0u u u uud ud ud ud       . Consequently, according to lemma 4, ' ( ) 0uF   , 

and ( )uF   is maximum for 1 0u   . 

When 
*

" 1 /1
( ,0) ln

3 2 1
u l

p

ud dd
C u

d u
    

, we have 1 0u  . Thus there is no value of 

 max0,   for which ' ( ) 0uF   . On the other hand, from (6), (7) and lemma 3, 
" * " *(0) (3 ( ,0) / ) ( 3 ( ,0) / )u p u p lF C u D d C u D d    . Consequently, we have (0) 0uF  , 

max

lim ( ) 0uF
 




  from lemma 6, and ' ( ) 0uF    when  max0,  .  Thus ( )uF   is decreasing 

when  max0,   and maximum when 0  .  

- Study of ' ( )lF   

Let min1/ 0lud      . When v = 0 and from lemma 4, we have  
' ( ) 0 ( ) 0l lF Q    2 2( ) ( ( ) ( ) ( )) tanh( ( ) / ( )) 0l l l lq k q d               

2 2 2 2 2 2
0 0 0(1 ) [ (1 ) ( ) (1 )] tanh( ( ) / ( )) 0l l l l l lud u d u d ud u d d                      

2 2 2
0 (1 )[ ( 1 ) tanh( ( ) / ( ))] 0l l l lu d ud ud d               
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2 2( 1 ) tanh( ( ) / ( )) 0l l lud ud d           , since min1/ 0lud      . 

Thus from lemma 1, we have 
' 2 2 2

0( ) 0 tanh( ( ) /[ (1 ) ]) /( 1 )l l l lF d u d ud ud            .      (11) 

From (7), 1 1 (1/ 1) 1l l l lud d ud u ud          , and since 1u  , we have  

1 0lud   . Consequently the solutions of (11) can exist only for    . In this case, 
' 2 2 2 1

0( ) 0 ( ) /[ (1 ) ] tanh ( /( 1 ))l l l lF d u d ud ud            , and assuming that 
1tanh ( /( 1 )) 0l l lt ud ud    , we have 

' ( ) 0lF    2 2 2
0( ) (1 )l ld t u d      2 2 2 2 2 2 2 2

0 0 0(2 ) 0l l l l lt u d ud t d d t           , 

which is a second-degree polynomial of the variable . Since 0lt   and 1 0lud   , 
4 2 2

04 ( 1 ) 0l l l ld t ud d u d       , and we have two roots,  
2 2 2

0
1 2 2 2 2 2 2

0 0

2 1

2 2
l l l l

l
l l l l l

d ud t d

t u d ud t u d




 
    

    , 

2 2 2
0

2 2 2 2 2 2 2
0 0

2 1

2 2
l l l l

l
l l l l l

d ud t d

t u d ud t u d




 
    

    . 

As can be seen, 2 min1/l lud     is not suitable in the studied field. To make 1l  become 

acceptable, we need to min 1 0l      . Since 4
l d  , we have 1 min1/l lud    . 

Furthermore, since 2 0l  , for 1l  to be negative or null, the product of the roots has to be 

positive or null, or that 2 2
0 0ld t    , which is always true. Thus ( )lF   is maximum when 

 1 min ;l    . 

In conclusion, from the study of  ' ( )uF   and ' ( )lF  , we can deduce:  

- If 
*

" 1 /1
( ,0) ln

3 2 1
u l

p

ud dd
C u

d u
    

, ( )uF   is maximum when 0  , and 

1( ) (0)l l lF F   (0)uF . Thus ( )F   has an upper bound when  1 min ;l    . On the other 

hand, from lemma 6, 
max min

lim ( ) lim ( ) 0u lF F
   

 
 

  . Thus 10 ( ) ( )l lF F    or 

11 ( ) 1l lF NC   . From (6), (7) and lemmas 1 and 3, we obtain a) assuming that 

11 ( )l l lM F   . 

- If 
*

" 1 /1
( ,0) ln

3 2 1
u l

p

ud dd
C u

d u
    

, ( )uF   is maximum when  1 max0,u  , and ( )lF   

is maximum when  1 min ;l    . Thus, ( )F   has an upper bound when  min max;   , 

equal to 1 1max( ( ); ( ))l l u uF F  . On the other hand, from lemma 6, 

max min

lim ( ) lim ( ) 0u lF F
   

 
 

  . Thus 1 10 ( ) max( ( ), ( ))l l u uF F F    , or  

1 1max(1 ( ),1 ( )) 1l l u uF F NC     . From (6), (7) and lemmas 1 and 3, we obtain b) 

assuming that 11 ( )u u uM F   . 

 
Particular case : If T m , then 0  , 1u ld d  , *d d , and " ( ,0) ( ,0)p pC u C u . The 

product of the roots of the second-degree polynomial (10) has the sign of ut , therefore it is 
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always positive. Consequently, ( )uF   is maximum in  1 max0,u  , for any value of 

( ,0) 0pC u  . Thus theorem 4 is stated as follows:  

When 0 1u  , 0v  ,  then 1M NC  , 
where 0 0 0 0(3 ( ,0)( 1) /(1 )) ( 3 ( ,0)( 1) /(1 ))u l p pM M M C u u C u u             , 

with 

2

0 1 1 2

1 2 1 1
1 1 ln ln

(3 ( ,0)) 1 3 ( ,0) 1u l
p p

u u u u
C u u C u uu

  
                                

. 

 
2.5. Case 0 1u  , 0v   

 
Lemma 7 :  
When 0 1u   and 0v  , 

a) If 
*

" (1 )
( , )

3
p

u d
C u v

vd


 , then 

max min

lim ( ) lim ( ) 1u lF F
   

 
 

  . 

b) If 
*

" (1 )
( , )

3
p

u d
C u v

vd


 , then 

max min

lim ( ) lim ( ) 1/ 2u lF F
   

 
 

  . 

c) If 
*

" (1 )
0 ( , )

3
p

u d
C u v

vd


  , then

max min

lim ( ) lim ( ) 0u lF F
   

 
 

  . 

Proof : 
From lemma 3 we have 

max max

lim ( ) lim [ ( (1 ) / ( )) ( (1 ) / ( ))]u u uF d d
   

        
 

         

max

lim ( (1 ) / ( )) ( )ud
 

   


     
max

lim ( (1 ) / ( ))ud
 

   


    . 

From (5) and (6), we have 
" * " *

max(1 ) (3 ( , ) ( 1) ) /(3 ( , ) )u p pd D vdC u v u d vdC u v ud       . Thus  

a) If " *( , ) (1 ) /(3 )pC u v u d vd  , then max(1 ) 0d     , 
max

lim ( (1 ) / ( ))ud
 

   


    =  

( )   1 , and 
max

lim ( ) 1uF
 




 .  

b) If " *( , ) (1 ) /(3 )pC u v u d vd  , then max(1 ) 0d     , 
max

lim ( (1 ) / ( ))ud
 

   


    = 

(0)  1/ 2 , and 
max

lim ( ) 1/ 2uF
 




 . 

c) If " *0 ( , ) (1 ) /(3 )pC u v u d vd   , then max(1 ) 0d     , 
max

lim ( (1 ) / ( ))ud
 

   


    = 

( )   = 0, and 
max

lim ( ) 0uF
 




 . 

In a similar way we have 
min min

lim ( ) 1 lim ( (1 ) / ( ))l lF d
   

    
 

      , and the lemma since 

from (5) and (7), " * " *
min(1 ) (3 ( , ) ( 1) ) /(3 ( , ) )l p pd D vdC u v u d vdC u v ud         .  

 
Lemma 8 :  

When 0 1u   and 0v  , if 
*

" (1 )
( , )

3
p

u d
C u v

vd


 , then for any max0;u    , there exists 

min ;0u
l u

l

d

d
        such as  ( ) ( )u u l lF F  .  
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Proof :  
Let max0;u    , min/ ;0l u u ld d       , ( ) /u uE d  , (1 ) /ua E    , 

(1 ) /lb E    , and ( ) / 0u lx E    . 

If " *( , ) (1 ) /(3 )pC u v d u vd  , then " * *3 ( , )pvdC u v ud d  , and 
* " */( (3 ( , ) )) 1/u p ud d vdC u v ud d  . From (5) and (6), we deduce  

* " *
max0 /( (3 ( , ) )) 1/ 1u u p ud d C u v vd ud d         , from where 0a   and 

1 0u ud  . Consequently, since  ;T m U , we have  

u ld d , (1 ) / (1 ) /u u u u u ld d d d    , and 1/ 1/ /u u l u u ld d d d    . Since /l u u ld d   , 

from (6) and (7) we deduce (1 ) / (1 ) /u la E E b          .  

Let f  the probability density function of the standard normal distribution N(0,1). Since f is 

decreasing on  0; , when 0x   and 0b a  , we have ( ) ( )
b x a x

b a
f x dx f x dx

 
  , thus 

(1 ) / (1 ) /

(1 ) / (1 ) /
( ) ( )

u l

l u

E E

E E
f x dx f x dx

   

   

   

   
 

(1 ) / (1 ) /

(1 ) / (1 ) /
( ) ( ) 0

l u

u l

E E

E E
f x dx f x dx

   

   

    

    
    0A B   , 

where 
(1 ) /

(1 ) /
( ) ( (1 ) / ) ( (1 ) / )

l

u

E

l uE
A f x dx E E

 

 
   

  

  
          , 

and 
(1 ) /

(1 ) /
( ) ((1 ) / ) ((1 ) / )

u

l

E

u lE
B f x dx E E

 

 
   

 

 
        . Now 

((1 ) / ) ( (1 ) / ) ((1 ) / ) ( (1 ) / )u u l lE E E E A B                        , thus 

((1 ) / ) ( (1 ) / )u uE E           ((1 ) / ) ( (1 ) / )l lE E          . 

Since /l u u ld d   , from lemma 1, we have ( ) ( )l l u u    , and 

( ) / ( ) /u u l lE d d     . Consequently,  

( (1 ) / ( )) ( (1 ) / ( ))u u u u u ud d               

( (1 ) / ( )) ( (1 ) / ( ))l l l l l ld d               , 

and ( ) ( )u u l lF F  . 

It should be noted that when " *( , ) (1 ) /(3 )pC u v d u vd  , no general rule can be obtained, as 

shown in the graphic investigations which have been made, but which are not detailed here. 
 
Theorem 5 : 
When 0 1u   and 0v  , 

a) If 
*

" (1 )
( , )

3
p

u d
C u v

vd


 , then  max0;u   exists, a solution of the following equation (12) 

such as 0 1 ( )u uNC F    . 

b) If 
*

" (1 )
( , )

3
p

u d
C u v

vd


 , then  max0;u   and  min ;0l   exist, solutions of the following 

equations (12) and (13) such as 1 ( ) 1 ( )l l u uF NC F     . 

c) If 
*

" (1 )
0 ( , )

3
p

u d
C u v

vd


  , then  min max;    exists, a solution of the one of the 

following equations (12) and (13) such as 1 ( ) 1F NC   . 
Proof : 
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The existence of maxima and minima is established by lemmas 7 and 8. These maxima and 
minima are necessarily obtained for the values of  solutions of the equations ' ( ) 0uF    or 

' ( ) 0lF   , that is to say according to lemma 4, of the equations 
2 2 2 2 2 2( ) ( ( ) ( ) ( ) ) tanh( ( ) / ( )) 0u u u u u uq v d d k q v d d d                                 (12) 
2 2 2 2 2 2( ) ( ( ) ( ) ( ) ) tanh( ( ) / ( )) 0l l l l l lq v d d k q v d d d                                    (13) 

These solutions can only be obtained numerically. 
 
Particular case : Let u = 0. Since  ;T m U , / 1ud D  , and *

ud D .  

If T  , it is easy to see that " (0, ) (0, )p pC v C v .   

If T  , the function 4 2 2( )u l uf D d D D   4 2 2(2 )u ud d D D    being always positive or null 

when  0;uD d , we have 2 2 2 2/ 1/u ld D D d , and thus  

" (0, )pC v  * 2 2/ 3d vA    1 22 2 22 2 21/ 3 / ( ) /( )u u lD vd T D D     
 

 

  1 22 2 2 21/ 3 / ( ) /d v T d     2 2/ 3 ( )d v T    (0, )pC v . 

Moreover, since " "( , ) ( , )p pC u x v y C u v   , for any x, y   0, we have 

(0, ) (0,1)p p pmC v C C   when v   1, and " "( , ) (0, )p pC u v C v  when u   0. Therefore 
" ( , )p pmC u v C , when u   0 and v   1. Now when 1/ 3pmC  , Ruczinski (1996) shows that 

( )F   is minimum at 0  , and that the minimum is equal to 2 (3 ) 1pmC  , which means 

that 2 ( 3 )pmNC C   . We can deduce that when 0 1u  , v   1 and " ( , ) 1/ 3pC u v  , then 
"2 ( 3 ) 2 ( 3 ( , ))pm pNC C C u v      . Furthermore, if T = m, the upper bound 2 ( 3 ( , ))pC u v   

is reached at 0  . Actually, when 0   and T = m,  1 (0) 1 (0)u lNC F F     

0 01 ( / ) ( / )d d     02 ( / ) 2 ( 3 ( , ))pd C u v      .  

 
3. CONCLUSION 
The indices family ( , )pC u v  suggested by Vännman (1995) for symmetrical tolerances, then 

the family " ( , )pC u v  suggested by Chen and Pearn (2001) for asymmetrical tolerances, give an 

algebraic generalization of the usual indices pC , pkC , pmC , and pmkC . If these generalizations 

have an obvious theoretical interest, however they do not make the user’s work easier, since 
the choice of an index among the four standard indices is already confusing for him. 
Vännman (1995), for symmetrical tolerances, then Grau (2009) for asymmetrical tolerances, 
suggest to choose an index according to the properties of its estimator. In the work previously 
developed we give the user the theoretical elements bringing to the fore the links between the 
indices ( , )pC u v  or " ( , )pC u v  and the process yield. The knowledge of these links as well as of 

those associated to the process centering, allows the user to choose an index according to the 
importance which he wishes to attach simultaneously to the centering and the proportion of 
nonconforming. 
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