HAL
open science

Communication Complexity and Intrinsic Universality in Cellular Automata

Eric Goles Chacc, Pierre-Etienne Meunier, Ivan Rapaport, Guillaume
Theyssier

- To cite this version:

Eric Goles Chacc, Pierre-Etienne Meunier, Ivan Rapaport, Guillaume Theyssier. Communication Complexity and Intrinsic Universality in Cellular Automata. 2009. hal-00440186v1

HAL Id: hal-00440186
 https://hal.science/hal-00440186v1

Preprint submitted on 9 Dec 2009 (v1), last revised 15 Sep 2010 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Communication Complexity and Intrinsic Universality in Cellular Automata*

E. Goles ${ }^{\text {a }}$, P.-E. Meunier ${ }^{\text {c }}$, I. Rapaport ${ }^{\text {b }}$, G. Theyssier ${ }^{\text {c,* }}$
${ }^{a}$ Facultad de Ingenieria y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
${ }^{b}$ DIM, CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile
${ }^{c}$ LAMA, Université de Savoie, CNRS, 73376 Le Bourget-du-Lac Cedex, France

Abstract

Let F be a cellular automaton (CA). This paper establishes necessary conditions for F in order to be intrinsically universal. The central idea is to consider the communication complexity of various "canonical problems" related to the dynamics of F. We show that the intrinsic universality of F implies high communication complexity for each of the canonical problems. This result allows us to rule out many CAs from being intrinsically universal: The linear CAs, the expansive CAs, the reversible CAs and the elementary CAs 218, 33 and 94. Our communicational approach provides a finer tool than the one given by classical computational complexity analysis. In fact, we prove that for two of the canonical problems there exists a CA for which the computational complexity is maximal (P-complete, or Π_{1}^{0}-complete) while the corresponding communication complexity is rather low. We also show the orthogonality of the problems. More precisely, for any pair of problems there exists a CA with low communication complexity for one but high communication complexity for the other.

Key words: cellular automata, communication complexity, intrinsic universality.

1. Introduction

Since the pioneering work of J. von Neumman 14], universality in cellular automata (CAs) has received a lot of attention (see 12] for a survey). Historically, the notion of universality used for CAs was more or less an adaptation of the classical Turing-universality. Later, a stronger notion called intrinsic universality was proposed: A CA is intrinsically universal if it is able to simulate any other CA [2, 9, 12].

This definition of intrinsic universality - which relies on a notion of simulation formalized later in this paper- may seem very restrictive. Nevertheless, the intrinsic universality property can be very common in some natural families

[^0]of CAs [1]. But, most importantly, by completely formalizing the notion of universality, we facilitate the proof of negative results.

However there is still a gap for one-dimensional CAs: The elementary CA Rule 110 is Turing-universal and no elementary CA is known to be intrinsically universal.

In this paper we are going to show that the tool of communication complexity seems to be a particularly good candidate in order to obtain such negative results.

In Section 2 we give the basic definitions. One of the key definitions is the following: Given a traditional computational problem \mathcal{P} with an arbitrary input w, we can split the input into two subwords w_{1} and w_{2}; therefore, we can refer to the "comunication complexity" of such problem (w_{1} is given to Alice while w_{2} is given to Bob).

In Section 3 we introduce a family of "canonical problems" concerning various aspects of the dynamics of a given CA. In other words, for any CA F and any problem prototype \mathcal{P}, we consider the problem \mathcal{P}_{F}. We study the computational complexity of those problems showing that they are complete with respect to the class they belong (choosing the right F in every case).

In Section 1 we explain how to infer deep properties of F from the study of the communication complexity of \mathcal{P}_{F}. More precisely, we prove that if the communication complexity of any canonical problem \mathcal{P}_{F} is not maximal, then F is not intrinsically universal. In other words, we are introducing a powerful tool for ruling out cellular automata from being intrinsically universal. We conclude that linear, expansive and reversible CAs are not intrinsically universal. We also show the orthogonality of the canonical problems: For any pair of problems there exists a CA with low communication complexity for one but high communication complexity for the other.

In Section ${ }^{\text {a }}$ we explain clearly why the communication complexity approach appears to be a promising tool for ruling out CAs from being intrinsically universal. More precisely, we prove that for two of the canonical problems there exists a CA for which the decison version is hard (P -complete, Π_{1}^{0}-complete) while the communication complexity is rather low.

Finally, in Section 6 we use our results for proving that some concrete elementary CAs are not intrinsically universal. Although looking at several spacetime diagrams of these CAs might give a strong intuition about their (non) universality, we stress that producing complete formal proofs for such a negative result is a difficult task and, to our knowledge, has never been done before in the literature.

2. Basic definitions

2.1. Communication complexity

Communication complexity is a measure introduced by A. C.-C. Yao in 15], and designed at first for lower-bounding the amount of communication needed in distributed algorithms. In that model he considered two players, namely Alice and Bob, both with arbitrary computational power and communicating

[^1]to each other in order to decide the value of a given function. More precisely, for a function $\phi: X \times Y \rightarrow Z$, the question is "how much information do they need to exchange, in the worst case, in order to compute $\phi(x, y)$, with Alice knowing only x and Bob only y ".

This communication problem is solved by a protocol, which specifies, at each step of the communication between Alice and Bob, who speaks (Alice or Bob), and what he or she says (a bit, 0 or 1), as a function of their respective inputs. This simple framework, and some of its variants we discuss in this article, appear to us as a relevant way to study CAs. Some results on communication complexity suggest simulations for testing hypothesis about properties of CAs.

A protocol \mathcal{P} over a domain $X \times Y$ and with range Z is a binary tree where each internal node v is labeled either by a map $a_{v}: X \rightarrow\{0,1\}$ or by a map $b_{v}: Y \rightarrow\{0,1\}$, and each leaf v is labeled either by a map $A_{v}: X \rightarrow Z$ or by a $\operatorname{map} B_{v}: Y \rightarrow Z$.

The value of protocol \mathcal{P} on input $(x, y) \in X \times Y$ is given by $A_{v}(x)$ (or $B_{v}(y)$) where A_{v} (or B_{v}) is the label of the leaf reached by walking on the tree from the root, turning left if $a_{v}(x)=0$ (or $b_{v}(y)=0$), and right otherwise. We say that a protocol computes a function $\phi: X \times Y \rightarrow Z$ if for any $(x, y) \in X \times Y$, its value on input (x, y) is $\phi(x, y)$.

Intuitively, each internal node specifies a bit to be communicated either by Alice or by Bob, whereas at the leaves either Alice or Bob determines the value of ϕ when she (or he) has received enough information from the other.

In our formalism, we do not ask both Alice and Bob to be able to give the final value. We do so in order to consider protocols where communication is unidirectional.

We denote by $\mathbf{c c}(\phi)$ the (deterministic) communication complexity of a function $\phi: X \times Y \rightarrow Z$. It is the minimal depth of a protocol tree computing ϕ.

One approach for proving lower bounds on the communication complexity of an arbitrary function ϕ is based on the so-called fooling sets (for a deeper presentation of this theory we refer to [8]).

Definition 1. Given a function $\phi: X \times Y \rightarrow Z$, a set $S \subseteq X \times Y$ is a fooling set for ϕ if there exists $z \in Z$ with:

1. $\forall(x, y) \in S, \phi(x, y)=z$,
2. $\forall\left(x_{1}, y_{1}\right) \in S, \forall\left(x_{2}, y_{2}\right) \in S$, either $\phi\left(x_{1}, y_{2}\right) \neq z$ or $\phi\left(x_{2}, y_{1}\right) \neq z$.

The usefulness of fooling sets is given by the following lemma (see [8]).
Lemma 1. If S is a fooling set of size m for ϕ then $\mathbf{c c}(\phi) \geq \log _{2}(m)$.
In addition to ad hoc fooling set constructions, we will use the following classical lower bounds on communication complexity (the proofs appear in (8]).

Proposition 1. Let $n \geq 1$ be fixed. Let ϕ_{EQ}, ϕ_{IP} and ϕ_{DISJ} be the functions "equality","inner product" and "disjointness" defined from $\{0,1\}^{n} \times\{0,1\}^{n}$ to
$\{0,1\}$ by:

$$
\begin{aligned}
\phi_{\mathrm{EQ}}(x, y) & = \begin{cases}1 & \text { if }(\forall i)\left(x_{i}=y_{i}\right), \\
0 & \text { otherwise } .\end{cases} \\
\phi_{\mathrm{IP}}(x, y) & = \begin{cases}1 & \text { if } \sum x_{i} y_{i} \bmod 2=1 \\
0 & \text { otherwise }\end{cases} \\
\phi_{\mathrm{DISJ}}(x, y) & = \begin{cases}1 & \text { if }(\forall i)\left(x_{i} y_{i} \neq 1\right), \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

The following lower bounds hold:

- $\mathbf{c c}\left(\phi_{\mathrm{EQ}}\right) \geq n$.
- $\mathbf{c c}\left(\phi_{\mathrm{IP}}\right) \geq n$.
- $\boldsymbol{\operatorname { c c }}\left(\phi_{\text {DISJ }}\right) \geq n$.

2.2. Splitting the input of computational problems

Let us consider now classical computational input-output problems. In this work we only take into account problems $\mathcal{P}: Q^{*} \rightarrow Z$ whose inputs are words over some alphabet Q and outputs are elements of a finite set Z. Moreover, we will always have $Z=Q$ or $Z=\{0,1\}$ as output sets.

Given such type of problem \mathcal{P}, we define, for any n, its restriction to words of length n; i.e, we consider the restricted problem $\left.\mathcal{P}\right|_{n}: Q^{n} \rightarrow Z$.

The key idea of the communication approach is to split the input into two parts: For any $1 \leq i \leq(n-1)$, we define $\left.\mathcal{P}\right|_{n} ^{i}: Q^{i} \times Q^{n-i} \rightarrow Z$. More precisely, for every $x \in Q^{i}, y \in Q^{n-i}$, we have $\left.\mathcal{P}\right|_{n} ^{i}(x, y)=\left.\mathcal{P}\right|_{n}(x y)$. Then, we can consider the communication complexity $\mathbf{c c}\left(\left.\mathcal{P}\right|_{n} ^{i}\right)$ of the i th splitted function $\left.\mathcal{P}\right|_{n} ^{i}$. Of course the choice of i matters and can alter the corresponding communication complexity. Since we don't want to rely on an arbitrary choice, we consider the worst case. Putting all together, we associate to any problem a function as explained in the following definition.
Definition 2. Let $\mathcal{P}: Q^{*} \rightarrow Z$ be a problem. The communication complexity of \mathcal{P}, denoted $\mathrm{CC}(\mathcal{P})$, is the function:

$$
n \mapsto \max _{1 \leq i \leq n-1} \mathbf{c c}\left(\left.\mathcal{P}\right|_{n} ^{i}\right)
$$

2.3. Cellular automata

In this paper we are always going to consider one-dimensional CAs. A CA is defined by its local rule $f: Q^{2 r+1} \rightarrow Q$ (where Q corresponds to the set of states and r denotes the radius of the local rule). For any $n \geq 2 r+1$, we extend f to $f: Q^{n} \rightarrow Q^{n-2 r}$ by

$$
f\left(u_{1} \cdots u_{n}\right)=f\left(u_{1} \cdots u_{2 r+1}\right) \cdots f\left(u_{n-2 r} \cdots u_{n}\right) .
$$

Moreover, for every $1 \leq t \leq\lfloor(n-1) / 2 r\rfloor$, we define the t-steps local iteration as $f^{t}: Q^{n} \rightarrow Q^{n-2 \cdot r \cdot t}$ by

$$
\left\{\begin{array}{l}
f^{1}=f \\
f^{t}\left(u_{1} \cdots u_{n}\right)=f\left(f^{t-1}\left(u_{1} \cdots u_{n-2 r}\right) \cdots f^{t-1}\left(u_{2 r+1} \cdots u_{n}\right)\right)
\end{array}\right.
$$

We also define $f^{*}: Q^{*} \rightarrow Q^{*}$ by

$$
f^{*}(u)=f^{\left\lfloor\frac{|u|-1}{2 r}\right\rfloor}(u) .
$$

Intuitively, f^{*} applied on u consist in iterating f as long as possible (until ending up with a word too short for f). The result is a word of length at most $2 r$ (depending on $|u| \bmod 2 r$).

We denote by $F: Q^{\mathbb{Z}} \rightarrow Q^{\mathbb{Z}}$ the global rule induced by f following the classical definition:

$$
F(c)_{z}=f\left(c_{z-r}, \ldots, c_{z+r}\right)
$$

Finally, we denote by $F^{t}: Q^{\mathbb{Z}} \rightarrow Q^{\mathbb{Z}}$ the t-step iteration of the global function F.

A global function F can be represented by different local functions. All properties considered in this paper depend only on F and are not sensitive to the choice of a particular local function. However, to avoid useless formalism, we will use the following notion of canonical local representation: (f, r) is the canonical local representation of F if f has radius r and it is the local function of smallest radius having F as its associated global function.

Throughout this work we are going to refer to the CA F with (f, r) being its canonical local representation.

3. The three canonical communication problems

In this section we define the three problems on which we are going to apply the communication complexity approach. Before entering into details, we stress that this set of problems tackles various dynamical aspects of CAs: Transient, periodic and asymptotic regime starting respectively from finite, cyclic, or ultimately periodic configurations. Moreover, algorithmically speaking, they are also very different since they belong respectively to class P, PSPACE, and Π_{1}^{0} and can be complete for these classes as we will see in this section.

Thus, they form an interesting set of prototype problems.

3.1. Prediction

The prediction problem consists in determining the far future of a cell given the state of sufficiently many cells around it.

Let F be a CA. The problem $\operatorname{Pred}_{F}: Q^{*} \rightarrow Q$ is defined as follows:

$$
\operatorname{PrED}_{F}(u)=\left(f^{*}(u)\right)_{1},
$$

where (f, r) is the canonical local representation of F. The " $\left(f^{*}(u)\right)_{1}$ " notation means that we take the first letter of the word $f^{*}(u)$, which has length at most $2 r$.

We could ask the classical algorithmic complexity questions such as the decidability of $\mathrm{PRED}_{F}, \operatorname{TIME}\left(\mathrm{PRED}_{F}\right)$ or $\operatorname{SPACE}\left(\mathrm{PRED}_{F}\right)$. In this particular case it is clear that $\operatorname{TimE}\left(\operatorname{PRED}_{F}\right) \in O\left(n^{2}\right)$.

As we have already said before, we can also view PRED_{F} as a communication problem (see Figure 1): Given an initial configuration as input, we split the initial configuration between Alice and Bob, and ask for the final value computed by F on this input configuration, as represented in Figure 1(b).

Figure 1: Problem $\operatorname{Pred}_{F_{110}}$.

More precisely, for every $1 \leq i \leq(n-1),\left.\operatorname{PrED}_{F}\right|_{n} ^{i}: Q^{i} \times Q^{n-i} \rightarrow Q$ is such that $\left.\operatorname{Pred}_{F}\right|_{n} ^{i}(x, y)=\left(f^{*}(x y)\right)_{1}$. This function $\left.\operatorname{PrED}_{F}\right|_{n} ^{i}$ can be represented as a $|Q|^{i} \times|Q|^{n-i}$ matrix. In other words, we give i states to Alice (rows) and $n-i$ states to Bob (columns); i.e. $X=Q^{i}$ and $Y=Q^{n-i}$. We denote by $M_{178}^{n, i}$ such a matrix. In the examples of Figure 2, we have $n=2 i+1=13$ and $n=2 i+1=15$.

Figure 2: Matrices $M_{178}^{13,6}$ and $M_{178}^{15,7}$

Remark. We can consider the more restricted one-round communication complexity measure. In this setting only one party (either Alice or Bob) is allowed to send information. This restriction is justified by the fact that, according to a theorem of [\$]], by simply counting the number of different rows or columns of a certain matrix we obtain the exact one-round communication complexity of the function. For instance, the one round communication complexity of $\left.\operatorname{Pred}_{F_{178}}\right|_{n} ^{i}$ corresponds to the minimum between the number of different rows and different columns of $M_{178}^{n, i}$. Therefore, performing computational experiments in order to infer the one-round communication complexity of $\left.\operatorname{PRED}_{F_{178}}\right|_{n} ^{i}$, becomes an easy task.

Recall that, given a CA F, the communication complexity of PRED_{F} is defined as:

$$
\mathrm{CC}\left(\operatorname{PrED}_{F}\right)=n \mapsto \max _{1 \leq i \leq n-1} \mathbf{c c}\left(\left.\operatorname{PrED}_{F}\right|_{n} ^{i}\right)
$$

Remark. In the above definition of PRED_{F}, we choose a canonical local representation (f, r) for the cellular automaton F. Replacing f by another valid
local representation can change the problem and its communication complexity. However this change would only introduce a multiplicative factor and therefore would not alter the main point of this paper (Section 4.3).

Now we show that some well-known properties of CAs induce small upper bounds for the communication complexity of the prediction problem. The results below are adaptations of ideas of [3] to the formalism adopted in the present paper.

Proposition 2. Let F be any $C A$ and (f, r) be its canonical local representation. If there is a function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that f^{n} depends on only $g(n)$ cells, then $\mathrm{CC}\left(\operatorname{Pred}_{F}\right) \leq g(n) / 2$.

Following the work of M. Sablik [13], one can characterize the set of CAs having a bounded number of dependant cells (i.e, a bounded function $g(n)$): they are exactly these CAs which are equicontinuous in some direction (Theorem 4.3 of (13]). This set contains the nilpotent CAs (a CA is nilpotent if it converges to a unique configuration from any initial configuration, or equivalently, if F^{t} is a constant function for any large enough t).

Corollary 1. If F is an equicontinuous $C A$ in some direction then

$$
\mathrm{CC}\left(\operatorname{Pred}_{F}\right) \in O(1)
$$

Another set of CAs with that property is the set of linear CAs. A CA F with state set S is linear if there is an operator \oplus such that (S, \oplus) is a semi-group with neutral element e and for all configurations c and c^{\prime} we have:

$$
F\left(c \bar{\oplus} c^{\prime}\right)=F(c) \bar{\oplus} F\left(c^{\prime}\right)
$$

where $\bar{\oplus}$ denotes the uniform (cell-by-cell) extension of \oplus.
Proposition 3. If F is a linear $C A$ then $\mathrm{CC}\left(\operatorname{Pred}_{F}\right) \in O(1)$
Proof. The proof appears in [3] in a different setting. The idea is that there is a simple one-round protocol to compute linear functions: Alice and Bob can each compute on their own the image the function would produce assuming the other party has only the neutral element as input, then Alice or Bob communicate this result to the other who can answer the final result by linearity.

3.2. Invasion

Let F be a CA and let u be a given word. Roughly, the problem $\operatorname{Inv}_{F}^{u}$ is defined as follows: Given an input word w, we define the u-periodic configuration p_{u} on one hand, and the configuration $p_{u}(w)$ obtained by putting the word w at the origin over p_{u} on the other hand; the invasion problem is then to determine whether the differences between p_{u} and $p_{u}(w)$ will expand to an infinite width as time tends to infinity (hatched surface on Figure 33).

As we show in Proposition 15, the general case is, from the point of view of the classical algorithmic theory, undecidable.

Now we give formal definitions.
Definition 3. Let $u=u_{1} \ldots u_{l}$ be a finite word. Let $p_{u}=\ldots$ uuu... such that each occurence of u ends at a position of the form $z|u|$ for $z \in \mathbb{Z}$.

Figure 3: The invasion problem

- we consider the ultimately periodic orbit $\left(F^{t}\left(p_{u}\right)\right)_{t}$ as the reference orbit;
- for each $x_{1}, \ldots, x_{n} \in Q$, we define the configuration $p_{u}\left(x_{1}, \ldots, x_{n}\right)$ obtained by modifying p_{u} as follows:

$$
p_{u}\left(x_{1}, \ldots, x_{n}\right)_{z}= \begin{cases}\left(p_{u}\right)_{z} & \text { for } z \leq 0 \text { or } z \geq n+1 \\ x_{z} & \text { otherwise } .\end{cases}
$$

- for each t, we denote $\delta_{l}(t)$ and $\delta_{r}(t)$ the lefmost and rightmost differences between the $t^{\text {th }}$ images of p_{u} and $p_{u}\left(x_{1}, \ldots, x_{n}\right)$:

$$
\begin{aligned}
\delta_{l}(t) & =\min \left\{z: F^{t}\left(p_{u}\right)_{z} \neq F^{t}\left(p_{u}\left(x_{1}, \ldots, x_{n}\right)\right)_{z}\right\} \\
\delta_{r}(t) & =\max \left\{z: F^{t}\left(p_{u}\right)_{z} \neq F^{t}\left(p_{u}\left(x_{1}, \ldots, x_{n}\right)\right)_{z}\right\}
\end{aligned}
$$

- then $\operatorname{INV}_{F}^{u}\left(x_{1} \ldots x_{n}\right)$ equals 1 if $\delta_{r}(t)-\delta_{l}(t) \rightarrow_{t} \infty$ and 0 otherwise.

As explained before, we associate to any F and u, the communication complexity of $\operatorname{Inv}_{F}^{u}$ defined as CC $\left(\operatorname{Inv}_{F}^{u}\right)$.

Some CAs have by nature a trivial invasion complexity because their dynamics consists in propagating errors systematically. This is the case of (positively) expansive CAs. Recall that F is (positively) expansive if there is some $\epsilon>0$ such that:

$$
\forall x, y, \quad x \neq y \Rightarrow \exists t, d\left(F^{t}(x), F^{t}(y)\right) \geq \epsilon
$$

where d is the Cantor distance.
Proposition 4. Let F be a positively expansive $C A$. Then for all u we have $\mathrm{CC}\left(\operatorname{Inv}_{F}^{u}\right)=1$.

Proof. Fix any u and consider any $\left(x_{1}, \ldots, x_{n}\right)$ such that $p_{u}\left(x_{1}, \ldots, x_{n}\right) \neq p_{u}$. By classical results of P . Kůrka [7], there is a positive constant α (average propagation speed) such that $\delta_{l}(t) \leq-\alpha t$ and $\delta_{r}(t) \geq \alpha t$. Therefore, invasion occurs if and only if:

$$
p_{u}\left(x_{1}, \ldots, x_{n}\right) \neq p_{u} .
$$

Testing this condition can be done with only 1 bit of communication: Either Alice or Bob communicates whether she (or he) sees any difference between her (or his) input and the corresponding part of p_{u}; then the other party can answer. The proposition follows.

Before considering the next problem, we give a tight bound on the algorithmic complexity of the invasion problem in terms of the arithmetic hierarchy.

Proposition 5.

1. For any $C A F$ and any word u, we have: $\operatorname{Inv}_{F}^{u} \in \Pi_{1}^{0}$.
2. Their exist F and u such that $\operatorname{INv}_{F}^{u}$ is Π_{1}^{0}-complete.

Proof.

1. Let F and u be fixed and consider the problem $\operatorname{Inv}_{F}^{u}$. Given an input x_{1}, \ldots, x_{n}, we use the notations $\delta_{l}(t)$ and $\delta_{r}(t)$ for the leftmost and righmost differences at time t between the orbit of p_{u} and the orbit of $p_{u}\left(x_{1} \cdots x_{n}\right)$ as in Definition 3.

Claim. There exists a recursive function β such that for any n, any input x_{1}, \ldots, x_{n} and any $\Delta \geq 0$ we have:

$$
\exists t, \delta_{r}(t)-\delta_{l}(t) \geq \Delta \Longleftrightarrow \exists t \leq \beta(\Delta), \delta_{r}(t)-\delta_{l}(t) \geq \Delta
$$

The proof follows from the above claim because the invasion problem can be expressed as the following Π_{1}^{0} predicate:

$$
\forall \Delta \geq 0, \underbrace{\exists t \leq \beta(\Delta), \delta_{r}(t)-\delta_{l}(t) \geq \Delta}_{\text {recursive predicate }}
$$

Proof of the claim. First, the orbit of p_{u} is ultimately periodic: There are t_{0} and p such that for any $t \geq t_{0}$ we have $F^{t}\left(p_{u}\right)=F^{t+p}\left(p_{u}\right)$. Given an input x_{1}, \ldots, x_{n} of the problem, denote by $w(t)$ the word of length $\delta_{r}(t)-\delta_{l}(t)$ starting at position $\delta_{l}(t)$ in configuration $F^{t}\left(p_{u}\left(x_{1}, \ldots, x_{n}\right)\right)$. The key point is that for any $t \geq t_{0}$, the triple

$$
\chi(t+1)=\left(w(t+1), \delta_{l}(t+1) \bmod |u|, t+1 \bmod p\right)
$$

is uniquely determined by the triple

$$
\chi(t)=\left(w(t), \delta_{l}(t) \bmod |u|, t \bmod p\right)
$$

(because the word $w(t)$ "evolves" in a periodic context and knowing the offset of the position of $w(t)$ in that context is enough to know $w(t+1)$). Therefore, if the words $w(t)$ are bounded by Δ for a sufficiently long time (exponential in Δ), then the triple $\chi(t)$ will take a value already taken before and the sequence $(\chi(t))_{t}$ will be ultimately periodic, showing that $|w(t)|$ is bounded and that there is no invasion. Adding t_{0} to this exponential function is a convinient choice for β.
2. It follows from Proposition 15 of Section 5 .

Figure 4: The Cycle problem on Rule 33. Zeros are white, and ones are black. Initial configuration: 011011.

3.3. Cycle length

For this last problem, we consider spatially periodic configurations. Since there are only a finite number of such configurations of a given period size, and the size of the period does not grow with time, then clearly the evolution becomes periodic (in time) after a certain number of steps (see Figure 1 where successive steps are represented by successive concentric circles). Roughly speaking, the CYCLE problem is to determine whether the length of this ultimate (temporal) period is small, starting from a given (spatially) perodic initial configuration. The formal definition follows.

Definition 4. Let F be a $C A$ and let $k \geq 1$. For any $u \in Q^{*}$ we denote by $\lambda(u)$ the length of the ultimate period of the orbit of configuration p_{u} under F :

$$
\lambda(u)=\min \left\{p: \exists t_{0}, \forall t \geq t_{0}, F^{t}\left(p_{u}\right)=F^{t+p}\left(p_{u}\right)\right\} .
$$

The problem CyCle_{F}^{k} is then defined by:

$$
\operatorname{Cycle}_{F}^{k}(u)= \begin{cases}1 & \text { if } \lambda(u) \leq k \\ 0 & \text { otherwise }\end{cases}
$$

The algorithmic hardness of this problem is intermediate between prediction and invasion as shown by the following proposition.

Proposition 6.

1. For any CA F and any $k \geq 1, \mathrm{CyClE}_{F}^{k}$ is PSPACE.
2. Their exist F and k such that Cycle_{F}^{k} is PSPACE-complete.

Proof.

1. Let F and $k \geq 1$ be fixed. The length of the cycle reached by iterating F on a periodic initial configuration c can be determined in polynomial space with the algorithm described below. Let n be the period of c. Starting from c, the cycle is reached in less than α^{n} steps where α is the cardinal of the state set.
(a) compute $c_{0}=F^{\alpha^{n}}(c)$ (memory usage: $O(n)$);
(b) memorize c_{0} and compute the first t such that $F^{t}\left(c_{0}\right)=c_{0}$ (memory usage: $O(n)$ because such a t is less than α^{n}).
2. It follows from Proposition 16 of Section 5 .

One of the interests of the cycle length problem lies in the following complexity upper bound for reversible CA.
Proposition 7. Let F be any reversible $C A$. Then for any k we have:

$$
\mathrm{CC}\left(\operatorname{CyCle}_{F}^{k}\right) \in O(1)
$$

Proof. For a reversible CA, orbits of periodic configurations are not only ultimately periodic but also periodic. More precisely for any periodic configuration c, the cycle length starting from c is less than k if and only if:

$$
\exists t \leq k: F^{t}(c)=c .
$$

Therefore, the following protocol of constant communication cost solves the problem $\left.\mathrm{CyCle}_{F}^{k}\right|_{n}$ on input c :

- Alice and Bob each know the evolution of a part of the configuration during the k first steps so they can communicate the list of time steps $t \leq k$ such that the part of the configuration they know becomes identical to the corresponding part of c.
- The part of the configuration that neither Alice nor Bob can know during the k first steps is finite (depends only on k and not on n); therefore, after a finite amount of communication, Alice or Bob can have all the information to know this part during the k first time steps and produce the list of $t \leq k$ such that this part of the configuration becomes identical to the corresponding part of c;
- Finally, Alice or Bob can answer by simply checking whether the above lists of time steps have a non empty intersection.

4. The three corresponding necessary conditions for intrinsic universality

In this section, we show that intrinsic universality implies that the communication complexity of the 3 canonical problems described above must be maximal. Before giving precise definitions, recall that a CA is intrinsically universal if it is able to simulate any other CA. To show what is said above we proceed in two steps:

- we show that the simulation of F by G implies a reduction from any canonical problem of F to the corresponding problem for G in such a way that the communication complexity is preserved (up to some distortions involving only multiplicative factors);
- we show the existence of CAs with maximal communication complexity for each of the problems considered.
Before developping these two steps, we give formal definitions for simulations and intrinsic universality.

4.1. Simulations and universality

The base ingredient is the relation of sub-automaton. A CA F is a subautomaton of a CA G, denoted by $F \sqsubseteq G$, if there is an injective map ι from Q_{F} to Q_{G} such that $\bar{\iota} \circ F=G \circ \bar{\iota}$, where $\bar{\iota}: Q_{F}^{\mathbb{Z}} \rightarrow Q_{G}^{\mathbb{Z}}$ denotes the uniform extension of ι.

A CA F simulates a CA G if some rescaling of F is a sub-automaton of some rescaling of G. The ingredients of the rescalings are simple: packing cells into blocs, iterating the rule and composing with a translation. Formally, given any state set Q and any $m \geq 1$, we define the bijective packing map $b_{m}: Q^{\mathbb{Z}} \rightarrow\left(Q^{m}\right)^{\mathbb{Z}}$ by:

$$
\forall z \in \mathbb{Z}:\left(b_{m}(c)\right)(z)=(c(m z), \ldots, c(m z+m-1))
$$

for all $c \in Q^{\mathbb{Z}}$. The rescaling $F^{<m, t, z>}$ of F by parameters m (packing), $t \geq 1$ (iterating) and $z \in \mathbb{Z}$ (shifting) is the CA of state set Q^{m} and global rule:

$$
b_{m} \circ \sigma_{z} \circ F^{t} \circ b_{m}^{-1} .
$$

The fact that the above function is the global rule of a cellular automaton follows from Curtis-Lyndon-Hedlund theorem [5] because it is continuous and commutes with translations. With these definitions, we say that F simulates G, denoted $F \preccurlyeq G$, if there are rescaling parameters $m_{1}, m_{2}, t_{1}, t_{2}, z_{1}$ and z_{2} such that $F^{<m_{1}, t_{1}, z_{1}>} \sqsubseteq G^{<m_{2}, t_{2}, z_{2}>}$.

We can now naturally define the notion of universality associated to this simulation relation.

Definition 5. F is intrinsically universal if for all G it holds $G \preccurlyeq F$. F is reversible universal if for all reversible G it holds $G \preccurlyeq F$.

We consider the following relation of comparison between functions from \mathbb{N} to \mathbb{N} :

$$
\phi_{1} \prec \phi_{2} \Longleftrightarrow \exists \alpha, \beta, \gamma \geq 1, \forall n \in \mathbb{N}: \phi_{1}(\alpha n) \leq \beta \phi_{2}(\gamma n)
$$

Remark. All the functions we will compare by \prec are in $O(n)$ since they come from a communication complexity problem. Moreover, the set of such functions that are in $\Omega(n)$ is an equivalence class for \prec. Although we sometimes give more precise bounds, most of the paper focus on whether some functions belong to this class or not.

Proposition 8. If $F \preccurlyeq G$ then $\mathrm{CC}\left(\operatorname{PRED}_{F}\right) \prec \mathrm{CC}\left(\mathrm{PRED}_{G}\right)$.
Proof. We consider successively each ingredient involved in the simulation relation:

Sub-automaton: if $F \sqsubseteq G$ then each valid protocol to compute $\left.\operatorname{PRED}_{G}\right|_{n} ^{i}$ is also a valid protocol to compute iterations of $\left.\operatorname{PrED}_{F}\right|_{n} ^{i}$ (up to state renaming).

Iterating: we have $\mathrm{CC}\left(\operatorname{Pred}_{F^{t}}\right)(n)=\mathrm{CC}\left(\operatorname{Pred}_{F}\right)(t \cdot n)$.
Shifting: this operation only affects the splitting of inputs. Since we always take in each case the splitting of maximum complexity, this has no influence on the final complexity function.

Packing: let F be any CA and n be fixed. Consider the problem $\left.\operatorname{PRED}_{F<m, 1,0>}\right|_{n} ^{j}$ for some j. Now consider any sequence of valid protocols $\left(P_{i}\right)$, one for each problem $\left.\operatorname{Pred}_{F}\right|_{n m} ^{i}$. It follows from the the definition of packing maps that $\left.\operatorname{PrED}_{F<m, 1,0>}\right|_{n} ^{j}$ can be solved by applying m suitably chosen protocols in the sequence $\left(P_{i}\right)$. Therefore

$$
\operatorname{CC}\left(\operatorname{PrED}_{F}<m, 1,0>\right)(n) \leq m \cdot \operatorname{CC}\left(\operatorname{PrED}_{F}\right)(n)
$$

Reciprocally, one has for all n :

$$
\mathrm{CC}\left(\operatorname{PrED}_{F}\right)(n) \leq \operatorname{CC}\left(\operatorname{PRED}_{f<m, 1,0>}\right)(\lceil n / m\rceil)+m
$$

where the additional constant m is used to deal with input splittings of $\left.\operatorname{PrED}_{F}\right|_{n}$ which have no equivalent in $\left.\operatorname{PrEd}_{f<m, 1,0>}\right|_{[n / m\rceil}$ because they do not cut the input at a position multiple of m.

Therefore we have: $\operatorname{CC}\left(\operatorname{PrED}_{F}\right) \prec \operatorname{PrED}_{F}<m, t, z>, \operatorname{PrED}_{F}<m, t, z>\prec \mathrm{CC}\left(\operatorname{PrED}_{F}\right)$ and if $F \sqsubseteq G$ then $\mathrm{CC}\left(\operatorname{PrED}_{F}\right) \prec \operatorname{PrED}_{G}$. The proposition follows.

The following result shows that the invasion complexity is increasing with respect to simulations.

Proposition 9. If $F \preccurlyeq G$ then for all u there is v such that

$$
\mathrm{CC}\left(\operatorname{INv}_{F}^{u}\right) \prec \mathrm{CC}\left(\operatorname{INv}_{G}^{v}\right)
$$

Proof. The simulation relation \preccurlyeq is such that ultimately periodic configurations of F are converted into ultimately periodic configurations of G. Hence, the invasion problem of F reduces to the invasion problem of G. More precisely, it is sufficient to check the following properties, each dealing with an aspect of the simulation relation \preccurlyeq :

- for any CA F, any u and any rescaling parameters m, t, z, we have

$$
\mathrm{CC}\left(\operatorname{INv}_{F}^{u}\right) \prec \operatorname{CC}\left(\operatorname{INV}_{F}^{U<m, t, z>}\right)
$$

where U is the period of the configuration $b_{m}\left(p_{u}\right)$;

- if $F \sqsubseteq G$ then, for any $u, \operatorname{CC}\left(\operatorname{Inv}_{F}^{u}\right) \prec \operatorname{CC}\left(\operatorname{Inv}_{G}^{u}\right)$;
- for any CA F, any rescaling parameters m, t, z, any U (over the alphabet of $\left.F^{<m, t, z>}\right) \mathrm{CC}\left(\operatorname{Inv}_{F<m, t, z>}^{U}\right) \prec \mathrm{CC}\left(\operatorname{Inv}_{F}^{u}\right)$ where u is the period of the configuration $b_{m}^{-1}\left(p_{U}\right)$.

The result follow by composition of the 3 properties above.
Finally, we show a similar result for the cycle length problem. The problem is parametrized by an integer k and the following proposition establishes that for suitable but arbitrary large values of this parameter the complexity of the problem in the simulated CA is conserved in the problem for the simulator.

Proposition 10. If $F \preccurlyeq G$ then for all k_{0} there is k and k^{\prime} such that:

- $k \geq k_{0}$ and $k^{\prime} \geq k_{0} ;$
- $\operatorname{CC}\left(\operatorname{CyCle}_{F}^{k}\right) \prec \operatorname{CC}\left(\operatorname{CyCle}_{G}^{k^{\prime}}\right)$.

Proof. The effect of rescaling transformations on cyclic orbits of periodic configurations is to change the (spatial) period length as well as the (temporal) cycle length. More precisely, we have:

- if $F \sqsubseteq G$ then, for any $k, \mathrm{CC}\left(\operatorname{Cycle}_{F}^{k}\right) \prec \operatorname{CC}\left(\operatorname{CyClE}_{G}^{k}\right)$;
- for any k,

$$
\begin{aligned}
& -\operatorname{CC}\left(\operatorname{CYCLE}_{F}^{k}\right) \prec \operatorname{CC}\left(\operatorname{CyClE}_{F<m, 1,0>}^{k}\right) \text { and } \\
& -\operatorname{CC}\left(\operatorname{CYCLE}_{F}^{k<m, 1,0>}\right) \prec \operatorname{CC}\left(\operatorname{CYCLE}_{F}^{k}\right) ;
\end{aligned}
$$

- for any t and any k we have:

$$
\operatorname{CC}\left(\operatorname{CyClE}_{F}^{k}<1, t, 0>\right) \prec \operatorname{CC}\left(\operatorname{CyClE}_{F}^{k t}\right) ;
$$

- for any t and any k such that $k \bmod t=0$ we have:

$$
\operatorname{CC}\left(\operatorname{CyClE}_{F}^{k}\right) \prec \operatorname{CC}\left(\operatorname{CYCLE}_{F}^{k<1, t, 0>}\right) .
$$

The proposition follows.

4.2. Existence of $C A$ with maximal complexity

This section is devoted to the following existence result.

Proposition 11.

1. There exists a reversible $C A F$ with $\mathrm{CC}\left(\operatorname{Pred}_{F}\right) \in \Omega(n)$.
2. There exists a reversible $C A F$ and a word u with $\mathrm{CC}\left(\operatorname{INv}_{F}^{u}\right) \in \Omega(n)$.
3. There exists a CA F s.t. for any $k \geq 1, \mathrm{CC}\left(\operatorname{CyCle}_{F}^{k}\right) \in \Omega(n)$.

We now define the reversible CA of assertion 2 of Proposition 11 called G in the sequel. It is made of 3 layers:

- flag layer $Q_{f}=\{0,1\}$,
- circulation layer $Q_{c}=\{W\} \cup\{0,1\} \times\{0,1\}$,
- test layer $Q_{t}=\{0,1\} \times\{0,1\}$.

The flag layer is simply the identity over Q_{f}. The circulation layer does not depend on other layers and has the following behaviour.

- normal states in $\{0,1\} \times\{0,1\}$ represent two sub-layers (top and bottom) and, if no W state is in the neighbourhood, the top sub-layer simply shifts rights and the bottom sub-layer simply shifts left.
- W states are walls: they stay unchanged forever. Moreover, a normal cell on the right of a wall has the following behaviour: the top value shifts right and the bottom value goes to the top. A normal cell on the leftt of a wall has a symmetric behaviour: the bottom value shifts left and the top value goes to the bottom. See figure ${ }^{5}$.

Figure 5: Above: initial configuration. Below: the configuration a few steps later.

Finally, the test layer is made of two sub layers (top and bottom) wich are independant. The top layer does the following:

- if the flag layer of the cell is 1 and if the circulation layer contains the state $(1,1)$ then invert bit and shift right;
- in any other case, simply shift right.

The bottom sub-layer does the same but replace right by left.

Proof of Proposition 11.

- We first show that G defined above has the properties of assertion 2 of the proposition. First, it is reversible: flag and circulation layers are reversible by themselves and test layer is reversible when knowing flag and circulation layers.
Now let q_{0} be the state where flag layer is 0 , circulation layer is $(0,0)$ and test layer is $(0,0)$. Consider input bits x_{1}, \ldots, x_{n} on one hand and y_{1}, \ldots, y_{n} on the other hand. Let X_{i} be the state with flag layer 0 , test layer $(0,0)$ and circulation layer $\left(x_{i}, 0\right)$. Similarily let Y_{i} be the state with flag layer 0 , test layer $(0,0)$ and circulation layer $\left(0, y_{i}\right)$. Let M be the state of flag layer 0 , circulation layer W and test layer (0,0). Finally let T be the state of flag layer 1 , circulation layer $(0,0)$ and test layer $(0,0)$. Consider the configuration $C\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$:

$$
{ }^{\omega} q_{0} M X_{n} \cdots X_{1} T Y_{1} \cdots Y_{n} M q_{0}^{\omega}
$$

We can consider this configuration as an instance of the invasion problem $\operatorname{INV} F^{u n+3}$ where $u=q_{0}$. The only possible invasion in suach an instance comes from the test layer. It follows from the definition of G that there is invasion on this instance if and only if

$$
\exists i, x_{i}=y_{i}=1
$$

Hence, the disjointness problem reduces to the invasion problem through such instances. Using proposition 1, we conclude that $\mathrm{CC}\left(\operatorname{INv}_{G}^{q_{0}}\right) \in \Omega(n)$.

- Assertion 1 of the proposition can be proven by with a CA F simpler than G, but using similar ideas. F has radius 1 and its state set is the product of 3 components:
- left circulation with state set $\{0,1\}$,
- right circulation with state set $\{0,1\}$,
- test with state set $\{0,1\}$.

The behaviour is the following:

- each of the left and right circulation components are independent of the other components and consists in simple shift (left and right respectively),
- the test component simply inverses its value if both left and right circulation components have value 1 and stay unchanged if it is not the case.
F is clearly reversible (circulation layers are independent shifts and test layer is reversible knowing other components). Moreover, the inner product problem reduces to the prediction problem of F. Indeed, for any $x, y \in\{0,1\}^{n}$ consider the word

$$
u=X_{1} \cdots X_{n} Z Y_{n} \cdots Y_{1}
$$

where X_{i} is the state equal to x_{i} on the right circulation component and 0 elsewhere, Y_{i} is the state equal to y_{i} on the left circulation component and 0 else, and Z is the state equal to 0 everywhere. It follows from definition of F that

$$
\left.\operatorname{PrED}_{F}\right|_{n}(u)=1 \Longleftrightarrow \sum x_{i} y_{i} \bmod 2=1
$$

Proposition 1 implies that $C C\left(\operatorname{PrED}_{F}\right) \in \Omega(n)$.

- Assertion 3 of the proposition is proven by proposition 4.4.3.

4.3. Necessary conditions for universality

The following corollary is the main tool provided by this paper to prove negative results about (intrinsic) universality.

Corollary 2. Let F be an intrinsically universal CA. Then it holds:

1. $\mathrm{CC}\left(\operatorname{PRED}_{F}\right) \in \Omega(n)$,
2. there exists u s.t. $\mathrm{CC}\left(\operatorname{Inv}_{F}^{u}\right) \in \Omega(n)$,
3. there exists k s.t. $\mathrm{CC}\left(\operatorname{CyClE}_{F}^{k}\right) \in \Omega(n)$.

Moreover, if F is only reverisble-universal, then 1 and $\frac{1}{\square}$ still holds.
Proof. It follows from Propositions 8, 9 and 10 in one hand, and proposition 11 on the other hand.

A first application of this corollary to the complexity upper-bounds presented in section 3 yields the following necessary conditions for universality.

Corollary 3. Let F be an intrinsically universal $C A$, then F can not be:

- neither expansive
- nor linear
- nor reversible.

Moreover, a reversible universal $C A$ can not be expansive or linear.

4.4. Uncomparability of the three conditions

Now we show the "orthogonality" of the three problems, in the sense that for any couple of problems among these three ones, there is a cellular automaton with a high communication complexity for one, and a low communication complexity for the other one.

4.4.1. A CA easy for Pred and hard for Inv

The idea is to embed an equality test launching signals invading the whole configuration, while letting the prediction remain easy. For that purpose, we consider cellular automaton F, a cartesian product of two layers :

1. A layer performing a test for equality, as described below, and initialy containing a word over the alphabet $\{\overrightarrow{0}, \overrightarrow{1}, \overleftarrow{0}, \overleftarrow{1}, \top, \emptyset, K\}$. On figure 6 this layer is represented in black.
2. A layer with an automaton invading the configuration from a seed. We need five states on this layer : $\{s, \emptyset, \rightarrow, \leftarrow, K\}$. We describe the rule below. On figure 6 , this layer appears in blue.

Figure 6: A CA easy for Pred and hard for Inv
The simplest way to embed an equality test in cellular automata is to ask Alice and Bob wether the input is a palindrom. There is an easy fooling set (see [1] or [8]) to ensure that this problem has a high deterministic communication complexity. The K state is spreading on both layers, i.e. if it appears somewhere in one layer, then it spreads everywhere on both layers. We use it to detect illformed configurations where a \vec{x} state is next to a \overleftarrow{x}, or there are several s states on the second layer.

On configurations not involving the K state, the local rule is the right shift on words containing only \overleftarrow{x} states, a \top or \emptyset state on their right, and the left shift on words containing only \vec{x} states, a \top or \emptyset state on their left, where x
ranges over $\{0,1\}$. States in $\{\top, \emptyset\}$ remain unchanged, and all other transitions yield state K.

Moreover, we introduce another rule to perform the equality test : when the test is negative (i.e. a \top state has a \vec{x} on its left, a \overleftarrow{y} on its right, and $x \neq y$), then we place a s state on the second layer.

On the second layer, the K state is spreading, and for all input words not containing K, the local rule is the following :

$$
\begin{aligned}
f(s, \emptyset, \emptyset) & =\rightarrow \\
f(\rightarrow, \emptyset, \emptyset) & =\rightarrow \\
f(\emptyset, \emptyset, s) & =\leftarrow \\
f(\emptyset, \emptyset, \leftarrow) & =\overleftarrow{ } \\
\text { else } f(x, y, z) & =\emptyset
\end{aligned}
$$

Proposition 12. The $C A F$ described above is such that:

- $\mathrm{CC}\left(\operatorname{Pred}_{F}\right) \in O(1)$,
- there is u such that $\mathrm{CC}\left(\operatorname{Inv}_{F}^{u}\right) \in \Omega(n)$.

Proof. A protocol for Pred needs to predict the content of both layers :

- On the first layer, the result will always be the result of a shift if the initial configuration contains only \vec{x} or \overleftarrow{x} states, or if the T state is not the central cell of the configuration, and a T state else. This requires a constant number of communicated bits.
- On the second layer, the result is a s state if and only if the leftmost state of Alice's differs from the rightmost state of Bob's, and the central cell is a T state. Else, it can be a \rightarrow state (the \leftarrow case is symmetric) if there was an s state on the left edge of the computation triangle : the protocol for deciding this is the same as before, in a smaller triangle (see figure (7). But this has only to be checked for the leftmost T state of Alice's, since even if other signals are to be generated afterwards, they do not appear on the top of the bigger triangle.
In all other cases, the second component is empty.

Figure 7: Our protocol
In all cases, predicting the final state of this layer requires a constant amount of communication.
Now we need to find hard instances for the Inv problem: with a repeated word containing only \emptyset states on both layers, on initial configurations of the form $(\overrightarrow{0}, \overrightarrow{1})^{n} \top(\overleftarrow{0}, \overleftarrow{1})^{n}$ on the first layer, and \emptyset^{*} on the second, we reduce the equality problem to Inv. Proposition 1 concludes.

4.4.2. A CA easy for Inv and hard for Pred

There is a natural example described in section 6.1. It remains to show that the deterministic (possibly with several rounds) communication complexity of the Pred problem is in $\Omega(\log n)$. To show this, we construct a fooling set S_{n} (see 11 or (8) :

$$
S_{n}=\left\{\left(1^{n-k} 0^{k}, 0^{k+1} 1^{n-k}, 0 \leq k \leq n\right\}\right.
$$

We show that S_{n} is a fooling set for rule 218 : in fact, on all configurations of the form $1^{n-k} 0^{2 k+1} 1^{n-k}$, the result of $\operatorname{PRED}_{F_{218}}$ is always 0 . On configurations of the form $1^{n-i} 0^{i+j+1} 1^{n-j}$ where $i \neq j$, it is always 1 . This can be easily shown from the collection of lemmas of $\| \downarrow$, and we illustrate it on figure 8. Thus, since $\left|S_{n}\right|=n+1$, we deduce that a deterministic protocol solving $\operatorname{PrED}_{F_{218}^{n}}$ can not take less than $\log (n+1)$ steps :

$$
\operatorname{CC}\left(\operatorname{PrED}_{F_{218}^{n}}^{n}\right) \in \Omega(\log (n))
$$

Figure 8: A configuration of the fooling set S_{n} for rule 218
However, from section 6.1, the Inv problem can be solved within constant communication.

4.4.3. A CA easy for Inv, and hard for Cycle

We use the problem disJ to build an hard Cycle problem. The idea is that if Alice and Bob receive two disjoint sets as their inputs, our automaton will check DISJ forever. Else it will erase all the tape and a uniform periodic configuration (i.e. 1-periodic).

We use three layers in this construction : one always shifting right, one other always shifting left, and the third either empty or performing a test about the two other layers. More precisely, we use the layout of figure 9.

Figure 9: An automaton with a hard Cycle problem, and an easy Inv
We consider a cyclic configuration containing an input for Alice on the first layer, and an input for Bob on the second layer, like on figure 9, and a third
layer everywhere empty, except for a central "test" state, actually performing the tests. As stated on figure 9 , the performed test is $\bigwedge_{i=1}^{n} x_{i} \otimes y_{i}=0$, with \otimes denoting the binary "xor" operation (the test cell at time $t+1$ takes value $T_{t} \wedge(x \otimes y)$ where T_{t} is its value at time t and x and y are the values on the two first layers). While the test value is 1 , the tests go on. Since the tape is cyclic, if $\bigwedge_{i=1}^{n} x_{i} \otimes y_{i}=1$, then the test goes on forever producing a (temporal) cycle of length $\Omega(n)$ (because in such a case, we have at least one x_{i} or one y_{i} which is 1). Else, the test becomes 0 at some step and a spreading state is generated, which erases all the layers in both directions and produce a (temporal) cycle of length 1 . In the sequel, we call this automaton F.

Proposition 13. The $C A F$ described above is such that:

- $\forall k, \mathrm{CC}\left(\operatorname{CyClE}_{F}^{k}\right) \in \Omega(n)$.
- $\forall u, \mathrm{CC}\left(\operatorname{Inv}_{F}^{u}\right) \in O(1)$,

Proof. The first assertion follows from the discussion above.
It remains to show that $\operatorname{Inv}_{F}^{u}$ can be solved within constant communication. Let u be any word over the alphabet for F. First if the orbit of p_{u} contains a spreading state, since p_{u} is periodic, then after a constant number of states, nothing can happen, thus the input word is ignored and no invasion can occur. Now in all other cases, we note the input word w as (x, y) where $x=\pi_{1}(w)$ is the word appearing on the first component and $y=\pi_{2}(w)$ the word appearing on the second. The protocol consists in discussing whether some components are equal between p_{u} and $p_{u}(w)$. Each of the following case can be tested with constant communications:

- If $x \neq \pi_{1}\left(p_{u}[1 . .|x|]\right)$, and $y \neq \pi_{2}\left(p_{u}[1 . .|y|]\right)$, then there is always invasion: if a spreading state is ever generated, it invades the configuration (by hypothesis, there is no spreading state in the orbit of p_{u}), else, x and y are continually shifted, so there is also invasion.
- If $p_{u}((x, y))=p_{u}$ then there is no invasion by definition 3 .
- Else we have necessarily $x \neq \pi_{1}\left(p_{u}[1 . .|x|]\right)$, and $y=\pi_{2}\left(p_{u}[1 . .|y|]\right)$ (or the same inverting $=$ and \neq, but the reasoning is similar). In this case, the discussion is the following:
- if the position of tests in the third component is the same in p_{u} and $p_{u}(w)$ (which can be decided with constant communication) then Alice and Bob each know whether their part of the first component will ever provoke a test failure and generate a spreading state; therefore they can decide invasion: there is invasion in case of a test failure, and there is no invasion else because the differences between p_{u} and $p_{u}(w)$ will only be shifted and will never spread to an infinite width;
- if the position of the tests are different, then there is always invasion: either because some test failure generates a spreading state, or because the differences between p_{u} and $p_{u}(w)$ in the first component are shifted towards infinity, but a difference in the third component (a test position) stay at the same place indefinitely.

4.4.4. A CA easy for Pred, and hard for CyCle

We can use quite the same construction than in section 4.4.1. We modify it to launch only one signal (in only one direction) when an error is seen. Thus, as proven in section 4.4.1, the Pred problem remains easy. Now we need to prove that the Cycle problem is hard, but we can choose the instances on purpose.

If no test fails, the configuration will be 1-periodic : when all the tests have been done, the configuration is uniformly empty, except for the \top states, and then nothing more happens. Else, a signal will be launched. We need to show that the period of the configuration is then in $\Omega(n)$. But we can notice that a contiguous portion of $\Omega(n)$ cells can not have any signal : see figure 10 . Therefore, the period of the configuration is $\Omega(n)$ if and only if an error occurs and 1 else.

Figure 10: An automaton easy for Pred and hard for Cycle

4.4.5. An automaton easy for Cycle and hard for Pred

We describe the natural example of rule 33 in section 6.3, that has a protocol in constant time for Cycle, and for which no deterministic protocol for Pred can do better than $\Omega(\log n)$.

4.4.6. An automaton easy for Cycle and hard for Inv

We can reuse the construction of paragraph 4.4.1, and use the cyclicity of the configuration to find an easy protocol : for all ill-formed configurations, the automaton is periodic with state K spreading on all the configuration. For any other configuration, even if there is a seed somewhere on the second layer, the signals it sends cross after some time, resulting in a \emptyset state on this layer after at most a $O(n)$ steps. Moreover, the T states do not move, so the configuration becomes 1-periodic after all the tests are performed : there may be a column of \top states, and \emptyset states everywhere else.

Thus, since this automaton is always 1-periodic, the CycLe problem can be decided with no communication.

5. Intrinsic universality: Ruling out complex CAs

D. Woods and T. Neary proved "the P-completeness of Rule 110" 11]. In our language, they proved that the problem $\operatorname{PRED}_{F_{110}}$ is P-complete. A very
natural question arises: What do classical algorithmic properties of CAs, such as P-completeness, imply on the its communication complexity counterpart?

In this section we are going to show that, for problems Pred and Inv, there exists a CA F for which the communication complexity of the problem is low while its classical computational complexity is the highest one can expect.

Therefore, the communication complexity approach appears to be a promising tool for ruling out CAs from being intrinsically universal. More precisely, despite the fact that the decision version of a canonical problem is hard (P complete, undecidable) its corresponding communication complexity might be rather low.

Proposition 14. For any $k \geq 1$, there exists a $C A F$ such that

$$
\mathrm{CC}\left(\operatorname{PrED}_{F}\right) \in O\left(n^{1 / k}\right)
$$

and PRED_{F} is P -complete.
Proof. Let \mathcal{M} a Turing machine. We construct a CA F simulating \mathcal{M} slowly but still in polynomial time: it takes n^{k} steps of F to simulates n steps of \mathcal{M}. Hence, by a suitable choice of \mathcal{M}, the problem of predicting F is P-complete.

First it is easy to construct a CA simulating \mathcal{M} in real time. We encode each symbol of the tape alphabet of the Turing machine by a CA state, and add a "layer" for the head, with ' \rightarrow ' symbols on its left and ' \leftarrow ' symbols on its right. We guarantee this way that there can be only one head : if a ' \rightarrow ' state is adjacent to a ' \leftarrow ' state without head between them, we propagate a spreading "error" state destroying everything.

We then add a new layer to slow down the simulation: it consists in a single particle (we use the same trick to ensure that there is only one particle) moving left and right inside a marked region of the configuration. More precisely, it goes right until it reaches the end of the marked region, then it adds a marked cell at the end and starts to move left to reach the other end, doing the same thing forever. Clearly, for any cell in a finite marked region, seeing n traversals of the particle takes $\Omega\left(n^{2}\right)$ steps. Then, the idea is to authorize heads moves in the previous construction only at particle traversals. This way, n steps of \mathcal{M} require n^{2} time steps of the automaton. By adding another particle layer, one can also slow down the above particle with the same principle and it is not difficult to finally construct a CA F such that n steps of \mathcal{M} require n^{k} time steps of F. We have represented in Figure 11 the behavior of the particle, with the dashed arrow representing a Turing transition.

Now if the initial configuration does not respect the rules described above, then a spreading error state is generated and Alice and Bob can notice it within constant communication. In all other cases, it is enough for Alice or Bob to know the value of all the $2 \cdot n^{1 / k}$ states around the initial position of the head, because the computation of the Turing machine simply does not depend on the rest of the initial configuration. So for these cases, at most $n^{1 / k}$ bits need to be communicated for Alice or Bob to compute the answer. Note that if the bounds for the particle are absent from the initial configuration, then no transition can happen, thus Alice and Bob know the result in constant time.

Remark. A result by Hromkovic (see [(6)) says that a Turing machine with a single head working in time $t(n)$ can only recognize a language of communication

Figure 11: A CA for which Pred is P-complete.
complexity less than $O(\sqrt{t(n)})$. Said differently, a CA simulating a Turing machine cannot produce instances of communication complexity more than $O(\sqrt{n})$ for the prediction problem on configurations with a single head (whatever the machine does).

Proposition 15. There exists a $C A F$ and a word u such that:

- $\mathrm{CC}\left(\operatorname{INv}_{F}^{u}\right) \in O(\log n)$,
- Inv_{F}^{u} is undecidable (precisely, Π_{1}^{0}-complete).

Proof. We build a CA F that simulates a 2-counter machine 10. More precisely, standard states have two layers: a data layer over states $A, M, B, 0$, used to store the value of the 2 unary counters, and a control layer made of a Turing head storing a state from Q, with the extra \rightarrow and \leftarrow symbols ensuring the uniqueness of the head. Finally, F possesses a blank state \emptyset and a spreading state K to deal with encoding problems. The state set is therefore

$$
\{K\} \cup\{\emptyset\} \cup(Q \cup\{\rightarrow, \leftarrow\}) \cup\{A, B, 0, M\}
$$

A valid configuration is a configuration everywhere equal to \emptyset except on finite coding segments which have the folloing form (see figure 12):

- the data layer must be of the form: $0^{*} A^{+} M B^{+} O^{*}$;
- the control layer must be of the form: $\rightarrow^{+} q \leftarrow^{+}$with $q \in Q$.

Figure 12: A well-formed piece of configuration. The counter A contains value 3 and the counter B contains value 1 in this example.

The number of $A \mathrm{~s}$ and B s represent the current value of the 2 counters. The behaviour of F is the following:

- If the configuration is not valid (which can be detected locally), then the state K is generated and spreads;
- If the configuration is valid, then on each coding segment, the (necessarily unique) head goes repeatidely from one extremity of the segment to the other and extend the segment at each passage by adding a \rightarrow on the left (resp. \leftarrow on the right) and a 0 on the data layer. If the extension step is blocked by another segment, then the state K is generated and spreads;
- Moreover, at each passage on the segment, the head executes one of the basic 2-counter machine's instructions:
- testing if a counter is empty can be done by checking if there is a 0 to the right (resp. the left) of the unique M;
- decrementing can be done be replacing the leftmost A (resp. rightmost B) by a 0 ;
- incrementing can be done by replacing a 0 by A on the left of the leftmost A (resp. by B on the right of the rightmost B); such a 0 must exist because the segment is extended at each passage by both sides;
- finally, the head can simply stop.

If any order given to the head leads to an incoherence (decrement an empty counter, write a B when on the ' A ' part of the segment, etc), the state K is genereated and spreads.

With this definition, and if $u=\emptyset$, the halting problem for the 2-counter machine encoded in F (input: value of counters; output: does it halt started from these values?) clearly reduces to $\operatorname{Inv}_{F}^{u}$ (halt \Longleftrightarrow no invasion). Therefore, by a suitable choice of the 2-counter machine used to construct F, we have that INV_{F}^{u} is Π_{1}^{0}-complete.

To conclude the proof, we show that $\mathrm{CC}\left(\operatorname{Inv}_{F}^{u}\right) \in O(\log (n))$. Given an input w splitted between Alice and Bob, the following protocol determines whether $\operatorname{INv}_{F}^{u}(w)=1$:

- first Alice and Bob check whether the input configuration is valid; if not, the answer is 'invasion'; this can be done with $O(1)$ bits of communication since validity is a local property;
- the configuration being valid, Alice and Bob communicate so that for any pair of consecutive valid segments s_{1} and s_{2}, either Alice or Bob knows the state of both s_{1} and s_{2} and the distance between them; to acheive this, even if a segment is splitted between Alice's part and Bob's part, it is sufficient that they communicate $O(\log (n))$ bits; indeed, a segment is completely defined by:
- the value and position of the head,
- number of 0 states on the right and the same on the left,
- number of $A \mathrm{~s}$ and number of $B \mathrm{~s}$.
- since for each pair of valid segment, Alice or Bob as enough information to detect a possible future collision, they can determine together with $O(1)$ bits of communication whether there is invasion or not; indeed, invasion is equivalent to: either their is a collision somewhere, or their is a single segment holding a non-halting computation.

Proposition 16. There exists a $C A F$ such that for any $k \geq 1$ the problem Cycle ${ }_{F}^{k}$ is PSPACE-complete.

Proof. To show this, we embed a PSPACE-complete Turing machine \mathcal{M} in a cyclic configuration for a cellular automaton. \mathcal{M} works in polynomial space, meaning that there is a polynomial $P \in \mathbb{N}[X]$ such that for any $x \in \Gamma *$, it will never use more than $P(|x|)$ tape cells.

We can encode a Turing machine easily into a simple cellular automaton F: the states code for the Turing tape cells, and there is a special "head" state carrying the state of the machine. It can be easily shown that we can encode the transitions of a Turing machine into a local cellular automaton rule, ensuring that if there is only one head at the beginning, then it will be so during all the computation.

Moreover, the accepting state is spreading, meaning that if it appears somewhere, it spreads over all the configuration in both directions. The rejecting state launches a particle erasing the configuration (i.e., writing blank states everywhere), but shifting clockwise. In this way, an accepting computation will result in period 1, whereas rejecting computations will yield periods of the size of the configuration.

A polynomial-time transducer can easily encode an input x for \mathcal{M} into a (cyclic) configuration of F , like shown in figure 13. It first directly translates x into states of F , then computes $P(|x|)$ and outputs $P(x)$ blank states.

Figure 13: The output of the transducer used in Proposition 16.

6. Intrinsic universality: Ruling out concrete elementary CAs

6.1. CA Rule 218

The local function $f_{218}:\{0,1\}^{3} \rightarrow\{0,1\}$ of CA Rule 218 is defined in Figure 14(a).

From the result of [4] we already knew that $\mathrm{CC}\left(\operatorname{PrED}_{F_{218}}\right) \in O(\log (n))$. It follows from Corollary 2 that Rule 218 is not intrinsically universal. Nevertheless, the proof of [4] was very long and complicated. As we are going to see now, the invasion approach gives a short and elegant proof of the same result.

0	1	0	1	1	0	1	1
000	001	010	011	100	101	110	111

(a) f_{218}.

(b) Example of a space-time diagram for CA Rule 218.

Figure 14: CA Rule 218.

Definition 6. A word is additive if $1 s$ are isolated and separated by an odd number of 0s. By extension, an infinite configuration is additive if it contains only additive words.

Lemma 2. Additivity is preserved by iterations. Moreover, if abc is additive then:

$$
f_{218}(a, b, c) \neq f_{218}(1-a, b, c) \text { and } f_{218}(a, b, c) \neq f_{218}(a, b, 1-c) .
$$

Proof. First additivity is preserved by iterations because $010^{n} 10$ becomes $010^{n-2} 10$ for $n \geq 3$ and 01010 becomes 000 .

To conclude the lemma, it is sufficient to check that, for any a, b, c such that 11 is not a factor of $a b c$ then:

$$
f_{218}(a, b, c) \neq f_{218}(1-a, b, c) \text { and } f_{218}(a, b, c) \neq f_{218}(a, b, 1-c)
$$

Lemma 3. Let c be any non-additive configuration. Then, after a finite time, the word 11 appears in the evolution and this word is a wall.

Proof. First 11 is a wall because:

$$
f_{218}(*, 1,1)=f_{218}(1,1, *)=1
$$

To conclude it is sufficient to check that the image of $10^{n} 1$ with $n \geq 2$ is $10^{n-2} 1$.

Proposition 17. For all u, we have $\mathrm{CC}\left(\operatorname{INv}_{F_{218}}^{u}\right) \leq 1$.

Proof. First, if the configuration p_{u} is non-additive then, by Lemma 3, at some time t a wall appears periodically in $F_{218}^{t}\left(p_{u}\right)$. Hence, for any x_{1}, \ldots, x_{n}, the differences between $p_{u}\left(x_{1}, \ldots, x_{n}\right)$ and p_{u} are bounded to a fixed finite region. Said differently, there is never propagation for such an u.

Now consider the case where p_{u} is additive. By Lemma 2, we have for any x_{1}, \ldots, x_{n} :

- either $p_{u}=p_{u}\left(x_{1}, \ldots, x_{n}\right)$,
- or for any $t \geq 0$:

$$
\begin{aligned}
\delta_{l}(t) & =\delta_{l}(0)-t \\
\delta_{r}(t) & =\delta_{r}(0)+t
\end{aligned}
$$

Therefore, the problem consists in deciding whether p_{u} and $p_{u}\left(x_{1}, \ldots, x_{n}\right)$ are equal, which can be done with 1 bit of communication.

Corollary 4. CA Rule 218 is not intrinsically universal.

6.2. CA Rule 94

The local function $f_{94}:\{0,1\}^{3} \rightarrow\{0,1\}$ of CA Rule 94 is defined in Figure $15(\mathrm{a})$.

0	1	1	1	1	0	1	0
000	001	010	011	100	101	110	111

(a) f_{94}.

(b) Example of a space-time diagram for CA Rule 94.

Figure 15: CA Rule 94.

Here appears clearly how powerful the invasion approach is (as a tool for proving non-universality). Finding an upper bound (a protocol) for CC ($\operatorname{PRED}_{F_{94}}$) seems to be hard. Nevertheless, here we prove in a rather simple way that its invasion complexity is logarithmic.

Definition 7. A configuration is additive if its language is included in $\left((00)^{+}(11)^{+}\right)^{*}$ (blocks of 0 s or $1 s$ are always of even length).

Lemma 4. f_{94} is bi-permutative when restricted to additive configurations (it behaves like f_{90}) and additive configurations are stable under iterations.

Proof. For stability of additive configurations, it is sufficient to check that $00(11)^{n} 00$ becomes $11(00)^{n-1} 11$ and $11(00)^{n} 11$ becomes $11(00)^{n-1} 11$ for $n \geq 1$. f_{94} differs from f_{90} only for transition 010 , hence bi-permutativity.

Lemma 5. If c is a non-additive configuration which does not contain 010, then 101 appears after a finite time and it is a wall. More precisely, a wall appears after $t+1$ steps of CA Rule 94 at the middle of any occurrence of $10^{2 t+1} 1$ or $01^{2 t+3} 0$ (with $t \geq 0$).
Proof. First 101 is stable under iterations of f_{94}. Second, $10^{n} 1$ with $n \geq 2$ is sent to $10^{n-2} 1$ and $01^{n} 0$ is sent to $10^{n-2} 1$ for $n \geq 2$.

Lemma 6. The orbit of a configuration c contains a wall if and only if $F_{94}(c)$ is not additive.
Proof. From Lemma 5, it is enough to show that if c is a configuration not containing 101 then $F_{94}(c)$ does not contain 010. For that, it is sufficient to check that any word u such that $f_{94}(u)=010$ must contain 101 .

From the 2 lemmas above, we get that
Proposition 18. For any u we have $\mathrm{CC}\left(\operatorname{INv}_{F_{94}}^{u}\right) \in O(\log (n))$.
Proof. If u is such that the orbit of p_{u} contains a wall, then invasion never occurs.

If u is such that the orbit of p_{u} does not contain any wall, then it means that $F_{94}\left(p_{u}\right)$ is additive (by Lemma (6). In this situation, two cases are to be considered depending on the input x_{1}, \ldots, x_{n}. Knowing in which case we are can be done exchanging a constant number of bits:

- either $F_{94}\left(p_{u}\left(x_{1}, \ldots, x_{n}\right)\right)$ is also additive and then, by Lemma there is invasion if and only if $F_{94}\left(p_{u}\right)=F_{94}\left(p_{u}\left(x_{1}, \ldots, x_{n}\right)\right)$. This can be decided with a finite number of bits of communication.
- or $F_{94}\left(p_{u}\left(x_{1}, \ldots, x_{n}\right)\right)$ is not additive. Then it contains some $10^{2 t+1} 1$ or some $01^{2 t+3} 0$ (with $t \geq 0$) because, as shown in the proof of lemma, if the image of a configuration contains 010 it must also contain 101. Consider the leftmost and the rightmost occurrences of such kind of words. Since walls appear above the middle of that 2 occurrences after a time equal to their half-lengths (Lemma 5), the fact there is invasion or not does not depend on what is beetween that two occurrences. It take $O(\log (n))$ bits of communications for Alice to know the positions of that 2 occurrences and the exact words present at those positions (of type $10^{2 t+1} 1$ or $01^{2 t+3} 0$). Moreover, as soon as Alice knows this she also knows that on the left of the leftmost occurrence and on the right of the rightmost occurrence, the configuration is additive. If there is 1 difference with p_{u} in those additive part, then there is invasion. If not, then Alice has all information to decide invasion. Deciding in which of the two cases we are can be done exchanging a constant number of bits.

Corollary 5. CA Rule 94 is not intrinsically universal.

6.3. CA Rule 33

We are going to show that this rule, although non-trivial for the Pred problem, needs zero communication for the Cycle problem. To show this, we prove that the cycle length of rule 33 is always 2 . The local function f_{33} : $\{0,1\}^{3} \rightarrow\{0,1\}$ of CA Rule 33 is defined in Figure 16(a).

1	0	0	0	0	1	0	0
000	001	010	011	100	101	110	111

(a) f_{33}.

(b) Example of a space-time diagram for CA Rule 33.

Figure 16: CA Rule 33.

Lemma 7. All configurations that do not contain neither 101 (isolated 0 s) nor 1001 (isolated 00 s) are stable under $\left(F_{33}\right)^{2}$.

Proof. We call A_{0} the set of configurations without isolated 0s, and A_{00} the set configuration without isolated 00s. First notice that the only antecedent of 101 is 10101 , which contains an isolated 0 , thus A_{0} is stable under F_{33}. With an exhaustive exploration of all configurations of the form $u=a b x y z c d$ where $x y z \in\{000 \ldots 111\}$, and $u \in A_{0} \cap A_{00}$, we observe that :

$$
\forall u \in A_{0} \cap A_{00},|u|=7,\left(F_{33}\right)^{2}\left(u_{1} \ldots u_{7}\right)=u_{3} u_{4} u_{5}
$$

Lemma 8. All (cyclic) configurations of length n, different from (01) ${ }^{\lfloor n / 2\rfloor}$, do not contain isolated $0 s$ after $\left\lfloor\frac{n}{2}\right\rfloor$ steps of CA Rule 33.

Proof. We already noticed in Lemma 7 that the only possible antecedent of 101 is 10101 . Thus, there can be an isolated 0 after $\left\lfloor\frac{n}{2}\right\rfloor$ steps only if there are at least $\left\lfloor\frac{n}{2}\right\rfloor$ isolated 0 s in the initial configuration, i.e. if the initial configuration is $(01)^{\lfloor n / 2\rfloor}$.

Corollary 6. After $\left\lfloor\frac{n}{2}\right\rfloor+1$ steps of CA Rule 33, there are no isolated couples of $0 s$.

Proof. The only antecedents of 1001 contain an isolated 0.
Corollary 7. After $\left\lfloor\frac{n}{2}\right\rfloor+1$ steps, CA Rule 33 becomes periodic, with period 2 .
Proposition 19. A deterministic protocol for predicting CA Rule 33 can not be in $o(\log n)$.

Proof. As usually, we just find a fooling set (see Definition 1). Consider the following set S_{n} :

$$
S_{n}=\left\{\left(1^{n-2 k}(01)^{k} 0,(10)^{k} 1^{n-2 k}\right), 0 \leq k \leq\lfloor n / 2\rfloor\right\}
$$

It can be easily verified that:
$\left\{\begin{array}{l}F_{33}^{n}\left(1^{2 n-k}(01)^{k} 0(10)^{k} 1^{2 n-k}\right)=n \bmod 2 \\ F_{33}^{n}\left(1^{2 n-i}(01)^{i} 0(10)^{j} 1^{2 n-j}\right)=1+(n \bmod 2) \quad \text { whenever } i \neq j\end{array}\right.$
Since $\left|S_{n}\right|=\left\lfloor\frac{n}{2}\right\rfloor$, we conclude that a deterministic protocol for CA Rule 33 needs at least an $\Omega\left(\log _{2} n\right)$ bits of communication.

7. Conclusion

We have proposed a method to prove negative results cencerning intrinsic universality in cellular autamata. We have shown that this approach can be used both to show that some global dynamical properties imply non-universality, and to rule out some concrete CA from being universal.

We believe that this work should be pursued in the following directions:

- It seems that more can be said about the communication complexity problems for the class of surjective CA and some of its sub-classes (k-to- 1 , d-separated, left/right-closing, etc - see [5]);
- The case of elementary rules 218 and 94 shows that low-cost communication protocols can be found for CAs that are not linear, but containing a linear component 'in competition' with another component. Finding a general formalisation for such kind of behaviours could be useful to treat many other concrete examples.
- Concerning concrete CAs, ruling out as much elementary rule as possible from being intrinsically universal seems to be an interesting (but ambitious) objective. We could also consider other natural classes of small CAs (one-way automata, totalistic rules, etc).
- Knowing the splittings of inputs that induce the maximal communication complexity is an interesting information, especially for the prediction problem. There is no reason for such maximal splittings to be unique, and if it is unique, there is no reason that it is at the middle of the input. We suspect that there are some links between directional entropy and the evolution of such maximal splitting with input size.
- Although completely formalized in dimension 1 , there is no doubt that this approach can be adapted to higher dimensions; it could be the occasion to adopt other communication complexity models (like the multi-partite model) and discuss other way of splitting the input.

References

[1] L. Boyer, G. Theyssier, On local symmetries and universality in cellular automata, in: Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS), 2009.
[2] B. Durand, Z. Róka, Cellular Automata: a Parallel Model, vol. 460 of Mathematics and its Applications., chap. The game of life:universality revisited., Kluwer Academic Publishers, 1999, pp. 51-74.
[3] C. Dürr, I. Rapaport, G. Theyssier, Cellular automata and communication complexity, Theoretical Computer Science 322 (2) (2004) 355-368.
[4] E. Goles, C. Little, I. Rapaport, Understanding a non-trivial cellular automaton by finding its simplest underlying communication protocol, in: S.-H. Hong, H. Nagamochi (eds.), Proceedings of the 19th International Symposium on Algorithms and Complexity (ISAAC 2008), Lecture Notes in Computer Science 5369, vol. 2380 of Lecture Notes in Computer Science, Springer, 2008.
[5] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical systems, Mathematical Systems Theory 3 (4) (1969) 320-375.
[6] J. Hromkovic, G. Schnitger, Communication complexity and sequential compuation, in: MFCS '97: Proceedings of the 22nd International Symposium on Mathematical Foundations of Computer Science, Springer-Verlag, London, UK, 1997.
[7] P. Kurka, Languages, equicontinuity and attractors in cellular automata, Ergodic theory and dynamical systems 17 (1997) 417-433.
[8] E. Kushilevitz, N. Nisan, Communication complexity, Cambridge university press, 1997.
[9] J. Mazoyer, I. Rapaport, Inducing an order on cellular automata by a grouping operation, Discrete Applied Mathematics 91 (1999) 177-196.
[10] M. L. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, New Jersey, 1967.
[11] T. Neary, D. Woods, P-completeness of cellular automaton rule 110, in: In International Colloquium on Automata Languages and Programming (ICALP), volume 4051 of LNCS, Springer, 2006.
[12] N. Ollinger, Universalities in cellular automata: a (short) survey, in: B. Durand (ed.), Symposium on Cellular Automata Journées Automates Cellulaires (JAC'08), MCCME Publishing House, Moscow, 2008.
[13] M. Sablik, Directional dynamics for cellular automata: A sensitivity to initial condition approach, Theoretical Computer Science 400 (1-3) (2008) 1-18.
[14] J. von Neumann, The theory of self-reproducing cellular automata, University of Illinois Press, Urbana, Illinois, 1967.
[15] A. C.-C. Yao, Some complexity questions related to distributive computing (preliminary report), in: STOC, ACM, 1979.

[^0]: * Corresponding author guillaume.theyssier@univ-savoie.fr
 *Partially supported by programs Fondap and Basal-CMM, Fondecyt 1070022 (E.G) and Fondecyt 1090156 (I.R.).

[^1]: ${ }^{2}$ There is actually no consensus on the formal definition of Turing-universality in CA (see (2) for a discussion about encoding/decoding problems).

