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ABSTRACT 

Capability indices measure the performance of a process. Although process yield is the 

primary focus on the performance criteria, the "
( , )

p
C u v  indices combine process yield and 

process centering. With this compromise, there is no direct link between the process yield and 

these indices, but literature provides lower and upper bounds for the process yield. However 

errors in the proposed results limit the knowledge of these bounds to a few special cases. In 

this paper we give these bounds for any "
( , )

p
C u v  index, allowing the user to choose the index 

which best suits his needs. An application on high-tech paint is also presented.  
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1. INTRODUCTION 

 

Process capability indices are widely used in manufacturing industries to measure the ability 

of a process to realize items that meet the tolerance limits  ;L U . The original reasons for 

introducing capability indices seem to be associated with the expected percentage of 

conforming items, that is, the probability of obtaining a value inside the tolerance limits. The 

first generation 
p

C  and 
pk

C  indices were defined in this objective. However these indices did 

not measure process centering, that is, process capability relative to T, the target value, and 

did not encourage process optimization. For this reason the 
p m

C  and 
pm k

C  indices were 

introduced. In order to generalize the four basic capability indices 
p

C , 
pk

C , 
p m

C , and 
pm k

C , 

Vännman (1995) proposed a superstructure containing these four basic indices as 

 
22

( , )

3
p

d u m
C u v

v T



 

 


 

, 

where  and  are the mean and the standard deviation of the variable of interest,  m = (L + 

U)/2 is  the midpoint of the tolerance interval, ( ) / 2d U L   is the half-length of the 

tolerance interval, and u and v are two non-negative parameters. However, if indices ( , )
p

C u v  

are well adapted to the case of symmetrical tolerances (T = m), they have some undesirable 

properties when the tolerances are asymmetrical (T m ) (see Boyles (1994)). To overcome 
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the problems with asymmetric tolerances, and to generalize the family  ( , )
p

C u v  to the case 

T m , Chen and Pearn (2001) suggested to use the family 

                                                       
* *

"

2 2
( , )

3
p

d uA
C u v

vA






,                                                    (1) 

in which  max ( ) , ( )
u l

A d T D d T D    ,  
* * *

max ( ) , ( )
u l

A d T D d T D    , 

u
D U T  , 

l
D T L  , and  

*
m in ,

u l
d D D . The family "

( , )
p

C u v  has an obvious interest 

since the choice of u and v allows to attach more or less importance either to the process 

yield, or to the process centering, which are the most important criteria to measure the process 

performance. However in order to enable the user to understand what these indices mean, it is 

necessary to explain the links which join the indices, the process yield and the process 

centering. Links between capability indices and process centering are known and given in the 

most widespread form by Chen and Pearn (2001). Links between capability indices and 

process yield have only been partly studied. See Juran, Gryna and Bingham (1974) for 
p

C , 

Boyles (1991) for 
pk

C , Boyles (1994), and Ruczinski (1996) for 
p m

C , Boyles (1994), and 

Chen and Hsu (1995) for 
pm k

C , Pearn and Chen (1998), Pearn, Lin and Chen (2004), and 

Chang and Wu (2008) for 
"

pk
C , Pearn, Lin and Chen (1999) for 

"

pm k
C , and Chen and Pearn 

(2001) for "
( , )

p
C u v . However some of these studies include errors or inaccuracies. Thus the 

purpose of this paper is to specify the relations between the "
( , )

p
C u v  indices and the 

percentage of conforming or nonconforming items, and this for any u, v   0. In the following 

section, the results found in the literature are recalled and the cases that have not been studied 

accurately are brought to the fore. 

In section 3 we state several lemmas that will allow, for a given value of "
( , )

p
C u v , to study 

the variations of the conforming items proportion depending on the position of the mean 

process. In Section 4 we give the results of our study with six theorems specifying the 

minimum and maximum values of the proportion of nonconforming items. Finally in the last 

section we provide an example to show how the results obtained can be applied to a real 

industrial application. 

 

2. EXISTING RESULTS 

 

In this section, we recall the existing results concerning the links between ( , )
p

C u v  or 

"
( , )

p
C u v  indices and the process yield. These studies consider the most usual case where the 

variable of interest is normally distributed. In these conditions, the process yield, which we 

note Yield, is represented by the relation  

                                           Yield =    ( ) / ( ) /U L        ,                                      (2) 

in which  is the cumulative function of the standard normal distribution. The user often 

prefers using the nonconforming items proportion, which we note NC, and which is obviously 

defined by the relation NC = 1 – Yield. 

For (0, 0) ( ) / 6
p p

C C U L    , first index introduced by Juran, Gryna and Bingham (1974), 

we have 2 ( 3 ) 1
p

C N C    , the lower bound being reached only when the process is well 

centered, that is to say when  is on m.  
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For  (1, 0) min ( ) / 3 , ( ) / 3
pk p

C C U L       , index which takes into account the 

position of the mean inside the tolerance interval, we have ( 3 ) 2 ( 3 )
pk pk

C N C C       

(Boyles (1991), Kotz and Johnson (1993)) . 

For 2 2
(0,1) ( ) / 6 ( )

pm p
C C U L T      , and under the usual assumption that T m , 

Ruczinski (1996) shows that when 1 / 3
pm

C   then 2 ( 3 ) 1
pm

C N C    , when 1 / 3
pm

C   

then 2 ( 3 ) 2 ( 1) 1 / 2
pm

C N C       , when 1 / 3 1 / 3
pm

C   then 0 N C M   where M 

is the solution of an equation which can be solved numerically, and finally when 1 / 3
pm

C  , 

then 0 2 ( 3 )
pm

N C C    . 

For (1,1) /
pm k p pk pm p

C C C C C  , we have 0 2 ( 3 )
pm k

N C C     (Boyles (1994), Chen and 

Hsu (1995)).  

Generally, when the tolerances are symmetrical, Vännman (1995) proposes the family 

( , )
p

C u v , where u and v are two positive or null parameters. Kotz and Lovelace (1998, p.184) 

indicate that 2 ( 3 ( , ))
p

N C C u v    for all u and v, without taking into account the restrictions 

specified by Ruczinski (1996) for (0,1)
pm p

C C . Theorems 4, 5, and 6 will prove that this 

result is inaccurate when 0 1u   and ( , ) (0, 0)u v  . 

For asymmetrical tolerances, Chen and Pearn (2001) propose the family "
( , )

p
C u v . To study 

the process yield, these authors use the index 
1

(1 / 3) {(1 / 2) (( ) / ) (1 / 2) (( ) / )}
pk

S U L   
        suggested by Boyles (1994) which 

is directly related to the proportion of nonconforming items by the relation 2 ( 3 )
pk

N C S   . 

After graphically noticing that "
( , )

p pk
C u v S , they conclude that if "

( , )
p

C u v c , the process 

yield must be no less than that corresponding to 
pk

S c . In other words, the proportion of 

nonconforming must not be greater than "
2 ( 3 ( , ))

p
C u v  . However it is possible to find 

values for which "
( , )

p pk
C u v S , which thus do not allow to obtain an upper bound of NC. For 

example, when ( , , ) (26, 50, 58)L T U  ,  = 59.3,  = 0.643, we have "
(0.5,1) 0.06

p
C   and 

0.009
pk

S  . In these conditions, the proportion of nonconforming is equal to 0.98, a quantity 

which is not lower than "
2 ( 3 (0.5,1))

p
C   = 0.86.  

In the particular case where ( , ) (1,1)u v  , Pearn, Lin and Chen (1999) show that 
"

2 ( 3 )
pmk

NC C    supposing that "

pmk pmk
C C . However it is possible to find values for 

which  "

pmk pmk
C C . For example, when ( , , ) (26, 50, 58)L T U  ,  = 49,  = 0.5, we have 

"
3.07

pmk
C   and 2.68

pmk
C  .  

In the particular case in which ( , ) (1, 0)u v  , Pearn and Chen (1998) use the fact that 
"

pk pk
C S , without proof, to show that "

2 ( 3 )
pk

NC C   . However, later, Pearn, Lin and 

Chen (2004), or Chang and Wu (2008), obtain a different result 

                      " "
2 [ (3 / min{1, }) (3 max{1, })]

pk pk
NC C r C r     ,           (3) 

where /
l u

r D D . 
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As we have just seen, the results evoked in the literature concerning the links between 

capability indices and process yield include some errors or inaccuracies. In the following 

section we give some necessary lemmas for a proper study of these links.  

 

3. PRELIMINARY LEMMAS 

 

To take into account the position of T in the interval  ;L U , we note T m d   where 

 1;1   . Assuming that /
u u

d d D , and /
l l

d d D , we have 

1 /(1 )
u

d   ,          (4) 

1 /(1 )
l

d   ,          (5) 

and      *
/ 1 | |d d   .         (6) 

To take into account the deviations of  we assume that T d    where  is unspecified. 

Links between capability indices and centering are given (Chen and Pearn (2001)) by the 

relation 

                          
" "

(1 ) (1 )

3 ( , ) (1 ) 3 ( , ) (1 )

l u

p p

R D R D
T T

vC u v u R vC u v u R


 
   

   
,                        (7) 

in which | 1 | /(1 )R r r   . Since ( ) /T d    and *
/ 1d d R  , the relation (7) can still 

be written in the form  

            
min max

0 0

1 1

( / ) ( / )
l u

d v d u d v d u
  

 
    

 
,        (8) 

where * "

0
/(3 ( , ))

p
d C u v  . Although it is not specified by the previous authors, note that the 

relation (7) is true for "
( , ) 0

p
C u v  , and ( , ) (0, 0)u v  . When ( , ) (0, 0)u v  , the relation (8) 

remains true assuming that 
min

    and 
max

   . Thus in the following we assume that 

"
( , ) 0

p
C u v   and , 0u v  . For given "

( , )
p

C u v , the relations (1) and (2) show that  and Yield 

are functions of , thus of . So, for given "
( , )

p
C u v , our purpose is to study the extrema of the 

process yield according to the values of  defined in the relation (8). Since "
( , )

p
C u v is written 

differently depending on the sign of T  , the extrema of the Yield function are to be 

searched separately in the intervals  min
; 0  and  max

0; . Lemmas 1 and 3 give expressions 

of and Yield in these intervals. Lemma 2 will allow us to study the behaviour of the Yield 

function at the bounds of these intervals. Lemma 4 concerns the sign of the derivative of the 

Yield function which will enable us to obtain the extrema of this function in section 4.  

 

Lemma 1 :  

 

 

1 2
2 2 2

0 max

1 2
2 2 2

0 min

( ) (1 ) ( ) 0

( ) (1 ) ( ) 0

u u u

l l l

u d v dd if

u d v dd if

      


      

     
 

    


 . 

Proof :  

If 
max

0    , then   
1 2

" * 2 2
( , ) (1 ) / 3 ( ) ( )

p u u u
C u v d u d v dd      , thus ( )

u
  . 

If 
min

0   , then   
1 2

" * 2 2
( , ) (1 ) / 3 ( ) ( )

p l l l
C u v d u d v dd      , thus ( )

l
  .  

 

Lemma 2 :  
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If ( , ) (0, 0)u v  , then 
m ax m in

lim ( ) lim ( ) 0
u l

   

   
 

  . 

Proof :  

Let ( , ) (0, 0)u v  . According to (8) and lemma 1, we have 

 
m ax 0

1 2
2 2 2

0
1 / ( / )

lim ( ) lim (1 ) ( )
u

u u u
d v d u

u d v dd
   

    
   

 

  

 
1 2

2 2

2

0

0 0

1 1
1

( / ) ( / )
u u

u u

u d v dd
d vd u d vd u


 

    
      

           
1 2

2 2

0 0

0
/ /

vd vd

vd u vd u 

    
      
         

 

It is the same for ( )
l

  . 

 

Lemma 3 : 

a) If ( , ) (0, 0)u v  , then 

   

   

m ax

m in

( ) (1 ) / ( ) (1 ) / ( ) 0

( )

( ) (1 ) / ( ) (1 ) / ( ) 0

u u u

l l l

F d d if

Yield F

F d d if

          


          

           


  
          

. 

b) If ( , ) (0, 0)u v  , then  

   0 0
( ) (1 ) / (1 ) /Yield F d d                , for any  ,    . 

Proof :  

Since T d    and T m d  , we have (1 )U d      ,  and (1 )L d       , 

thus the lemma from (2). 

 

Lemma 4 : 

a) If ( , ) (0, 0)u v  , then 
'
( )

u
F   has the sign of 

2 2 2 2 2 2
( ) ( ) ( ( ) ( ) ( ) ) tanh( ( ) / ( ))

u u u u u u u
Q q v d d k q v d d d                   , 

where 
2 2

0
( ) (1 )

u u
k u d     and 

2

0
( ) (1 )

u u u
q ud u d    . 

b) If ( , ) (0, 0)u v  , then 
'
( )

l
F   has the sign of 

2 2 2 2 2 2
( ) ( ) ( ( ) ( ) ( ) ) tanh( ( ) / ( ))

l l l l l l l
Q q v d d k q v d d d                   , 

where 
2 2

0
( ) (1 )

l l
k u d     and 

2

0
( ) (1 )

l l l
q ud u d     . 

c) If ( , ) (0, 0)u v  , then '
( )F   has the sign of 

2 2

0
( ) sinh( ( ) / )Q d      . 

Proof : 

a) From lemma 3, we have ( ) ( ( )) ( ( ))
u u u

F         , where  

( ) (1 ) / ( )
u u

d        , and ( ) (1 ) / ( )
u u

d         . 

From lemma 1, ' 2 2 2

0
( ) ( (1 ) ) / ( )

u u u u u
ud u d v d d          , thus 

' 2 2 2 2

0
( ) [ ( ) (1 ){ (1 ) } / ( )] / ( )

u u u u u u u
d d ud u d v d d                    

2 2 2 2 3

0
[ ( ) (1 ){ (1 ) }] / ( )

u u u u u
d d ud u d v d d               . 

From lemma 1, we obtain 
' 2 2 2 2 2 2 3

0 0
( ) [ { (1 ) ( ) } (1 ){ (1 ) }] / ( )

u u u u u u u
d u d v dd d ud u d v d d                     

2 2 2 2 2 3

0 0
[ (1 ) (1 ) (1 ) (1 ) ] / ( )

u u u u u
d u d ud u d v d d                   
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2 2 3
[ ( ) (1 ) ( ) (1 ) ] / ( )

u u u u
d k q v d d              . 

' 2 2 2 2 3

0
( ) [ ( ) (1 ){ (1 ) }] / ( )

u u u u u u
d d ud u d v d d                  

2 2 2 2 2 2 3

0 0
[ (1 ) ( ) (1 ){ (1 ) }] / ( )

u u u u u u
d u d v dd ud u d v d d                   

2 2 2 2 2 3

0 0
[ (1 ) (1 ) (1 ) (1 ) ] / ( )

u u u u u
d u d ud u d v d d                   

2 2 3
[ ( ) (1 ) ( ) (1 ) ] / ( )

u u u u
d k q v d d              . 

Consequently,  
' ' '
( ) '( ( )) ( ) '( ( )) ( )

u u u u u
F              

   
2 2

(1 ) / ( ) / 2 (1 ) / ( ) / 21 / 2 ' 1 / 2 '
(2 ) ( ) (2 ) ( )u ud d

u u
e e

       
     

      
   

2 2 2 2 2 2 2 2 2 2
(1 ( ) ) /( 2 ( )) ( ) / ( ) (1 ( ) ) /( 2 ( )) ( ) / ( )1/ 2 ' 1 / 2 '

(2 ) ( ) (2 ) ( )u u u ud d d d

u u
e e e e

               
     

         
   

2 2 2 2 2 2 2
(1 ( ) ) /( 2 ( )) ( ) / ( ) ( ) / ( )1/ 2 ' '

(2 ) [ ( ) ( )]u u ud d d

u u
e e e

           
    

     
   

2 2 2 2 2
(1 ( ) ) /( 2 ( )) ( ) / ( )1 / 2 2 2 3

(2 ) ( ( ) (1 ) ( ) (1 ) ) / ( )u ud d

u u u u
e e d k q v d d

       
        

          


 

2 2
( ) / ( ) 2 2 3

( ( ) (1 ) ( ) (1 ) ) / ( )ud

u u u u
e d k q v d d

   
       

       


 

2 2 2 2 2 2 2
(1 ( ) ) /( 2 ( )) ( ) / ( ) ( ) / ( )1 / 2 3 2 2

(2 ) ( ) ( )( ( ) )u u ud d d

u u u
d e e e q v d d

           
    

         


 

2 2 2 2
( ) / ( ) ( ) / ( ) 2 2

( )( ( ) ( ) ( ) )u ud d

u u u
e e k q v d d

       
     

       


 

2 2 2
(1 ( ) ) /( 2 ( ))1 / 2 3

2 ( ) ud

u
d e

   
  

   
  

 
2 2 2 2

( ( ) ) cosh( ( ) / ( ))
u u u

q v d d d       


 

2 2 2 2
( ( ) ( ) ( ) ) sinh( ( ) / ( ))

u u u u
k q v d d d              


 

2 2 2
(1 ( ) ) /( 2 ( ))1 / 2 3 2 2

2 ( ) cosh( ( ) / ( )) ( )ud

u u u
d e d Q

   
       

   
  . 

Now 
2 2 2

(1 ( ) ) /( 2 ( ))1/ 2 3 2 2
2 ( ) cosh( ( ) / ( )) 0ud

u u
d e d

   
      

   
  . Thus '

( )
u

F   has the sign 

of ( )
u

Q  . 

b) The proof is similar for 
'
( )

l
F  . 

c) If ( , ) (0, 0)u v  , from the lemma 3, 

   
'

0 0 0
( ) ( / )[ ' (1 ) / ' (1 ) / ]F d d d                  

   
2 2

0 0(1 ) / / 2 (1 ) / / 21 / 2 1 / 2

0
( / )[(2 ) (2 ) ]

d d
d e e

     
  

      
    

2 2 2 2 2 2 2

0 0 0(1 ( ) ) /( 2 ) ( ) / ( ) /1 / 2

0
( / )(2 ) [ ]

d d d
d e e e

        
 

     
    

2 2 2

0(1 ( ) ) /( 2 )1/ 2 2 2

0 0
( / ) 2 sinh( ( ) / )

d
d e d

  
    

  
  

2 2 2

0(1 ( ) ) /( 2 )1/ 2 1

0
2 ( )

d
d e Q

  
  

   
 . 

Now 
2 2 2

0(1 ( ) ) /( 2 )1/ 2 1

0
2 0

d
d e

  
 

   
 , thus '

( )F   has the sign of ( )Q  . 

 

4. EXTREMA OF NONCONFORMING ITEMS PERCENTAGE 

 

The following sub-sections explain the behaviour of the functions Yield or NC, more precisely 

the existence of maxima and minima, by distinguishing the various situations depending on 

the u and v values. 

 

4.1. Case ( , ) (0, 0)u v   
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When ( , ) (0, 0)u v  , we have " " "
( , ) (0, 0)

p p p
C u v C C  . 

Theorem 1 : 

 "
2 3 /(1 | |) 1

p
C NC     . 

Proof :  

From the lemma 4, '
( )F   has the sign of 2 2

0
( ) sinh( ( ) / )Q d      .  

Thus '

0

( ) 0

0

if

F if

if

 

  

 

  

  

  

. 

Consequently ( )F   has a unique maximum at    , and this maximum is equal to 

 " "

*
( ) 2 3 1 2 3 /(1 | |) 1

p p

d
F C C

d
 

 
        

 
, from (6). On the other hand,  

   0 0
lim ( ) lim [ (1 ) / (1 ) / ]F d d
 

      
 

         ( ) ( ) 0       , 

   0 0
lim ( ) lim [ (1 ) / (1 ) / ]F d d
 

      
 

         ( ) ( ) 0       . 

Thus  "
0 ( ) 2 3 /(1 | |) 1

p
F C      , and  the theorem since NC = 1 – Yield. 

Particular case: If T m , we have 0  , "

p p
C C , thus  2 3 1

p
C NC    , result well 

known, given for example by Pearn and Kotz (2006, p.9). 

 

4.2. Case ( , ) (1, 0)u v   

 

When ( , ) (1, 0)u v  , we have " " "
( , ) (1, 0)

p p pk
C u v C C  . 

Theorem 2 : 

     " " "
3 (1 | |) /(1 | |) 3 3 (1 | |) /(1 | |)

pk pk pk
C NC C C                . 

Proof : 

If ( , ) (1, 0)u v  , from (8), 
min max

1 / 1 /
l u

d d       . 

- Let 0 1 /
u

d  . We have 
2 2

( ) ( ) ( ( ) ( ) ( )) tanh( ( ) / ( ))
u u u u u

Q q k q d              , 

where 
2 2

0
( ) (1 )

u u
k d     and 

2

0
( ) (1 )

u u u
q d d    . 

( )
u

Q 
2 2 2 2 2 2

0 0 0
(1 ) { (1 ) ( ) (1 )} tanh( ( ) / ( ))

u u u u u u
d d d d d d                    

2 2 2

0
(1 )[ {(1 ) ( ) } tanh( ( ) / ( ))]

u u u u u
d d d d d                

2 2 2

0
(1 )[ (1 ) tanh( ( ) / ( ))]

u u u u
d d d d            

2 2 2

0
(1 ) [1 tanh( ( ) / ( ))]

u u u
d d d         , from (4). 

Now 
2 2

0 tanh( ( ) / ( )) 1
u

d       , and 1 0
u

d  , thus ( ) 0
u

Q   , and from the lemma 4, 
'
( ) 0

u
F   , when 0 1 /

u
d  .  

- Let 1 / 0
l

d    . We have 
2 2

( ) ( ) ( ( ) ( ) ( )) tanh( ( ) / ( ))
l l l l l

Q q k q d              , 

where 
2 2

0
( ) (1 )

l l
k d     and 

2

0
( ) (1 )

l l l
q d d     . 

2 2 2 2 2 2

0 0 0
( ) (1 ) { (1 ) ( ) (1 )} tanh( ( ) / ( ))

l l l l l l l
Q d d d d d d                      

2 2 2

0
(1 )[ { (1 ) ( ) } tanh( ( ) / ( ))]

l l l l l
d d d d d                   

2 2 2

0
(1 )[ ( 1 ) tanh( ( ) / ( ))]

l l l l
d d d d              

 
2 2 2

0
1 [1 tanh( ( ) / ( ))]

l l l
d d d          , from (5).  
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Now 2 2
0 tanh( ( ) / ( )) 1

l
d       , and 1 0

l
d  , thus ( ) 0

l
Q   , and from the lemma 4, 

'
( ) 0

l
F   , when 1 / 0

l
d    .  

From the study of '
( )F  , it results that ( )F   has a minimum at 0  , that is to say at 

T  , equal to 

0 0
(0) (0) (0) ( (1 ) / ) ( (1 ) / )

u l
F F F d d             

   " "
3 ( , )(1 ) /(1 | |) 3 ( , )(1 ) /(1 | |)

p p
C u v C u v             from (6). Thus 

      " "
(0) 3 ( , ) 3 ( , )(1 | |) /(1 | |)

p p
F C u v C u v         .          (9) 

So, for ( , ) (1, 0)u v  , we have    " "
(0) 3 3 (1 | |) /(1 | |)

pk pk
F C C         .  

From the study of '
( )F  , it results that ( )F   has a maximum when 

max
   or  

min
  , 

equal to  
m ax m in

m ax lim ( ), lim ( )
u l

F F
   

 
 

. Now when ( , ) (1, 0)u v  , from lemma 1 and (4), 

0 0 0
( ) (1 ) (1 / ) (1 )

u u u u u
d d d d               , thus 

0
(1 ) / ( ) 1 /( )

u u
d       ,          (10) 

and from lemma 1 and (5),
0 0 0

( ) (1 ) (1 / ) (1 )
l l l l l

d d d d               , thus 

0
(1 ) / ( ) 1 /( )

l l
d       .           (11) 

From (6), (10) and (11), and from lemmas 2 and 3, we have  

max 1 / 1 /

lim ( ) lim ( (1 ) / ( )) lim ( (1 ) / ( ))
u u

u u u
d d

F d d
   

        
  

          

 " * "

0
( /( )) ( ) (3 (1 / )( / )) 3 (1 ) /(1 | |)

u pk u pk
d d C d d d C             , 

min 1 / 1 /

lim ( ) lim ( (1 ) / ( )) lim ( (1 ) / ( ))
l l

l l l
d d

F d d
   

        
  

          

 " * "

0
( ) ( /( )) (3 (1 / )( / )) 3 (1 ) /(1 | |)

l pk l pk
d d C d d d C              . 

Finally ( )F   has an upper bound equal to 

    " "
max 3 (1 ) /(1 | |) , 3 (1 ) /(1 | |)

pk pk
C C          "

3 (1 | |) /(1 | |)
pk

C      .  

Consequently      " " "
3 (1 | |) /(1 | |) 3 3 (1 | |) /(1 | |)

pk pk pk
C NC C C                . 

The upper bound given in Theorem 2 is identical to the one given by Chang and Wu (2008) in 

the expression (3). To reach that conclusion, we just need to observe that (1 ) /(1 )r     . 

Particular case : If T m , we have 0  , thus ( 3 ) 2 ( 3 )
pk pk

C NC C      , result well 

known, given by Boyles (1991). 

 

4.3. Case ( 1, 0)u v  , and 1u   

 

Theorem 3 : 

When 1u   and 0v  , or when 1u  , we have 

   " "
0 3 ( , ) 3 ( , )(1 | |) /(1 | |)

p p
NC C u v C u v           . 

Proof :  

We have " "
( , ) ( , )

p p
C u x v y C u v   , for any x, y   0. Thus when 1u   and 0v  , or when 

1u  , " " "
( , ) (1, 0)

p p pk
C u v C C  . Thus from the theorem 2,

  

   " "
3 3 (1 | |) /(1 | |)

pk pk
NC C C         
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   " "
3 ( , ) 3 ( , )(1 | |) /(1 | |)

p p
C u v C u v          , and from (9), this upper bound is reached 

at 0  . Moreover, ( )F   is always maximised by 1, value reached at 
m in

  and 
m ax

  

according to lemma 5 (see appendix). Thus N C  is minimized by 0, and the theorem. 

Particular cases : If T m , then 0  , and "
( , ) ( , )

p p
C u v C u v . Thus when 1u  , 0v  , or 

1u  , we have 0 2 ( 3 ( , ))
p

N C C u v    . When ( , ) (1,1)u v  , we obtain the result given by 

Boyles (1994). In addition, when T m , and ( , ) (1,1)u v  , then " "
(1,1)

p pmk
C C , and we have 

   " "
3 3 (1 | |) /(1 | |)

pmk pmk
NC C C         

"
2 ( 3 )

pmk
C   . The result obtained by Pearn, 

Lin, and Chen (1999) is thus exact, although their proof is not true in all cases. 

 

4.4. Case 0 1u  , 0v   

 

Theorem 4 :  

When 0 1u   and 0v  , 

1) 0   

a) If "

1
( , 0)

p
C u C , then 

1
1M NC  , 

b) If "

1
( , 0)

p
C u C , then  1 2

min , 1M M NC  ,  

where 

1

1

1 | | 1
tanh

3 | | 1 | | (1 )

u
C

u



 

  
  

  

, 

   

" "1 1

1

1 1

| | 1 | | 1
3 ( , 0) 3 ( , 0)

(1 | |) 1 /(1 | |) (1 | |) 1 /(1 | |)

l l

p p

l l

M C u C u
u u

   

     

      
                  

, 

   

" "1 1

2

1 1

| | 1 | | 1
3 ( , 0) 3 ( , 0)

(1 | |) 1 /(1 | |) (1 | |) 1 /(1 | |)

u u

p p

u u

M C u C u
u u

   

     

      
                  

, 

 
 

2

1

2
"

2
"

1 2

2 1

(1 | | (1 )) 1 | |
1 1 4 tanh

1 | | 1 | | (1 )3 ( , 0)1 | |
3 ( , 0)

1 | |
2 tanh

1 | | 1 | | (1 )

p

l p

u u u

uC u
C u

u u
u

u

 

 






 





    
    

     
  

  
  

     

, 

 

 
 

1

2
"

2
"

1

2 1

(1 | | (1 ))
1 1 4 tanh

1 | | (1 )3 ( , 0)1 | |
3 ( , 0)

2 tanh
1 | | (1 )

p

u p

u u u

uC u
C u

u u
u

u














  
   

  
 

 
 

  

. 

2) 0   

We have the same results as in 1) if 
1

M  is replaced by 
2

M , and 
2

M  by 
1

M . 

3) 0   

0
1M N C  , 

where 
0 0 0 0 0

(3 ( , 0)( 1) /(1 )) ( 3 ( , 0)( 1) /(1 ))
p p

M C u u C u u            , 
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with 
 

 

 

 

2
" 1

0 22 1
"

3 ( , 0) 4 tanh1
1 1

2 tanh 3 ( , 0)

p

p

C u u u

u u u C u







 
    
  
 

. 

Proof : 

Let  be positive or null. We obviously have 0 ( ) 1F   . According to lemma 6 (see 

appendix) the lower bound 0 is reached at 
m in

  and 
m ax

 . If there is a maximum less or equal 

to 1, it is necessarily obtained for the values of  min max
,   , solutions of the equation 

'
( ) 0

u
F    or '

( ) 0
l

F   . 

- Study of '
( )

u
F  . 

Let 
max

0 1 /
u

ud    . When v = 0 and from lemma 4, we have 
'
( ) 0 ( ) 0

u u
F Q   

2 2
( ) ( ( ) ( ) ( )) tanh( ( ) / ( )) 0

u u u u
q k q d                

2 2 2 2 2 2

0 0 0
(1 ) ( (1 ) ( ) (1 )) tanh( ( ) / ( )) 0

u u u u u u
ud u d u d ud u d d                     

2 2 2 2

0 0
(1 ) (1 )(1 ) tanh( ( ) / ( )) 0

u u u u u
ud u d u d ud d                

2 2 2

0
(1 )[ (1 ) tanh( ( ) / ( ))] 0

u u u u
u d ud ud d             

2 2
(1 ) tanh( ( ) / ( )) 0

u u u
ud ud d         , since 0 1 /

u
ud  , 

2 2 2

0
tanh( ( ) /[ (1 ) ]) /(1 )

u u u
d u d ud ud         , from lemma 1, 

2 2 2 1

0
( ) /( (1 ) ) tanh ( /(1 ))

u u u
d u d ud ud    


     . 

Let 
u

t  be the quantity 1
tanh ( /(1 ))

u u
ud ud


 . 

u
t  is positive and  

1
tanh /(1 (1 ))

u
t u u


    

from (4). Now, we have 
'
( ) 0

u
F   

2 2 2

0
( ) (1 )

u u
d t u d       

2 2 2 2 2 2 2 2

0 0 0
(2 ) 0

u u u u u
t u d ud t d d t           ,                   (12) 

which is a second-degree polynomial of the variable .  

Since 
4 2 2

0
4 (1 ) 0

u u u u
d t ud d u d      , we have two roots,  

2 2 2

0

1 2 2 2 2 2 2

0 0

2 1

2 2

u u u u

u

u u u u u

ud t d d

t u d ud t u d




 

    
   , 

2 2 2

0

2 2 2 2 2 2 2

0 0

2 1

2 2

u u u u

u

u u u u u

ud t d d

t u d ud t u d




 

    
   . 

As can be seen, 
2 m ax

1 /
u u

ud    is not suitable in the studied field. To make 
1u

  become 

acceptable, we need to 
1 max

0
u

   . Since 
4

u
d  , we have 

1 max
1 /

u u
ud   . In addition, 

since 
2

0
u

  , for 
1u

  to be positive or null, the product of the roots of (12) has to be positive 

or null, or that 
2 2

0
0

u
d t       2 * " 2

( /(3 ( , 0))) 0
u p

d t d C u      
"

( , 0)
p

C u H , with 

* 11 | | 1
/ /(3 ) tanh

3 1 (1 )
u

u
H t d d

u




 

  
   

  

. Thus when "
( , 0)

p
C u H , there exists 

 1 max
0,

u
   for which 

'
( ) 0

u
F    and thus for which ( )

u
F   is maximum.  

Note that in the particular case where "
( , 0)

p
C u H , that is to say when 

2 2

0
0

u
d t    , we 

have 
1

0
u

   and 
2 2

0
/

u
t d   . When v = 0,  from lemma 4, we have 

(0)
u

Q 
2 2 2 2

0 0 0
[ (1 ) tanh( / )] [ (1 ) tanh( )]

u u u u u
ud ud d ud ud t           
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2

0
[ (1 ) /(1 )] 0

u u u u
ud ud ud ud       . Consequently, according to lemma 4, '

( ) 0
u

F   , 

and ( )
u

F   is maximum for 
1

0
u

   . 

When "
( , 0)

p
C u H , we have 

1
0

u
  . Thus there is no value of  max

0,   for which 

'
( ) 0

u
F   . On the other hand    " "

(0) 3 ( , 0) 3 ( , 0)(1 ) /(1 | |)
u p p

F C u C u         , from (9). 

Consequently, we have (0) 0
u

F  , 
max

lim ( ) 0
u

F
 




  from lemma 6, and '
( ) 0

u
F    when 

 max
0,  .  Thus ( )

u
F   is decreasing when  max

0,   and maximum when 0  .  

- Study of '
( )

l
F   

Let 
min

1 / 0
l

ud      . When v = 0 and from lemma 4, we have  
'
( ) 0 ( ) 0

l l
F Q   

2 2
( ) ( ( ) ( ) ( )) tanh( ( ) / ( )) 0

l l l l
q k q d               

2 2 2 2 2 2

0 0 0
(1 ) [ (1 ) ( ) (1 )] tanh( ( ) / ( )) 0

l l l l l l
ud u d u d ud u d d                      

2 2 2

0
(1 )[ ( 1 ) tanh( ( ) / ( ))] 0

l l l l
u d ud ud d               

2 2
( 1 ) tanh( ( ) / ( )) 0

l l l
ud ud d           , since 

min
1 / 0

l
ud      . 

Thus from lemma 1, we have 
' 2 2 2

0
( ) 0 tanh( ( ) /[ (1 ) ]) /( 1 )

l l l l
F d u d ud ud            .      (13) 

From (5), /( 1 ) /(1 (1 ) 0
l l

ud ud u u        . Consequently the solutions of (13) can exist 

only for    . Let 
l

t  be the quantity 1
tanh ( /(1 (1 ))u u


   . We have 

'
( ) 0

l
F   

2 2 2

0
( ) /[ (1 ) ]

l l
d u d t      

2 2 2

0
( ) (1 )

l l
d t u d       


2 2 2 2 2 2 2 2

0 0 0
(2 ) 0

l l l l l
t u d ud t d d t          , which is a second-degree polynomial of 

the variable . Since 0
l

t   and 1 0
l

ud   , 4 2 2

0
4 ( 1 ) 0

l l l l
d t ud d u d       , and we 

have two roots, 
2 2 2

0

1 2 2 2 2 2 2

0 0

2 1

2 2

l l l l

l

l l l l l

d ud t d

t u d ud t u d




 

    
    , 

2 2 2

0

2 2 2 2 2 2 2

0 0

2 1

2 2

l l l l

l

l l l l l

d ud t d

t u d ud t u d




 

    
    . 

As can be seen, 
2 m in

1 /
l l

ud     is not suitable in the studied field. To make 
1l

  become 

acceptable, we need to 
min 1

0
l

      . Since 4

l
d  , we have 

1 m in
1 /

l l
ud    . 

Furthermore, since 
2

0
l

  , for 
1l

  to be negative or null, the product of the roots has to be 

positive or null, or that 
2 2

0
0

l
d t    , which is always true. Thus ( )

l
F   is maximum when 

 1 min
;

l
    . 

In conclusion, from the study of  
'
( )

u
F   and 

'
( )

l
F  , we can deduce:  

- If "
( , 0)

p
C u H , ( )

u
F   is maximum when 0  , and 

1
( ) (0)

l l l
F F   (0)

u
F . Thus 

( )F   has an upper bound when  1 min
;

l
    . On the other hand, from lemma 6 (appendix), 

max min

lim ( ) lim ( ) 0
u l

F F
   

 
 

  . Thus 
1

0 ( ) ( )
l l

F F    or 
1

1 ( ) 1
l l

F N C   . From (4), (5), 

(6), lemmas 1 and 3, and assuming that 
1

1 ( )
l l l

M F   , we obtain 

   1 0 1 1 0 1
1 (1 ) /( (1 )) (1 ) /( (1 ))

l l l l l l l
M d u d d u d                    
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" "1 1

1 1

1 1
3 ( , 0) 3 ( , 0)

(1 | |)(1 /(1 )) (1 | |)(1 /(1 ))

l l

p p

l l

C u C u
u u

   

     

      
       

        

, 

and 

2 4 2 2

0

1 2 2 2

0

4 ( 1 )1

2

l l l

l

l l l

d d t ud d u d

ud t u d

 




   
    

 
 

2

1

2
"

2
"

2

2 1

(1 (1 )) 1 | |
1 1 4 tanh

1 1 (1 )3 ( , 0)1
3 ( , 0)

1 | |
2 tanh

1 1 (1 )

p

p

u u u

uC u
C u

u u
u

u

 

 




 





    
     

     
  

  
   

     

. 

- If "
( , 0)

p
C u H , ( )

u
F   is maximum when  1 max

0,
u

  , and ( )
l

F   is maximum when 

 1 min
;

l
    . Thus, ( )F   has an upper bound when  min max

;   , equal to 

1 1
max( ( ); ( ))

l l u u
F F  . On the other hand, from lemma 6 (appendix), 

max min

lim ( ) lim ( ) 0
u l

F F
   

 
 

  . Thus 
1 1

0 ( ) max( ( ), ( ))
l l u u

F F F    , or 

1 1
min(1 ( ),1 ( ))

l l u u
F F   1N C  . From (4), (5), (6), lemmas 1 and 3, and assuming that 

1
1 ( )

u u u
M F   , we obtain 

   1 0 1 1 0 1
1 (1 ) /( (1 )) (1 ) /( (1 ))

u u u u u u u
M d u d d u d                    

" "1 1

1 1

1 1
3 ( , 0) 3 ( , 0)

(1 | |)(1 /(1 )) (1 | |)(1 /(1 ))

u u

p p

u u

C u C u
u u

   

     

      
       

        

, 

and 

2 4 2 2

0

1 2 2 2

0

4 (1 )1

2

u u u

u

u u u

d d t ud d u d

ud t u d

 




  
   

 
 

1

2
"

2
"

2 1

(1 (1 ))
1 1 4 tanh

1 (1 )3 ( , 0)1
3 ( , 0)

2 tanh
1 (1 )

p

p

u u u

uC u
C u

u u
u

u












  
   

  
 

 
 

  

. 

In the particular case where 0  , the product of the roots of the second-degree polynomial 

(12) is equal to 2
u

 , therefore it is always positive. Consequently, ( )
u

F   is maximum in 

 1 max
0,

u
  , for any value of ( , 0) 0

p
C u  . Since 0  , we have 1

u l
d d  , ( )

u
   

( )
l

   , and  ( ) ( )
u l

F F    for 
max

0    . Thus 
0

1M N C  , where 
0 1

( )
l l

M M   

1
( )

u u
M  , with 

0 1 1u l
     . 

Now, we study the case 0  . From (4), (5), and lemmas 1 and 3, if 
max

0    , we have 

( , ) ( , )
u l

F F      . Thus we have the following results: H, 
u

M , 
l

M , 
1u

 , 
1l

  being 

functions of , 

- If "
( , 0) ( )

p
C u H   , then 

'
1

u
M N C  , where 

' '

1
( ) 1 ( ) ( )

u u u l
M F M      , and  

 
'

1 1 max
( ) ( ) ;

u l
          . 

- If "
( , 0) ( )

p
C u H   , then 

' '
m in( , ) 1

u l
M M N C  , where 

' '

1
( ) 1 ( ) ( )

l l l u
M F M      , and 

 
'

1 1 min
( ) ( ) ; 0

l u
        . 
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Let 
1

C  be (| |)H  , 
1

M  be (| |)
l

M   and 
2

M  be (| |)
u

M  . Thus the theorem ensues from the 

results obtained for 0   and 0  . 

 

4.5. Case 0 1u  , 0v   

 

Theorem 5 : 

When 0 1u   and 0v  , 

1) 0   

a) If "

1 2
( , ) max( , )

p
C u v C C , then  0 1 ( )

u u
NC F    . 

b) If "

2
( , )

p
C u v C , then min(1 ( ),1 ( )) 1

l l u u
F F NC     . 

c) If "

2 1
( , )

p
C C u v C  , then   0 max 1 ( ),1 (0)

u u
NC F F    . 

d) If "

2 1
( , )

p
C u v C C  , then  1 ( ) max(1 (0),1 / 2)

l l
F NC F    . 

e) If  "

1 2
( , )

p
C C C u v  , then  1 ( ) max(1 ( ),1 / 2)

l l u u
F NC F     , 

where 1

1

1 | | 1
tanh

3 | | 1 | | (1 )

u
C

u



 

  
  

  

, 
2

(1 )(1 | |)

3

u
C

v

 
 , 1 (0)F  

   " "
3 ( , ) 3 ( , )(1 | |) /(1 | |)

p p
C u v C u v          , and 

u
  and 

l
 , if they exist, are solutions 

of the following equations (14) and (15). 

2) 0   

We have the same results as in 1) if ( )
u u

F   is replaced by ( )
l l

F  , and ( )
l l

F   by ( )
u u

F  . 

3) 0   

a) If "

2
( , )

p
C u v C , then  

0
0 max(1 ( ),1 (0))NC F F    . 

b) If "

2
( , )

p
C u v C , then  

0
1 ( ) 1F NC   . 

c) If "

2
( , )

p
C u v C , then  

0
1 ( ) max(1 (0),1 / 2)F NC F    ,  

where 
0

 , if it exists, is the solution of the following equations (14) or (15). 

Proof : 

The extrema of the function ( )F   are obtained either at the study intervals bounds 
m in

 , 0, 

m ax
 , either for the  values solutions of the equations 

'
( ) 0

u
F    or 

'
( ) 0

l
F   , that is to say 

according to lemma 4, of the equations 
2 2 2 2 2 2

( ) ( ( ) ( ) ( ) ) tanh( ( ) / ( )) 0
u u u u u u

q v d d k q v d d d                  ,               (14) 
2 2 2 2 2 2

( ) ( ( ) ( ) ( ) ) tanh( ( ) / ( )) 0
l l l l l l

q v d d k q v d d d                  .                  (15) 

These solutions can only be obtained numerically. 

When 0  , the theorem is ensued from lemmas 7, 8, 9 and 10 in appendix. When 0  , we 

use the fact that ( , ) ( , )
u l

F F       for 
max

0    .  

 

4.6. Case 0u  , 0v   

 

Theorem 6 : 

When 0u   and 0v  , 

1) 0   

a) If "

2
( , )

p
C u v C , then  0 1 ( )

u u
NC F    . 

b) If "

2
( , )

p
C u v C , then min(1 ( ),1 ( )) 1

l l u u
F F NC     . 
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c) If  "

2
( , )

p
C u v C , then  1 ( ) max(1 ( ),1 / 2)

l l u u
F NC F     . 

where 
2

(1 )(1 | |) /(3 )C u v   , and 
u

  and 
l

 , are solutions of the equations (14) and (15). 

2) 0   

We have the same results as in 1) if ( )
u u

F   is replaced by ( )
l l

F  , and ( )
l l

F   by ( )
u u

F  . 

3) 0   

a) If "

2
( , )

p
C u v C , then  

0
0 max(1 ( ),1 (0))NC F F    . 

b) If "

2
( , )

p
C u v C , then  

0
min(1 ( ),1 (0)) 1F F NC    . 

c) If "

2
( , )

p
C u v C , then  

0
min(1 ( ),1 (0)) max(1 (0),1 / 2)F F NC F     ,  

where 
0

 , if it exists, is the solution of the equations (14) or (15). 

Proof : 

When u = 0, we have 
1

0C  , thus "

1
( , )

p
C u v C . The theorem is ensued from lemmas 7, 8, 9 

and 10 in the appendix. 

Particular case : When ( , ) (0,1)u v  , and 0  , we have "
(0,1)

p pm
C C , 

2
1 / 3C  , and 

1 (0)F 2 ( 3 )
pm

C   . The results we obtain thus are compatible with Ruczinski’s (1996). 

 

5. APPLICATION EXAMPLE 

 

A company of the Toyal group manufactures aluminium paste used for the fabrication of 

high-tech paint for cars, hi-fi, mobile telephony, cosmetics.... The manufacturing process 

consists in crushing the raw material to which lubricant is added. The product is then 

conveyed into a mixer where a solvent is added in order to obtain a final product containing a 

constant non volatile percentage. A quality control is carried out at this stage of the 

production. It concerns the non volatile percentage which has a target of 67. The usual 

tolerances for the profession are 1  , but are difficult to hold for this type of product. The 

lower values being more prejudicial for the customer, the tolerances have been fixed at 66 and 

69. We have m = 67.5, d = 1.5, and ( ) /T m d   = 1/3. Suppose that the process is 

considered capable when "
( , )

p
C u v  takes a value larger or equal to 1, the number of 

nonconforming items is smaller or equal to 1500 parts per million (ppm), and the process 

mean does not move away more than 20% of the distance between the target and the 

tolerances. From theorems 1 to 6 we can find the pairs (u,v) such as 1500N C   when 
"

( , )
p

C u v = 1. We limit our study to varying u and v with a step of 0.1. Table 1 gives the pairs 

(u,v) where the upper bound of NC (en ppm) is the nearest to 1500. From (6) and (8) we have 

l u
KD T KD    , where  

1
"

3 ( , ) /(1 | |)
p

K vC u v u


   . If we want the process mean 

not to move away more than 20% of the distance between the target and the tolerances, we 

must take 0.2K  . Thus, in table 1, we have written out the value of K when "
( , )

p
C u v = 1.  So 

the "
(0.3,1.1)

p
C  index will meet our objectives in the best way.        

 

6. CONCLUSION 

 

The motives underlying the introduction of process capability indices seem quite clearly to be 

related to monitoring the proportion of nonconforming items. However various authors have 

addressed the practical importance of process centering as a component of process capability. 
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For these reasons, Vännman (1995) suggests the ( , )
p

C u v  indices when the tolerances are 

symmetrical, then Chen and Pearn (2001) suggest the "
( , )

p
C u v  indices when the tolerances 

are asymmetrical. The compromise between process yield and process centering is achieved 

by the choice of the parameters u and v. However, if the links between capability indices and 

process centering have already been studied, those between capability indices and process 

yield have only been accurately studied for some particular cases. In this paper we study the 

links between the process yield and the "
( , )

p
C u v  indices. We find already known results for 

some particular cases, we correct inaccuracies found in the literature, and expand the study to 

any positive or null values of u and v. From these results, the practitioner can choose a pair 

(u,v), so that the resulting index " ( , )pC u v  will meet his objectives best. In order to illustrate 

how this reasoning can be applied, we present a real example on an aluminium paste 

manufacturing process. 
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APPENDIX 

 

Lemma 5: 

When 1u   and 0v  , or when 1u  ,  then
max min

lim ( ) lim ( ) 1
u l

F F
   

 
 

  . 

Proof : 

From lemma 3, we have 

max max

lim ( ) lim [ ( (1 ) / ( )) ( (1 ) / ( ))]
u u u

F d d
   

        
 

           

max

lim ( (1 ) / ( )) ( )
u

d
 

   


      
max

lim ( (1 ) / ( ))
u

d
 

   


    . 

On the other hand, from (4) and (8), 
max 0 0

(1 ) ( ( 1) ) /( )
u

d D vd u vd u         . 

Since 
max

0    , we have "
( , ) 0

p
C u v   and thus 

0
0  . When 1u   and 0v  , or 1u  , 

thus we have 
max

(1 ) 0d     , from where 
max

lim ( (1 ) / ( )) ( ) 1
u

d
 

   


       , and 

max

lim ( ) 1
u

F
 




 . 

From lemma 3, we have 

min min

lim ( ) lim [ ( (1 ) / ( )) ( (1 ) / ( ))]
l l l

F d d
   

        
 

           

min

( ) lim ( (1 ) / ( ))
l

d
 

   


       
min

1 lim ( (1 ) / ( ))
l

d
 

   


      . 

On the other hand, from (5) and (8), 
min 0 0

(1 ) ( ( 1) ) /( )
l

d D vd u vd u           . 

Since 
min

0   , we have "
( , ) 0

p
C u v   and thus 

0
0  . When 1u   and 0v  , or 1u  , 

thus we have 
min

(1 ) 0d      , from where 
min

lim ( (1 ) / ( )) ( ) 0
l

d
 

   


        , 

and
min

lim ( ) 1
l

F
 




 . 

 

Lemma 6 :  

When 0 1u   and 0v  , then 
max min

lim ( ) lim ( ) 0
u l

F F
   

 
 

  . 

Proof : 

From lemma 3 we have 

max max

lim ( ) lim [ ( (1 ) / ( )) ( (1 ) / ( ))]
u u u

F d d
   

        
 

           

max

lim ( (1 ) / ( )) ( )
u

d
 

   


      
max

lim ( (1 ) / ( ))
u

d
 

   


    . 

Now when 0 1u   and 0v  , from (8) we have 
max

1 /
u

ud  , and from (4), 
max

(1 )d     

( 1) / 0
u

D u u   , thus 
max

lim ( ) ( ) 0
u

F
 




    . 

From lemma 3 we have 

min min

lim ( ) lim [ ( (1 ) / ( )) ( (1 ) / ( ))]
l l l

F d d
   

        
 

           

min

( ) lim ( (1 ) / ( ))
l

d
 

   


       
min

1 lim ( (1 ) / ( ))
l

d
 

   


      . 

Now when 0 1u   and 0v  , from (8) we have 
min

1 /
l

ud   , and from (5), 

min
(1 )d      ( 1) / 0

l
D u u    , thus  

min

lim ( ) 1 0
l

F
 




     . 

 

Lemma 7 :  
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When 0 1u   and 0v  , 

a) If "
( , ) (1 )(1 | |) /(3 )

p
C u v u v   , then 

max min

lim ( ) lim ( ) 1
u l

F F
   

 
 

  . 

b) If "
( , ) (1 )(1 | |) /(3 )

p
C u v u v   , then 

max min

lim ( ) lim ( ) 1 / 2
u l

F F
   

 
 

  . 

c) If "
0 ( , ) (1 )(1 | |) /(3 )

p
C u v u v    , then

max min

lim ( ) lim ( ) 0
u l

F F
   

 
 

  . 

Proof : 

From lemma 3 we have 

max max

lim ( ) lim [ ( (1 ) / ( )) ( (1 ) / ( ))]
u u u

F d d
   

        
 

          

max

lim ( (1 ) / ( )) ( )
u

d
 

   


      
max

lim ( (1 ) / ( ))
u

d
 

   


    . 

From (4) and (8), we have 
" " *

max
(1 ) (3 ( , ) ( 1)(1 | |)) /(3 ( , ) )

u p p
d dD vC u v u vdC u v ud         . Thus  

a) If "
( , ) (1 )(1 | |) /(3 )

p
C u v u v   , then 

max
(1 ) 0d     , 

max

lim ( (1 ) / ( ))
u

d
 

   


    =  

( )   1 , and 
max

lim ( ) 1
u

F
 




 .  

b) If "
( , ) (1 )(1 | |) /(3 )

p
C u v u v   , then 

max
(1 ) 0d     , 

max

lim ( (1 ) / ( ))
u

d
 

   


    = 

(0)  1 / 2 , and 
max

lim ( ) 1 / 2
u

F
 




 . 

c) If "
0 ( , ) (1 )(1 | |) /(3 )

p
C u v u v    , then 

max
(1 ) 0d     , 

 
max

lim ( (1 ) / ( ))
u

d
 

   


    = ( )   = 0, and 
max

lim ( ) 0
u

F
 




 . 

In a similar way we have 
min min

lim ( ) 1 lim ( (1 ) / ( ))
l l

F d
   

    
 

      , and the lemma since 

from (5) and (8), we have 
" " *

min
(1 ) (3 ( , ) ( 1)(1 | |) /(3 ( , ) )

l p p
d dD vC u v u vdC u v ud           .  

 

Lemma 8 :  

When 0 1u   and 0v  , if "
( , ) (1 )(1 | |) /(3 )

p
C u v u v   , then for any

max
0;

u
     , 

there exists 
min

/ ; 0
l u u l

d d         such as ( ) ( )
u u l l

F F   when 0  , ( ) ( )
l l u u

F F   

when 0  , and ( ) ( )
l l u u

F F   when 0  . 

Proof :  

The proof is given for 0  . The case 0   is similar, and the case 0   is obvious. 

Let 
max

0;
u

     , 
min

/ ; 0
l u u l

d d        , ( ) /
u u

E d  , (1 ) /
u

a E    , 

(1 ) /
l

b E    , and ( ) / 0
u l

x E    . 

If "
( , ) (1 )(1 | |) /(3 )

p
C u v u v   , then "

3 ( , ) /(1 | |) 1
p

vC u v u   , and 

"
1 /( (3 ( , ) /(1 | |) )) 1 /

u p u
d vC u v u d   . From (4) and (8), we deduce  

"

max
0 1 /( (3 ( , ) /(1 | |) )) 1 / 1

u u p u
d vC u v u d           , from where 0a   and 

1 0
u u
d  . Consequently, since 0  , we have  

u l
d d , (1 ) / (1 ) /

u u u u u l
d d d d    , and 1 / 1 / /

u u l u u l
d d d d    . Since /

l u u l
d d   , 

from (4) and (5) we deduce (1 ) / (1 ) /
u l

a E E b          .  
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Let f  the probability density function of the standard normal distribution N(0,1). Since f is 

decreasing on  0;  , when 0x   and 0b a  , we have ( ) ( )
b x a x

b a
f x dx f x dx

 

  , thus 

(1 ) / (1 ) /

(1 ) / (1 ) /
( ) ( )

u l

l u

E E

E E
f x dx f x dx

   

   

   

   
 

(1 ) / (1 ) /

(1 ) / (1 ) /
( ) ( ) 0

l u

u l

E E

E E
f x dx f x dx

   

   

    

    
    0A B   , 

where 
(1 ) /

(1 ) /
( ) ( (1 ) / ) ( (1 ) / )

l

u

E

l u
E

A f x dx E E
 

 
   

  

  
           , 

and 
(1 ) /

(1 ) /
( ) ((1 ) / ) ((1 ) / )

u

l

E

u l
E

B f x dx E E
 

 
   

 

 
         . Now 

((1 ) / ) ( (1 ) / ) ((1 ) / ) ( (1 ) / )
u u l l

E E E E A B                          , thus 

((1 ) / ) ( (1 ) / )
u u

E E            ((1 ) / ) ( (1 ) / )
l l

E E           . 

Since /
l u u l

d d   , from lemma 1, we have ( ) ( )
l l u u

    , and ( ) /
u u

E d   

( ) /
l l

d  . Consequently,  

( (1 ) / ( )) ( (1 ) / ( ))
u u u u u u

d d                

( (1 ) / ( )) ( (1 ) / ( ))
l l l l l l

d d                , 

and ( ) ( )
u u l l

F F  . 

It should be noted that when "
( , ) (1 )(1 | |) /(3 )

p
C u v u v    and 0  , no general rule can 

be obtained, as shown in the graphic investigations which have been made, but which are not 

detailed here. 

 

Lemma 9 :  

1) When 0 1u   and 0v  , we have  

if 0  , then ( )F   has a relative minimum at 0  , 

if 0  , then ( )F   decreases in the neighbourhood of 0   when "

1
( , )

p
C u v C , and has a  

relative minimum at 0   when "

1
( , )

p
C u v C , 

if 0  , then ( )F   increases in the neighbourhood of 0   when "

1
( , )

p
C u v C , and has a  

relative minimum at 0   when "

1
( , )

p
C u v C , 

where 1

1

(1 | |) 1
tanh

3 | | 1 | | (1 )

u
C

u



 

  
  

  

. 

2) When 0u   and 0v  , we have 

if 0  , then ( )F   has a relative extremum at 0  , 

if 0  , then ( )F   decreases in the neighbourhood of 0  . 

if 0  , then ( )F   increases in the neighbourhood of 0  . 

Proof : 

If 0  , we have 
2

0
0

lim ( )
u

Q u


 




  and 
2

0
0

lim ( )
l

Q u


 




  , thus from lemma 4, ( )F   has a 

relative minimum at 0   when 0 1u  , and has a relative extremum when 0u  . 

Let 0  . We have 
0

0 0

lim ( ) lim ( )
u l

 

    
 

 

  , 
2

0
0 0

lim ( ) lim ( )
u l

k k
 

  
 

 

  , 
0

lim ( )
u

q







 

2

0u
ud  , and 

2

0
0

lim ( )
l l

q ud


 




  . Thus from (4), (5), and (6), we have 

 
2

" 2 20

0

lim ( ) (1 ) tanh (3 ( , )) /(1 | |)
1

l p
Q u u C u v




    




      
 

, and 
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2

" 2 20

0

lim ( ) 1 tanh (3 ( , )) /(1 | |)
1

u p
Q u u C u v




    




     
 

. 

Since 0 1u  , 0  , and 1 0u    , we have 
0

lim ( ) 0
l

Q







 . For 0u  , 
0

lim ( ) 0
u

Q







 , 

thus ( )F   decreases in the neighbourhood of 0  . For 0 1u  , since 1 0u    , we 

have 
0

lim ( ) 0
u

Q







  when "
( , )

p
C u v C , 

0

lim ( ) 0
u

Q







  when "
( , )

p
C u v C , and 

0

lim ( ) 0
u

Q







  when "
( , )

p
C u v C , where  

1
(1 | |) (1 / ) tanh /(1 (1 )) / 3C u u  


    , 

which is equal to 
1

C  since 0   . For 0  , we use the fact that ( , ) ( , )
u l

F F       if 

max
0    .  

 

Lemma 10 :  

1) When 0 1u   and 0v  , if "
( , ) (1 )(1 | |) /(3 )

p
C u v u v   , then  

- ( )
u

F   is decreasing in the neighbourhood of 
max

1     , and cannot have more than 

two extrema for  max
0;  . 

- ( )
l

F   is increasing in the neighbourhood of 
min

1     , and cannot have more than two 

extrema for  min
; 0  . 

2) When 0u    and 0v  , if "
( , ) (1 )(1 | |) /(3 )

p
C u v u v   , then ( )

u
F   cannot have 

more than one extremum for  max
0;  , and ( )

l
F   cannot have more than one extremum 

for  min
; 0  . 

Proof : 

The proof is given for 0  . The case 0   is similar.  

1) If "
( , ) (1 )(1 | |) /(3 )

p
C u v u v   , we have 

0
/(1 )vd u   , 

max
1   , 

2 2

2 2

(1 )
( )

(1 ) (1 )
u

d v u
k

u

 




 


 
, 

2

2 2

(1 )
( )

(1 ) (1 )
u

ud v u
q

u

 




 


 
, 

 
1 2

2 2 2
(1 ) (1 )

( )
(1 )(1 )

u

vd u u

u

  
 



   


 
, and  

2

2 2
( ) tanh( )

(1 ) (1 )
u

vd
Q A B x

u



 

 
 

2

2

2 2 2

( )
1

(1 ) (1 ) ( 1)

x

x

vd A B A B
e

u e A B

  
  

    
, where 2

(1 ) (1 )A u u u       , 

 
2

(1 ) 1 (1 )B u u u           , and 
 

2 2

2 2 2

( )(1 ) (1 )

(1 ) (1 )

u
x

v u u

  

  

  


   
. Now, 

(1 )(1 )( (1 ))A B u         which is negative since  max
0;  , and 

2
(1 )(1 (1 )) (1 ) (1 )A B u u u                which is positive. When  tends to 

1  , 1 is negligible compared to 2
( ) /( )

x
e A B A B  , thus ( )

u
Q  is negative and ( )

u
F  is 

decreasing in the neighbourhood of 1   .  

Now we show that ( )
u

F   cannot have more than two extrema when  max
0;  . Let 

(1 )

1

t

t u







 
 with  0;t   . We have 

   1 (1 )

(2 1)

t u t u
x

v t

   



 and 
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(1 )(1 )

2 1 (1 )

A B u

A B t u



 

  
 

    
. Thus ( )

u
Q   has the sign of 

 

  1 (1 )
2

( 2 1)(1 )(1 )
( ) 1

2 1 (1 )

t u t u

v tu
G t e

t u





 

   

 
 

   
.  

Let 
2 (1 )(1 )

(1 )(1 )

t u
y

u





  


 
 with 

(1 )
1

(1 )
y






 


. We have 

 

2
(1 )(1 )( 1)

2
( ) 1 /( 2 )

u y

v y k
G y e y k

  


   , 

where 
(1 )

(1 )(1 )

u u
k

u





 


 
. 

Since 
 

2
(1 )(1 )( 1)

2 3 2 2

2 2

(1 )(1 ) 4 (1 4 ) 2
'( ) 1

( 2 ) 2 ( )

u y

v y k
e u y ky k y k

G y
y k v y k





  


      

  
  

, '( )G y  has the sign 

of 
3 2 2

2

(1 )(1 ) 4 (1 4 ) 2
( ) 1

2 ( )

u y ky k y k
H y

v y k

     
 


. We have 

3 2 2 3

3

(1 )(1 ) 3 (4 1) 4 3
'( )

2 ( )

u y ky k y k k
H y

v y k

      
 


, and 

2 1
0

(1 )(1 )

t
y k

u 


  

 
 since 

0t  . Thus '( )H y  has the opposite sign of 3 2 2 3
( ) 3 (4 1) 4 3K y y ky k y k k      . 

For the particular case where u = 0 and  = 0, we have k = 0 and ( ) 0K y   since 

(1 ) /(1 ) 1y      . 

For the case where 0u   or 0  , we have 2 2
'( ) 3 6 (4 1)K y y ky k    , and the 

discriminant of the quadratic equation '( )K y  is 2
12(1 )k   . 

If | | 1k  , we have 0  , thus '( ) 0K y   and ( )K y  is increasing. When 1k  , since 
3

(0) 4 3 0K k k   , thus ( ) 0K y   for (1 ) /(1 )y     . When 1k  , we have 

( 2 ) 0K k k    , and (1 ) /(1 ) ( 2 ) (1 ) /((1 )(1 )) 0k u u u               . Thus 

( ) 0K y   when (1 ) /(1 )y     . 

If | | 1k  , we have 0   and '( )K y  has two real roots,  2

1
6 12(1 ) / 6y k k     and  

 2

2
6 12(1 ) / 6y k k    . Now 

2

2

12(1 )(1 ) 1
0

(1 ) (1 )(1 ) 6

k
y

u



 


   

  
, since 

1 1
(1 ) (1 ) 1u

 
    and 2

0 12(1 ) / 6 1k   . Thus ( )K y  is increasing when 

2 1
(1 ) /(1 )y y y      . Moreover, 2

(1) 4 ( 1) 0K k k   . Thus ( ) 0K y   when 

(1 ) /(1 ) 1y      . 

To conclude, for all cases we have ( ) 0K y  , thus '( ) 0H y  , and ( )H y  is decreasing with 

lim ( )
y

H y


  . Therefore ( )H y  has at the maximum one zero, ( )G y  has at the maximum 

two zeros, and ( )
u

F   cannot have more than two extrema when  max
0;  . 

2) When 0u   , we have 
(1 ) /(1 )

lim ( ) 0
y

G y
   

 , thus ( )G y  has at the maximum one zero, 

and ( )
u

F   cannot have more than one extremum when  max
0;  . 

http://en.wikipedia.org/wiki/Discriminant

