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ABSTRACT

Capability indices were introduced to compare the performance of various processes
independently of their tolerance interval. The concept of performance, related at first to the
proportion of conforming items (process yield), quickly evolved to take into account the
process position in relation to its target (process centering), as well. If the links between
capability indices and process centering have already been studied, those between capability
indices and processes yield have only been partly studied. In this paper we clarify the links
between the process yield and the indices C;(u,v) .
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1. INTRODUCTION

In any manufacturing process, the variable of interest is associated with a target T and a
tolerance interval [L;U]. The process performance can be evaluated by taking various

criterions into consideration. The oldest one is the process yield or percentage of conforming
items, which we note Yield. The user often prefers to express this performance by using the
percentage of nonconforming items, which we note NC, which is obviously defined by the
relation NC = 1 — Yield. In the following study we will consider the most usual case where the
variable of interest is normally distributed with mean x and standard deviation o. In these
conditions, the process vyield is represented by the relation Yield =

O(U-u)lo)-®((L-u)/o), in which @ is the cumulative function of the standard

normal distribution.

However the process performance cannot only be related to the proportion of conforming
items. Between two processes leading to the same number of conforming items, the more
effective in the user’s mind will be the one whose mean value is on the target. The process
centering, that is to say the ability to cluster around the target is thus another important fact to

measure the process performance. The four basic capability indices C,, C,, C,, and C
have been widely used as unitless measures, which combine natural process variability,

manufacturing tolerances, and the process centering. Vannman (1995) proposed a
superstructure containing these four basic indices as
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where m = (L + U)/2 stands for the midpoint of the tolerance interval, d =(U —L)/2 stands

for the half-length of the tolerance interval, and u and v are two non-negative parameters.
However, if indices C (u,v) are well adapted to the case of symmetrical tolerances (T = m),

they have some undesirable properties when the tolerances are asymmetrical (T #m). To
generalize the family C (u,v) to the case T =m, Chen and Pearn (2001) suggested to use

the family

C,(uv)=

d”—uA’
3WVo? + VA 1
in which A=max{d(x«—T)/Du,d(T —x)/Di}, A"=max{d*(u-T)/Du,d*(T —u)/Di},
Du=U-T, DI=T-L, d*=min{Dy,Di}. Note that when u=0, the calculation of
C',;(u,v) can lead to negative values, which is hardly satisfactory to measure the process

C,(u,v)=

performance. In addition for u =0, C',;(u,v) is obviously positive. Therefore, in the following
part of this paper, we will only be interested in the case where C;(u,v) >0, in order not to

increase the heaviness of the paper with the particular case where C',; (u,v)=0.

The choice of u and v allows us to attach more or less importance to the process yield or to the
process centering. In order to enable the user to choose the best index according to his needs,
the links which join indices, process yield and process centering, have to be known precisely.
Links between capability indices and centering are given (Kotz and Lovelace, 1998, p.184) in
the case of symmetrical tolerance by the relation

d
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In the case of asymmetrical tolerances, Chen and Pearn (2001) suggest a generalization of this
expression under the form

____(-R)D cu<T4+—_U-RD, |

3WVC; (u,v) +u(l-R) 3WC; (u,v) +u(l-R)

in which R=|1-r|/Q+r), and r=D,/D,. Although it is not specified by the previous
authors, note that the relations (1) and (2) are true for C'F',(u,v) >0, and (u,v) #(0,0). When

(u,v) =(0,0), these relations are expressed in the form —o < g < +.

On the other hand, the links between capability indices and processes yield have only been
partly studied. In the following paragraph we explain the various results found in the
literature.

For C,=(U —L)/60, first index introduced by Juran (1974), we have 20(-3C,) <NC <1

(Pearn and Kotz, 2006, p.9), the lower bound being reached only when the process is well
centered, that is to say when g is onm.
For C,, =min((U - u)/30,(u—L)/30), index which takes into account the position of the

u=T|<

(2)

mean inside the tolerance interval, we have ®(-3C,)<NC <2®(-3C,) (Pearn and Kotz,
2006, p.42).



For C,, =(U —-L)/6\o’+(u—T)*, and under the usual assumption that T =m, Ruczinski

(1996) shows that when C <1/3 then 20(-3C ) <NC <1, when 1/3<C <1/+/3 then
0<NC <M where M is the solution of an equation which can be solved numerically, and
finally when C_, >1/+/3, then 0 < NC <2d(-3C,,).

For C,, =C,C,,/C,,and T =m, Pearn and Kotz (2006, p.114) quote a working paper of

Pearn and Lin (2005) showing that when C__ > V2173, we have 0< NC < 20(-3C ) -

pmk

Generally, when the tolerances are symmetrical, Vdnnman (1995) proposes the family
C,(u,v), where u and v are two positive or null parameters. Kotz and Lovelace (1998, p.184)

indicate that NC <2®(-3C(u,v)), without taking into account the restrictions specified by
Ruczinski (1996) for C,, and by Pearn and Lin (2005) for C, .

For asymmetrical tolerances, Chen and Pearn (2001) propose the family C;(u,v). To study
the process yield, these authors use the index
Sy =@ P {A/2)®((U — )/ o)+ @/ 2)®((1— L)/ o)} suggested by Boyles (1994) which
is directly related to the proportion of nonconforming items by the relation NC =2®(-3S ).

After graphically noticing that C_(u,v) <S , they conclude that if C_(u,v)=c, the process

pk !
yield must be no less than that corresponding to S, =c. In other words, the proportion of
nonconforming must not be greater than 2@(—3C'F'J(u,v)). However it is possible to find
values for which C'F'J(u,v) > S, which thus do not allow to obtain an upper bound of NC. For
example, when (L,T,U)=(26,50,58), ¢ = 59.3, o = 0.643, we have C;(O.S,l) =0.06 and
S, =0.009. In these conditions, the proportion of nonconforming is equal to 0.98, a quantity
which is not lower than 2d(-3C_(0.5,1)) = 0.86.
In the particular case where (u,v)=(11), Pearn, Lin and Chen (1999) show that
NC <2d(-3C,,,) supposing that C,, <C,. . However it is possible to find values for
which C;mk >C, - For example, when (L,T,U)=(26,50,58), x = 49, o = 0.5, we have
C,m =3.07 and C_, =2.68.
Lastly, when (u,v) =(1,0), Pearn, Lin and Chen (2004), or Chang and Wu (2008), show that
NC < 2—-[®(3C,, /minfL, r}) + ®(3C,, max{L r})]. (3)

As we have just seen, the results evoked in the literature concerning the links between
capability indices and process yield include some errors or inaccuracies. Thus the purpose of

this paper is to specify the relations between the C;(u,v) indices and the proportion of

conforming or nonconforming items, and this for any u, v > 0, that we can obtain. In the
following section, we will just study the case where T e [m;U[, since the case T e ]L;m] §

considered in a similar way.

2. PROCESS YIELD AND CAPABILITY INDICES



To take into account the position of T in the interval [m;U[, we note T =m+45d where
5 €[0,]]. To take into account the deviations of 4, we assume that 4 =T +Ad where 1 is

unspecified. The relation (2) allows to see the field in which x is located, more accurately. In
addition, since d”/d =1—R, (2) can still be written in the form

d'D, d’D,
- - —<u<T+ ! —. 4
3JvdC (u,v) +ud 3JvdC (u,v) +ud
The previous relation allows to specify the field of variation of A =(u-T)/d,
1 = ﬂmin < 2’ < ﬂ”m 1 (5)

T d (Wd /o, +u) * "4 (Wd /oy +u)’
where d, =d/D,, d, =d/D,, and o, =d"/(3C,(u,v)) . As noted in the previous section, the
relation (5) is true for C',;(u,v)>0, (u,v) #(0,0), and in the case when (u,v)=(0,0), the
relation (5) remains true assuming that A, =-o and A4, =+o. Reciprocally, it is not
difficult to note that if 4, <4 <4, then C (u,v)>0. This is obvious when u = 0. When
u=0, from (5) we have -1/(ud,)<A<1/(ud,). Consequently, if 0<A<1/(ud,),

d"(1-uad,) d"(1+uad,)
3o’ +v(Add,)? 3/o? +v(2dd,)?

The four following lemmas allow us to study the variations of the process yield according
to the values of 4 defined in (5), in a general way. The following sections will enable us to

explain the behaviour of the process yield, in particular the existence of maxima and minima
more clearly, by the distinction of various situations depending on the u and v values.

C,(u,v)= >0, and if ~1/(ud,) <2 <0, C,(u,v)= > 0.

Lemmal:

o,(2) =(02(-uid,? —v(2dd,)?)"* if 0<i<4i,,
O = .
6,(2) = (o2 (+uAd, > —v(2dd,)?)”  if A, <A<0

Proof :
If 0< 2 < Ay, then C(u,v) = d*(1—u,1du)/(3(aj(,1)+v(,1ddu)2)”) thus o, () .

If 1. <A<0,then C;(u,v)=d*(1+u/1d|)/(3(af(/1)+v(/1dd|)2)“), thus o, (1) .

Lemma?2:
If (u,v)#(0,0), then Allrirm]“ o,(1)= EL”JQM o,(1)=0.

Proof :
Let (u,v) # (0,0). According to lemma 1, we have

I - i 2(1-uAd, ) - )
zlg:ax % (4) ial/[du(lj—vr(]ilao+u)}(o-o( U/w“) V(/ldd”) )

2 2\V2
o 1 B 1
( {1 udu(wd/ao+u)d”] V{du(\/Vd/aoJru)ddU]]
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It is the same for &, (1) .

Lemma 3:
a) If (u,v) #(0,0), then

F,(A)=®(d1-5-2)/0,(4))-®(-d@A+5+4)/0,(2)) if 0<A< Ay,
F()=®(d1-5-2)/0,(4))-®(-d@A+5+2)/ 5, (1)) if A <A<0
b) If (u,v) =(0,0), then

Yield =F (1) =®(d(1-6-1)/ 0,)-®(-d(1+5+ 1)/ o) , forany A € |—o0, +o0[ .

Proof :
Since u=T+Ad and T=m+od,wehave U—-pu=d(l-06—-1), and L—u=-d(l+5+ 1),

thus the lemma since Yield=®((U — )/ o) -®((L— )/ o).

Yield = F(4) :{

Lemma4:
a) If (u,v) = (0,0), then F, (1) has the sign of

Q,(A) = q, (A) +vAd2d2 — (k,(A) + (5 + A)q, (A) + SvAd2d2) tanh(d2(5 + A) / o2 (A))
where k, (1) = oZ(1-uld,)* and q, (1) =ud,c’(1-uAd,).

b) If (u,v) # (0,0), then F, (1) has the sign of

Qu(A) =, (2) +vAd2dZ — (K, (A) + (S + A)q, () + 5vAdd2) tanh(d (5 + 2) | 52 (1)) ,
where k(1) = o (L+uld,)® and q,(1) =-ud,c}(L+uAd,).

¢) If (u,v)=(0,0), then F (1) has the sign of Q(A) = —sinh(d*(s +1)/c?).

Proof :
a) From lemma 3, we have F,(1) = ®(y, (1)) — (¢, (1)), where

v, (1) =d1-5-2)/c,(A), and ¢,(A) =-d(1+5+ 1)/ o,(A).

From lemma 1, o, (4) =—(ud oZ(1-uld,)+vAd®d?)/ o, (1), thus

. (1) =[-do, (1) +d(1-8 - A)Yud, o2 (L-uid,) +vid*d2} o, ()] o2 (A)
=[-do?(A) +d (1- & — Aud o2 L-uAd,) +vAd?d?}]/ o3 (A) .

From lemma 1, we obtain

v, () =[-d{c;(1-uAid,)’ —v(Add,)’}+d (-6 - ){ud c.(1-uid,) +vid*d?}]/ o’ (A)
= d[-o2(1-uAd,)? + (-5 - A)ud, o2 (L-uAd,) + (1- S)vAd’d2]/ o3 (A)

= d[—k, (4) + L-5 - A)q, (A) + (1- S)VAd2d?]/ 3 (A) .

0. (A) =[-do?(4) —d L+ 6 + A)ud, o2 (L-udd,) +vid*d2}]/ o (4)

= —d[o?(L-uAd,)? —v(Add,)? + L+ S + A){ud, o2 1—uAd,) +vAd?d?}]/ 3 (1)
=-d[o.(1-uAd,)* + 1+ 6 + A)ud,o; (1-uAd,) + 1+ 5)vAad?d?]/ o2 (A)
=—d[k, (1) + 1+ +2)q, (A1) + L+ )vad?d?]/ ol (A) .

Consequently,

F,(2) =@ '(y, (D), (1) - P (p,(A)e,(2)



_ (2 )—1/2 — d(l o— i)/au(/l) (i) (27[)—1/2 — d(l+§+2.)/o‘u(l)) (Du (/1)
_ (zﬂ)—llze—d (1+(5+2) )/(205(/1))ed (a%)/ﬁ(z)w (/1) _ (2”)71/26-(1 (1+(b+/1)2)/(205(Z))e—d2(5+/1)/0'3(l)¢' (/1)
_ (271_)—1/2efd2(1+(5+),)2)/(205 (2)) [ed2(5+ﬂ)/af(ﬂ,)l//' (/1) _ efdz(sm)/af(z)(o' (ﬂ)]
= (27) V2 @I 205 (A [edz(b‘*”’“f Dd (=k, (1) + (1- 65 — 2)q, (A) + 1-5)vad?d?) [ o3 (2)
+e AT (K (1) + 1+ 6 +A)q, (A) + L+ S)vAad?d?) / o° (;L)}
—d (zﬂ_)—UZO_U—S (l)e—dz(1+(5+A)2)/(20-5(A)) |:(ed2(b‘+ﬂ,)/of(l) n e—dz(am)/af(m)(qu (1) +vAd zduz)
—(e OGN _ g d (DY (k (2)+ (5 + A)q, (1) + Svad?d? )]
_ dfﬂ—1/2 -3 (i)e—d 1+(5+2)2) (262 (A))
x[(qu (2) +vAd?d?) cosh(d?(5 + A) [ o2(A))
—~(k, (A) + (8 + 2), (1) + SvAd®d?)sinh(d* (5 + 2) [ 7 (2)) |
= dv27 26,7 (2)e O cosh(d? (5 + 1) [ o2 (A))Q, (A) -
Now d+/27 25 3(2)e " &AM cosh(d?(5 + A)/ o2(A)) > 0. Thus F,(4) has the sign

of Q,(4).

b) The proof is similar for F '(4).

c) If (u,v)=(0,0), from the lemma 3,
F'(2)=—(d/o)[®(d(L-5- 1)/ 0, )— D' (-d(1+5 + A) [ 5, )]

=—(d/o,)[(27) e ~(d@-0-2)/0,)°12 _(27) e ~(d(+6+4) /o) 2]

_—(d /O'O)(27Z') 1/2e—d (1+(b+/1)2)/(20'0)[ed (5+2)/ ot _e—d (b+/1)/o‘0]

_ —(d /O_O)\/’”-l/z —d?(1+(6+2)*)(26¢) Sinh(d2(5+/1)/0'§) _ d\/Eﬂ_—llzaale—dz(1+(5+ﬂ)2)/(20—§)Q(2/) .
Now d+/27 ¥?g;le d @025 5 0 thus F'(1) has the sign of Q(A4).

2.1. Case (u,v)=(0,0)

When (u,v) =(0,0), we have C_(u,v)=C _(0,0)=C_.
Theorem 1 :
2@(— d* C ] <NC <1.

d p

Proof: From the lemma 4, F (1) has the sign of Q(1) =—sinh(d*(5 + 1)/ 7).

>0 si A<-0

Thus F (1) s=0 si 1=-5.

<0 si A>-6

Consequently F(4) has a unique maximum at A=-6, and this maximum is equal to

d* C;j—l. On the other hand,

F(=5) = 2

lim F(2)= im[®(d@A-8-2)/ 0,)~ D (~d(1+ 5 + 1)/ 7, )] = B(~o0) ~B(~0) =0,

A—>+0



lim F(2) = lim[®(d(1-5-2)/0,) - ®(-d A+ 5 + 1)/ 7 )] = D(+0) = D) =0.

Thus 0<F(A) < 2(1)[3 j C;j—l, and 2@(—3(?*

C;js NC <1.

Particular case: If T=m, we have d" =d, C',; =C,, thus ZCD(—3Cp)< NC <1, result well
known, given for example by Pearn and Kotz (2006, p.9).

2.2. Case (u,v)=(1,0)

When (u,v) =(1,0), we have C_(u,v)=C (1,0)=C.
Theorem 2 :

min(d)(—3 dDg c;kj,cp(—s 5)1 c;sz NC < @(—3%C;k]+®(—3 :1 c;k).

Proof :

If (u,v)=(@0), from (5), -1/d, =4, <A <A, =1/d,.

- Let 0<A<1/d,. We have Q,(A)=gq,(A)—(k,(2)+ (5 +2)q, (1)) tanh(d?(5 + 1)/ 52(A)),
where k (4) = o2(1- Ad,)? and q, () = d,c2(1- Ad,).

Q,(4) =d,o2(1-2d,) ~{o? 1 Ad,)? + (5 + A)d, o2 (1- 2d, )} tanh(d? (5 + A) 52(A))

= o2 (1-2d)[d, —{@—2d, ) + (5 + A)d, Hanh(d?(5 + 1)/ 52 ()]

= 62(1-Ad,)[d, — (1+5d, ) tanh(d? (5 + A) 52(A))]

=0, (l-Ad,)d,[1-tanh(d*(5 + 2) I &7 (A))],

since 5 =(T—m)/d =(T-U+U -m)/d =(-D, +d)/d =1-1/d. . (6)
Now 0 <tanh(d*(5+ 1)/ o’ (4)) <1, and 1- Ad, >0, thus Q,(4) >0, and from the lemma 4,
F,(1)>0,when 0<A<1/d,.

- Let —1/d, <A <0. We have Q (4)=0,(A)—(k (A)+ (S +A)q (A)) tanh(d?(5 + )/ 52 (A)),
where k, (1) = o} (1+Ad,)? and q,(4) = -d,o (1 + Ad,).

Q(4) = -d,02 1+ Ad,) ~{o2(L+ Ad,)? (5 + 2)d,02 L+ Ad, )Hanh(d?(5 + A) / o2 (1))

= 62(L+ Ad,)[=d, +{=(+Ad,) + (5 + A)d, Hanh(d*(5 + 2) / 2 (A))]

= 62(L+ Ad,)[=d, + (~1+&d,) tanh(d?(5 + 1)/ 52(A))]

= —d,67 (1+ Ad, )[1+ tanh(d?(5 + 2) | 2 (A))],

since §=(T—m)/d =(T—L+L-m)/d = (D, —d)/d =1/d, 1. @)
Now 0 <tanh(d®(6+1)/o7(4)) <1, and 1+ Ad, >0, thus Q,(1) <0, and from the lemma 4,
F (1) <0,when -1/d, < 1<0.

From the study of F'(1), it results that F(1) has a minimum at A =0, that is to say at

p =T, equal to F(0)=®(3D,C,, /d")-®(-3D,C, /d") and a maximum when 2 — 4, or

A— .., equal to max llir}g F, (i),llirﬂ F (1) |. Now when (u,v) =(1,0), from lemma 1,

o, (A) = o,(1-Ad,) = o,d, (L1/d, — 1) = 5,d, (1— 5 — 2) from (6), thus
A-5-2)/c,(A) =1/(c,d,), 8)



and o,(1)=0,(1+ Ad,) =0,d,(1/d, + 1) = o,d, 1+ 5 + A) from (7), thus

L+5+ )1 0,(1)=1l(c,d,). 9)
From (8), (9) and from lemmas 2 and 3, we have

illmﬁ F(1)= Aﬂmu O(dl-5-4)/0o,(1)) - Em O(-d(l+5+4)/o,(A)

=d(d /(o,d,)) —P(—0) =®(3D,C,, /d"),

Aﬂrlrm]m F(A)= llimdl O(dl-5-4)o,(1))- &Limdl O(-dL+5+ 1) o,(1))

= ®(+0) -0 (-d /(0,d,)) =@@BD,C,, /d").

Finally F(4) has a lower bound equal to max(®(3D,C
=®(3D.C, /d"),since T e[m;U].

Consequently ®(-3D,C,, /d")<NC <®(-3D,C,, /d")+®(-3D,C, /d").

Note that the lower bound depends on D,, only, and not on D,. For T e]L;m], a similar

" 1d"),®(3D,C, /d"))

u 7 pk

u 7 pk

proof gives a minimum equal to ®(-3D,C., /d"), thus the expression given in the theorem,

u pk
valid for any position of T e |L;U].

The upper bound given in Theorem 2 is identical to the one given by Chang and Wu (2008) in
the expression (3). To reach that conclusion, we just need to observe that if D, <D, , then

r>1,d =D,,andif D, >D, ,then r<1, d" =D,.

Particular case : If T=m, we have D, =D, =d", thus ®(-3C,,) < NC <2d(-3C,,), result
well known, given for example by Pearn and Kotz (2006, p.42).

2.3.Case (u=1,v>0),and u>1

Lemma 5:
When u=1and v>0, orwhen u>1, thenillrﬂ F,(1) = Ilgm1 F (1) =1.
Proof :

From lemma 3, we have
1“92 F(4)= 4“93 [@(d1-6-2)]0,(A)-D(-dL+5+ 1)/ o,(4))]

= lim ®d(1-5-2)/0,(1) - (=) = lim Od(@A-5-2)/0,(2).

On the other hand, from (5) and (6), d(1-6 — 4., ) = D, (~vd + (u—1)o,) /(~vd +uc,).

Since 0< A< 4,,,, we have C_(u,v)>0 and thus o, >0. When u=1 and v>0, or u>1,

thus we have d(1-06-4,,) >0, from where Ilm dd@l-0-4)/o,(1)=D(+x) =1, and
lim F,(1)=1.

F:or; lemma 3, we have
Iim F,(/1)= Iim [(D(d(l—&—/%)/a,(/1))—CD(—d(1+5+/1)/a|(/1))]
—CD(+oo)— I|m CD( dl+5+4)o,(1) =1- I|m CD( dl+o+ 1) o,(1)).

4) |n

On the other hand, from (5) and (7), —d (1+ 06 + ﬂmin) =-D, («/_d +(u —1)00)/(\/Vd +Uoy).



Since A, <A<0, we haveC_(u,v)>0 and thus o, >0. When u=1 and v>0, or u>1,
thus we have —-d(1+oJ+4,,) <0, from where /1”93 O(-d@l+0+4)/0,(1) =D(—x) =0,

min

and lllrﬂin F(4)=1.

Theorem 3 :
When u=1 and v>0, or when u>1, we have

D .. D _.
0<NC SCD(—B dl: Cp(u,v)J+CI)(—3di Cp(u,v)j.

Proof :
We have C;(u+x,v+ y)sc;(u,v), for any x, y > 0. Thus when u=1 and v >0, or when

u>1, C (u,v)<C,(1,0)=C,.
Thus from the theorem 2,

NC <®(-3C,, D, /d*)+CI>(—3C'F',k D, /d7) < CD(—3C'F',(u,v)Du /d*)+<I>(—3C'F')(u,v)D| /d”). This
upper bound is reached at 4 =0 since in this case, o, (1) = o, (1) = o, according to lemma 1,
F()=®(d(1-9)/0,)-P(-d(1+05)/0o,) according to lemma 3, and from (6) and (7),
F(0) = ®(3C,(u,v)D,/d")-®(-3C,_(u,v)D, /d"). Consequently, when =0,

NC =1-F(0) = ®(-3C,(u,v)D,/d") +®(-3C,(u,v)D, /d").

Moreover, F (1) is always maximised by 1, value reached at 4., and A, according to
lemma 5. Thus NC is minimized by 0, and the theorem.

Particular cases: If T=m, then D, =D, =d", and C;(u,v):Cp(u,v). Thus when u =1,
v>0, or u>1, we have 0<NC<2®(-3C,(u,v)). When (u,v)=(1), this result
supplements the one obtained by Pearn and Lin (2005) who restrict the relation to the values
of C, 2 J2/3. In addition, when T =m, and (u,v) = (1,1), then C,(1)=C,, andwe have

Eﬂ C;(u,v))+®(—3 51 C;(u,v)] <2®(-3C,, ). The result obtained by Pearn,

Lin, and Chen (1999) is thus exact, although their proof is not true in all cases.

NC < CD[—S

24.Case O<u<l,v=0

Lemma6 :
When O<u<1and v=0, then Alirirm] Fu(l):lligg F(1)=0.

Proof :
From lemma 3 we have
ﬂlig: F.(14)= llirﬁr: [@(d1-0-2)0,(A)-D(-d1+5+ 1)/ o,(1))]

= lim @(d(-5-2)/0, (1)~ @(~0) = lim O(d(L-5-2)/0,(2).

Now when O<u <1 and v=0, from (5) we have A, =1/ud,, and from (6), d1-0—-1,,)
=D,(u-1)/u <0, thus /1”9:: F, (1) =®(-x)=0.

From lemma 3 we have



Jlim F()= lim [0(d1-6-2)/0,(2) ~@(-d @+ +2) /5 (D)]

=d>(+oo)—ilir2_ O(-d1+5+4)/0,(4)) =1—Alir2_ O(-d1+5+4)/o0,(4)).
Now when O<u<l and v=0, from (5) we have A, =-1/ud,, and from (7),
-d@l+5+4,,,) =-D,(u-1)/u >0, thus ilirﬂ_ F(1)=1-®(+0)=0.

Theorem 4 :
When O<u<land v=0,

a) If c;(u,O)zg—d\/im(Mj,then M, <NC <1,

20 1-u
b) If C;(u,0)<g—d\/%ln(%j,then max(M,,M,)<NC <1,
~u
with
ﬂud — Du " /1|1d + DI "
M, =0|3—/——*—C_(u,0) [+D| -3—/—F"——C_(u,0) |,
' (d (1+ul,d,) »(1:0) d"(1+ud,d,) »(1:0)
ﬂmd — Du " ﬂ“uld + DI "
M,=0| 3—/—"—"—C_(u,0) |+o| -3—/——+——C_(u,0) |,
. (d (1-und,) Y T (1-uid,) O
. 2
2= Jd—2| — 9| ud d’@—usd,)in| —=Y
1 3C,(u,0) 1+ud, /d,
= — + !
& ud, Y 1-u
0o uzdfln(J
,(u,0) 1+ud, /d,
. 2
TN L udud2(1+u5du)ln(1+Ud“/d'j
jo - 1 N 3C,(u,0) 1-u
" oud, Y 1+ud, /d |
- uzdfln(”'j
3C,(u,0) 1-u
Proof :

We obviously have 0< F(4)<1. According to lemma 6 the lower bound 0 is reached at A,
and 4, . If there is a maximum less or equal to 1, it is necessarily obtained for the values of
A € | Ains Amax | » SOlULiONS OF the equation F,(4)=0 or F (1)=0.

- Study of F,(1).

Let 0<A< A4, =1/ud,. When v =0 and from lemma 4, we have

F,(1)=0<Q,(1)=0 < q,(4) - (k,(A) + (5 + 1)q, (A)) tanh(d* (5 + 1)/ 62 (A)) =0

< ud,of(l-uad,) - (of(L-uad,)? + (5 + A)ud,cZ (1-uid,)) tanh(d?* (5 + A1)/ 67 (A)) =0
< ud,of(l-uld,) - oZ(@-uid,)+dud,) tanh(d?* (5 + 1)/ 62 (1)) =0

< ol (1-uad,)[ud, — 1+ dud,) tanh(d?(5 + 1)/ 2 (A))] =0

< ud, - (L+6ud, ) tanh(d*(5 + 1)/ 2(4)) =0, since 0< A <1/ud,,

< tanh(d?(5 + A) I[o} (1-uAd,)?]) =ud, /(1+Sud, ), from lemma 1,

10



< d?(5+A) /(i (1-uad,)?) = tanh ™ (ud, /(1+Sud,)).

Assuming that t, = tanh™(ud, /(1+6ud,)) > 0, we have

F,(1)=0< d*(0+4) =t,c2(1-uld,)?

o tou’d’ A’ - (2ud t,of +d*)A-d?*s +t,0f =0, (10)
which is a second-degree polynomial of the variable A.

Since A, =d* +4t,c2ud,d’(L+usd,) >0, we have two roots,

., C2udtol+di-fA, 1 +olz—\/z

. 2t o2u’d? ud, 2t,clu*d?’
_2udtop +diH A, 1 . d? + /A,
2 2t o2ud? Cud,  2t,cluld?

As can be seen 4,, >1/ud, =4, IS not suitable in the studied field. To make A, become
acceptable, we need to 0< A, <A . Since A, >d*, we have 1, <1/ud, = A__ . In addition,
since A, >0, for A, to be positive or null, the product of the roots of (10) has to be positive

or null, or that —d*5 +t,o5 >0 < C_(u,0) < /t,/5d"/(3d). Now

t = tanh(ud, /(1+oud,)) =~ In| [ 1+ Y% 1- Y4 || 1) [1x(d+o)ud,
2 1+o6ud, 1+dud, 2 \1-(1-9o)ud,

1 (1+udu/d,
—Zn|

j, from (6) and (7). Thus when C;(u,O)sd—\/iln(Mj, there

2 1-u ad\ 25 1-u
exists 4, €[0, 4., [ for which F,(2) =0 and thus for which F, (1) is maximum.
Note that in the particular case where C;(u,O) :g—d\/%ln (%j , that is to say when
—-u

—d’s+t,07 =0, we have 4, =0 and t, =d’5/c.. Whenv =0, from lemma 4, we have
Q,(0) = ol[ud, — (1+dud,) tanh(d*5/ 6% )] = o2[ud, — (L+ Sud, ) tanh(t,)]

=o.[ud, —(1+doud,)ud, /(1+5ud,)]=0. Consequently, according to lemma 4, F,(1)=0,
and F, (1) is maximum for A=4, =0.

When C;(u,0)>d— iIn(mj we have A, <0. Thus there is no value of
3d\ 20 1-u

A€[0, 4] for which F (2)=0. On the other hand, from (6), (7) and lemma 3,

F,(0)=®(3C,(u,0)D, /d")-®(-3C,(u,0)D, /d"). Consequently, we have F,(0)>0,

lim F,(4)=0 from lemma 6, and F,(1)#0 when 1[0, 4, [. Thus F, (1) is decreasing

ﬂ_))‘max

when 1 €[0, 4,,.[ and maximum when 2=0.

- Study of F, (1)

Let -1/ud, =4, <A <0.Whenv =0 and from lemma 4, we have

F (1) =04 Q(2) =0 < ,(4) — (k (1) +(5 + 2)q, (4)) tanh(d*(5 + 1) / o7’ (1)) = 0

< —ud,o¢ (L+ud,) -[of (L+uld,)’ - (5 + A)ud,o¢ (L+uid,)]tanh(d? (5 + 2) / 7 (1)) =0
< o (L+ud,)[-ud, + (=1+6ud,) tanh(d*(5 + 1)/ 6} ()] =0
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& —ud, +(~1+dud,) tanh(d*(s + 1)/ 67 (1)) =0, since -1/ud, = 1, <A <0.

Thus from lemma 1, we have

F (1) =0 < tanh(d®(6 + 1) I[o¢ (L+uad,)?]) = ud, /(-1+dud,). (11)
From (7), -1+dud, =-1+(/d,-ud, =-1+u—-ud,, and since u<1l, we have
-1+ oud, < 0. Consequently the solutions of (11) can exist only for 4 <—¢ . In this case,
F(1)=0<d*(5+A)/[c;(@+uAd,)’]=tanh*(ud, /(-1+45ud,)), and assuming that
t, = tanh*(ud, /(~1+dud,)) <0, we have

F (1) =0s d?(6+ 1) =tol(l+uid,)’ < tolu’d’A® + (2ud ol —d*)A-d?*s +t0f =0,
which is a second-degree polynomial of the variable A. Since t, <0 and -1+dud, <0,
A, =d* +4tc2ud, d’(-1+udd,) > 0, and we have two roots,

:d2—2ud,t,a§—\/A_|__ 1 d*— A

= —+ ,
&k 2t,o2u’d? ud, 2tc2u’d?
A CdP-2udtol+ A1 N d2+./A,
27 2tolutd? ©oud,  2tolud?

As can be seen, 4, <-1/ud, =4, is not suitable in the studied field. To make A, become
acceptable, we need to A, <A,<-6<0. Since A, >d*, we have A,>-1/ud, =4 .
Furthermore, since 4, <0, for A4, to be negative or null, the product of the roots has to be
positive or null, or that —d*s +t,6> <0, which is always true. Thus F, (1) is maximum when
A € Vi =0

In conclusion, from the study of F,(1) and F, (1), we can deduce:

3d\ 20 1-u
F (4,)>F (0) =F, (0). Thus F(4) has an upper bound when A, € ]4,,,;—6[. On the other

hand, from lemma 6, Ilim Fu(ﬂ):ﬂlirﬂ F(4)=0. Thus O<F(1)<F (4, or

A= Amax

- f C;(u,O)zd—\/iln(Mj, F, (1) is maximum when A=0, and

1-F (4,)<NC<1. From (6), (7) and lemmas 1 and 3, we obtain a) assuming that
M, =1-F (/111)

- If CL(Uﬁk%\/%'”(%j’ F, (1) is maximum when 4, €[0,4,,,[,and F (1)
is maximum when 4, € [4,;,;—6[. Thus, F(1) has an upper bound when 2 € |4 ;4| s
equal to  max(F(4,);F,(4,). On the other hand, from Ilemma 6,
ﬂﬂl}m’l F,(1)= ;,L”zn F(4)=0.Thus 0 < F(A1) <max(F (4,),F,(4,)),or

max(1-F(4,),1-F,(4,)) <NC <1. From (6), (7) and lemmas 1 and 3, we obtain b)
assuming that M, =1-F, (4,,).

Particular case: If T=m, then §=0, d,=d =1, d"=d, and C,(u,0)=C,(u,0). The
product of the roots of the second-degree polynomial (10) has the sign of t,, therefore it is
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always positive. Consequently, F, (1) is maximum in Ale[o,zmax[, for any value of

C,(u,0) > 0. Thus theorem 4 is stated as follows:
When O<u <1, v=0, thenM <NC <1,
where M =M, =M, =®(3C,(u,0)(4, —-1)/(1-u4,)) + ®(-3C, (u,0)(4, +1)/(1-u4,)),

with /10:%12—111=l+{1_\/1+ 2u Zln(1+un/[[ u j In(l+u)}
u (3C, (u.0)° \1-u 3C,(u,0)) \1-u

25.Case 0<u<l,v>0

Lemma7:

When O0<u<land v>0,

D1 C ) > EW en tim F(0) = lim F(2) =1
P 3hd T o >

b) If C;(u,v):(ls:/%)dd then leaxF (/1)_ I|m F(1)=1/2.

c)If 0<C (u v)<(1_u) then lim F,(1)= lim F(1)=0.

pRe 3\/Vd : A dgy U Aodgy, |
Proof :

From lemma 3 we have
lim F, (/7,)_ I|m [(D(d(l o0-A)1o,(1)-0(-d1+5+ 1) o,(1)]

A= Anax

= lim (- 5 )l ,(2)~®(=0) = lim O(d1-6-2)/0,(2)).

_) ax

From (5) and (6), we have
dl-6-4,,)=D, (S\NdC; (u,v)+(u —1)d*)/(3\/VdC;(u,v) +ud”). Thus

a) If Cl(uv)>(-u)d /(3WVd), then d(1-5-4,,)>0, lim &d@-5-1)/c,(2))

4) ax

®(+) =1, and I|m F,(1)=1.

_) )ax

b) If C)(u,v)=(-u)d /(3Jvd), then d(L-6&-A,,)=0, Jlim ©d(@1-5-2)/0,(2)
®(0) =1/2,and lim F,(4)=1/2.

c) If 0<C, (u,v) < (1—-u)d* /(3Jvd), then d(1-6-4,,,) <0, AL'ET dd@A-0-4)o,(1))
®(—o0) =0, and I|m F,(1)=0.

In a similar way we have /1|IF/ITF1 F(A) :1_4“52. ®d(—-d(d+5+4)/o0,(4)), and the lemma since

from (5) and (7), —~d (1+ 8 + Ayy,) = —D, (3YVAC, (u,v) + (u-1)d ") /(3vdC}, (u,v) +ud").

Lemma8:
(1-u)d”
3vvd

A=A, <[40 suchas F(4)<F(4),

When 0<u<1 and v>0, if C (u,v)= , then for any 4, €[ 0;4 ., |, there exists
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Proof :

Let 4, €[04, | 4 =-44d,/d, €[1,,;0], E=0,(4)/d, a=(1-6-4)/E,
b=(1+5+4)/E,and x=(4, —4)/E>0.

If C; (u,v)>d"(1-u)/(3Jvd), then 3JvdC (u,v)+ud" >d", and

d”/(d, (3\/VdCL(u,v) +ud”))<1/d,. From (5) and (6), we deduce

0<A, <A, :d*/(du(BC;(u,v)\/Vd +ud’))<1/d,=1-5, from where a>0 and
1-4,d, >0. Consequently, since T [m;U[, we have

d,>d,, A-4,d,)/d, <@-A4d,)/d,, and 1/d, -4, <1/d, —d,4,/d,. Since 4 =-Ad /d,
from (6) and (7) we deduce a=(1-0—-4,)/[E<(1+5+A4)/E=D.

Let f the probability density function of the standard normal distribution N(0,1). Since f is
decreasing on [0;+oc[, when x>0 and b>a>0, we have j:’” Fdxs [ f (ax, thus

(1+6+2,)/E (1-6-4)/E —(+65+4)/E
j( f(x)dx < f(x)dx < j

145+4 )/ E “Ja-s-4,)IE —(1+5+4,)/E
-(+5+4)/E

Fodx+ [ " f(x)dx <0 <> A+B<0
(x) X+J‘(1757M/E (xX)dx<0 < A+B<0,

where A= '[

—(+5+4,)/E
(1-6-4,)/E

and B = f(X)dx = D(L-5—4,)/E)-D((L-5-4)/E). Now

(1-6-4)/E
O((1-0-4)/E)-D(-A+56+A4)/E)=D(1-0-4)/E)-D(-(1+5+4)/E)+ A+B, thus
O((1-0-A4)/E)-D(-(1+0+A4)/E) < D(1-0-4)/E)-D(-(1+5+A4)/E).

Since A4 =-4d,6/d, from lemma 1, we have o,(4)=0,(4), and

E=0,(4,)/d=0,(4)/d. Consequently,

O(dA-5-4,)/0,(4) - O(-d@+5+4,)/0,(4,))
SOdA-0-4)0,(4)-P(-dA+o+4)/0,(4)),

f(X)dx = D(~A+5+4)/E)—D(~(1+ 5+ 4,)/E),

and F (4,)<F(4).
It should be noted that when C;(u,v) < d*(l—u)/(3\/Vd), no general rule can be obtained, as
shown in the graphic investigations which have been made, but which are not detailed here.

Theorem 5 :

When 0<u<landv>0,

a) If C, (u,v)> (13:/_u)dd , then 4, €[0; 4, ] exists, a solution of the following equation (12)
v

suchas 0<NC<1-F,(4,).

b) If C,(u,v) =%, then 4, €[0; 4., ] and 4 €[A,;,;0] exist, solutions of the following
v

equations (12) and (13) suchas 1-F(4) <NC <1-F,(4,).

. (1-u)d” . .

c) If 0<C (u,v)< , then A el | €xists, a solution of the one of the

) () 3Jvd [ ]

following equations (12) and (13) suchas 1-F (1) < NC <1.

Proof :
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The existence of maxima and minima is established by lemmas 7 and 8. These maxima and
minima are necessarily obtained for the values of A solutions of the equations F,(1)=0 or

F (1) =0, that is to say according to lemma 4, of the equations

q,(A) +vad®d? —(k, (1) + (5 + 2)q, (A) + ovad*d ) tanh(d* (5 + A1)/ 62 (A)) =0 (12)
q, (1) +vAd?®d? —(k (1) + (5 + 2)q, (1) + svAd>d}) tanh(d* (5 + 1)/ 67 (1)) =0 (13)
These solutions can only be obtained numerically.

Particular case : Letu=0. Since T e[m;U[, d/D, >1,and d" =D,.

If 4>T,itiseasy to see that Cp(0,v) <Cp(0,Vv).

If 22<T, the function f(D,)=d*-D’D} =d*-(2d —-D,)?D; being always positive or null
when D, €10;d], we have d*/D?D} >1/d?, and thus

Cp(0,v) =d"/(3Jo? +vA? :1/(3(02/Du2+vd2(ﬂ—T)2/(DuzD|2))M)

31/(3(02/d2+v(y—T)2/d2)“/2)=d/(3 0'2+V(,u—T)2)=Cp(0,V).

Moreover, since Cp(Uu+x,v+y)<Cp(u,v), for any x, y > 0, we have
Cp(0,v)<Cp(0,))=Cpm when v > 1, and Cp(u,v)<C;,(0,v) when u > 0. Therefore
Cp(u,v)<Cpm,whenu > 0andv > 1. Now when C | >1/+/3, Ruczinski (1996) shows that
F(4) is minimum at 2 =0, and that the minimum is equal to 2®(3C, )-1, which means
that NC <2d(-3C ) . We can deduce that when 0<u<1,v > 1 and C;(u,v) >1/~/3, then
NC < 2d(-3C,, ) < 2(-3C, (u,V)) . Furthermore, if T = m, the upper bound 2d(-3C,(u,V))
is reached at A=0. Actually, when A=0 and T = m, NC=1-F(0)=1-F(0)
=1-®(d/0,)+P(-d/o,) =20(-d/ o,) = 20(-3C (u,V)) .

3. CONCLUSION
The indices family C_(u,v) suggested by Vannman (1995) for symmetrical tolerances, then

the family C;(u,v) suggested by Chen and Pearn (2001) for asymmetrical tolerances, give an

algebraic generalization of the usual indices C_, C,, C,, ,and C If these generalizations

have an obvious theoretical interest, however they do not make the user’s work easier, since
the choice of an index among the four standard indices is already confusing for him.
Vannman (1995), for symmetrical tolerances, then Grau (2009) for asymmetrical tolerances,
suggest to choose an index according to the properties of its estimator. In the work previously
developed we give the user the theoretical elements bringing to the fore the links between the

indices C_(u,v) or C'F')(u,v) and the process yield. The knowledge of these links as well as of

pm? pmk *

those associated to the process centering, allows the user to choose an index according to the
importance which he wishes to attach simultaneously to the centering and the proportion of
nonconforming.
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