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Abstract

The Rosenblatt process is a self-similar non-Gaussian process which lives in second
Wiener chaos, and occurs as the limit of correlated random sequences in so-called “non-
central limit theorems”. It shares the same covariance as fractional Brownian motion. We
study the asymptotic distribution of the quadratic variations of the Rosenblatt process
based on long filters, including filters based on high-order finite-difference and wavelet-
based schemes. We find exact formulas for the limiting distributions, which we then use to
devise strongly consistent estimators of the self-similarity parameter H . Unlike the case of
fractional Brownian motion, no matter now high the filter orders are, the estimators are
never asymptotically normal, converging instead in the mean square to the observed value
of the Rosenblatt process at time 1.
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1 Introduction

Self-similar stochastic processes are of practical interest in various applications, including
econometrics, internet traffic, and hydrology. These are processes X = {X (t) : t ≥ 0} whose
dependence on the time parameter t is self-similar, in the sense that there exists a (self-
similarity) parameter H ∈ (0, 1) such that for any constant c ≥ 0, {X (ct) : t ≥ 0} and
{

cHX (t) : t ≥ 0
}

have the same distribution. These processes are often endowed with other
distinctive properties.

The fractional Brownian motion (fBm) is the usual candidate to model phenomena in
which the selfsimilarity property can be observed from the empirical data. This fBm BH is
the continuous centered Gaussian process with covariance function

RH(t, s) := E
[

BH (t)BH (s)
]

=
1

2
(t2H + s2H − |t − s|2H). (1)

The parameter H characterizes all the important properties of the process. In addition to
being self-similar with parameter H, which is evident from the covariance function, fBm has
correlated increments: in fact, from (1) we get, as n → ∞,

E
[(

BH (n) − BH (1)
)

BH (1)
]

= H (2H − 1) n2H−2 + o
(

n2H−2
)

; (2)

when H < 1/2, the increments are negatively correlated and the correlation decays more slowly
than quadratically; when H > 1/2, the increments are positively correlated and the correlation
decays so slowly that they are not summable, a situation which is commonly known as the
long memory property. The covariance structure (1) also implies

E
[

(

BH (t) − BH (s)
)2
]

= |t − s|2H ; (3)

this property shows that the increments of fBm are stationary and self-similar; its immediate
consequence for higher moments can be used, via the so-called Kolmogorov continuity criterion,
to imply that BH has paths which are almost-surely (H − ε)-Hölder-continuous for any ε > 0.

It turns out that fBm is the only continuous Gaussian process which is selfsimilar with
stationary increments. However, there are many more stochastic processes which, except for
the Gaussian character, share all the other properties above for H > 1/2 (i.e. (1) which implies
(2), the long-memory property, (3), and in many cases the Hölder-continuity). In some models
the Gaussian assumption may be implausible and in this case one needs to use a different
self-similar process with stationary increments to model the phenomenon. Natural candidates
are the Hermite processes: these non-Gaussian stochastic processes appear as limits in the
so-called Non-Central Limit Theorem (see [5], [8], [25]) and do indeed have all the properties
listed above. While fBm can be expressed as a Wiener integral with respect to the standard
Wiener process, i.e. the integral of a deterministic kernel w.r.t. a standard Brownian motion,
the Hermite process of order q ≥ 2 is a qth iterated integral of a deterministic function with
q variables with respect to a standard Brownian motion. When q = 2, the Hermite process is
called the Rosenblatt process. This stochastic process typically appears as a limiting model in
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various applications such as unit the root testing problem (see [31] ), semiparametric approach
to hypothesis test (see [13]), or long-range dependence estimation (see [15]). On the other hand,
since it is non-Gaussian and self-similar with stationary increments, the Rosenblatt process can
also be an input in models where self-similarity is observed in empirical data which appears
to be non-Gaussian. The need of non-Gaussian self-similar processes in practice (for example
in hydrology) is mentioned in the paper [26] based on the study of stochastic modeling for
river-flow time series in [16]. Recent interest in the Rosenblatt and other Hermite processes,
due in part to their non-Gaussian character, and in part for their independent mathematical
value, is evidenced by the following references: [4], [6], [10], [18], [19], [20], [27], [28].

The results in these articles, and in the previous references on the non-central limit
theorem, have one point in common: of all the Hermite processes, the most important one in
terms of limit theorem, apart from fBm, is the Rosenblatt process. As such, it should be the
first non-Gaussian self-similar process for which to develop a full statistical estimation theory.
This is one motivation for writing this article.

Since the Hurst parameter H, thus called in reference to the hydrologist who discovered
its original practical importance (see [14]), characterizes all the important properties of a Her-
mite process, its proper statistical estimation is of the utmost importance. Several statistics
have been introduced to this end in the case of fBm, such as variograms, maximum likelihood
estimators, or spectral methods, k-variations and wavelets. Information on these various ap-
proaches, apart from wavelets, for fBm and other long-memory processes, can be found in the
book of Beran [3]. More details about the wavelet-based approach can be found in [2], [11] and
[30].

In this article, we will concentrate on one of the more popular methods to estimate
H: the study of power variations; it is particularly well-adapted to the non-Gaussian Hermite
processes, because explicit calculations can be performed via Wiener chaos analysis. In its
simplest form, the kth power variation statistic of a process {Xt : t ∈ [0, 1]}, calculated using
N data points, is defined as following quantity (the absolute value of the increment may be
used in the definition for non-even powers):

VN :=
1

N







N−1
∑

i=0

(

X i+1
N

− X i
N

)k

E
(

X i+1
N

− X i
N

)k
− 1






. (4)

There exists a direct connection between the behavior of the variations and the conver-
gence of an estimator for the selfsimilarity order based on these variations (see [7], [28]): if the
renormalized variation satisfies a central limit theorem then so does the estimator, a desirable
fact for statistical purposes.

The recent paper [28] studies the quadratic variation of the Rosenblatt process Z (the
VN above with k = 2), exhibiting the following facts: the normalized sequence N1−HVN

satisfies a non-central limit theorem, it converges in the mean square to the Rosenblatt random
variable Z (1) (value of the process Z at time 1); from this, we can construct an estimator for
H whose behavior is still non-normal. The same result is also obtained in the case of the
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estimators based on the wavelet coefficients (see [2]). In the simpler case of fBm, this situation
still occurs when H > 3/4 (see for instance [29]). For statistical applications, a situation in
which asymptotic normality holds might be preferable. To achieve this for fBm, it has been
known for some time that one may use “longer filters” (that means, replacing the increments
X i+1

N
− X i

N
by the second-order increments X i+1

N
− 2X i

N
+ X i−1

N
, or higher order increments

for instance; see [7]). To have asymptotic normality in the case of the Rosenblatt process, it
was shown in [28] that one may perform a compensation of the non-normal component of the
quadratic variation. In fact, this is possible only in the case of the Rosenblatt process; it is not
possible for higher-order Hermite processes, and is not possible for fBm with H > 3/4 [recall
that the case of fBm with H ≤ 3/4 does not require any compensation]. The compensation
technique for the Rosenblatt process yields asymptotic variances which are difficult to calculate
and may be very high.

The question then arises to find out whether using longer filters for the Rosenblatt
process might yield asymptotically normal estimators, and/or might result in low asymptotic
variances. In this article, using recent results on limit theorems for multiple stochastic integrals
based on the Malliavin calculus (see [22], [23]), we will see that the answer to the first question
is negative, while the answer to the second question is affirmative. We will use quadratic
variations (k = 2) for simplicity. A summary of our results is as follows. Here Ω denotes the
underlying probability space, and L1 (Ω) and L2 (Ω) are the usual spaces of integrable and
square-integrable random variables.

• VN = T2 + T4 where Ti is in the ith Wiener chaos (Proposition 2).

•
√

N
c1,H

T4 converges in distribution to a standard normal (Theorem 2), where c1,H is given

in Proposition 4.

• N1−H
√

c2,H
VN and N1−H

√
c2,H

T2 both converge in L2(Ω) to the Rosenblatt random variable Z(1)

(Theorem 3); the asymptotic variance c2,H is given explicitly in formula (16) in Propo-
sition 3.

• There exists a strongly consistent estimator ĤN for H based on VN (Theorem 5), and

2 c
−1/2
2,H (log N)N1−ĤN

(

ĤN − H
)

converges in L1 (Ω) to a Rosenblatt random variable

(Theorem 7). Here c2,H is again given in (16). Note that while the rate of convergence
of the estimator, of order N−1+H log−1 N , depends on H, the convergence result above
can be used without knowledge of H since one may plug in ĤN instead of H in the
convergence rate.

• The asymptotic variance c2,H in the above convergence decreases as the length of the
filter increases; this decrease is much faster for wavelets-based filters than for finite-
difference-based filters: for values of H < 0.95, c2,H reaches values below 5% for wavelet
filters of length less than 6, but for finite-difference filters of length no less than 16.

• When H ∈ (1/2, 2/3), then N
c3,H

[

VN −
√

c2,H

N1−H Z(1)
]

converges in distribution to a stan-

dard normal, where c2,H is given explicitly in formula (16) and c3,H in formula (19).
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Similarly, for the estimator we have that N
c3,H

[

−2 log(ĤN − H) −
√

c2,H

N1−H Z(1)
]

converges

in distribution to the same standard normal. However, no mater how much we increase
the order and/or the length of the filter, we cannot improve the threshold of 2/3 for H.

What prevents the normalization of VN from converging to a Gaussian, no matter how
long the filter is, is the distinction between the two terms T2 and T4. In the case of fractional
Brownian motion, VN contains only one “T2”-type term (second chaos), but this term has a
behavior similar to our term T4, and does converge to a normal when the filter is long enough;
this fact has been noted before (see [7]). In our case, the normalized T2 always converges (in
L2 (Ω)) to a Rosenblatt random variable; the piece that sometimes has normal asymptotics
is T4, but since T2 always dominates it, VN ’s behavior is always that of T2. This sort of
phenomenon was already noted in [6] with the order-one filter for all non-Gaussian Hermite
processes, but now we know it occurs also for the simplest Hermite process that is not fBm,
for filters of all orders.

The organization of our paper is as follows. Section 2 summarizes the stochastic analytic
tools we will use, and gives the definitions of the Rosenblatt process and the filter variations.
Therein we also establish a specific representation of the 2-power variation as the sum of two
terms, one in the second Wiener chaos, which we call T2, and another, T4, in the fourth Wiener
chaos. Section 3 establishes the correct normalizing factors for the variations, by computing
second moments, showing in particular that T2 is the dominant term. Section 4 proves that
the renormalized T4 is asymptotically normal. Section 5 proves that T2 converges in L2 (Ω)
to the value Z (1) of the Rosenblatt process at time 1. In Section 6 it is shown that the
variation obtained by subtracting this observed limit of T2 leads to a correction term which is
asymptotically normal. Section 7 establishes the strong consistency of the estimator Ĥ for H
based on the variations, and proves that the renormalized estimator converges to a Rosenblatt
random variable in L1 (Ω). Its asymptotic variance is given explicitly for any filter, thanks to
the calculations in Section 3. In Section 8, we compare the numerical values of the asymptotic
variances for various choices of filters, including finite-difference filters and wavelet-based filters,
concluding that the latter are more efficient.

2 Preliminaries

2.1 Basic tools on multiple Wiener-Itô integrals

Let {Wt : t ∈[ 0, 1]} be a classical Wiener process on a standard Wiener space (Ω,F , P ). If a
symmetric function f ∈ L2([0, 1]n) is given, the multiple Wiener-Itô integral In (f) of f with
respect to W is constructed and studied in detail in [21, Chapter 1]. Here we collect the results
we will need. For the most part, the results in this subsection will be used in the technical
portions of our proofs, which are in the Appendix. One can construct the multiple integral
starting from simple functions of the form f :=

∑

i1,...,in
ci1,...in1Ai1

×...×Ain
where the coefficient
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ci1,..,in is zero if two indices are equal and the sets Aij are disjoint intervals, by setting

In(f) :=
∑

i1,...,in

ci1,...inW (Ai1) . . . W (Ain)

where we put W
(

1[a,b]

)

= W ([a, b]) = Wb − Wa; then the integral is extended to all sym-
metric functions in L2([0, 1]n) by a density argument. It is also convenient to note that this
construction coincides with the iterated Itô stochastic integral

In(f) = n!

∫ 1

0

∫ tn

0
. . .

∫ t2

0
f(t1, . . . , tn)dWt1 . . . dWtn .

The application In is extended to non-symmetric functions f via

In(f) = In

(

f̃
)

(5)

where f̃ denotes the symmetrization of f defined by f̃(x1, . . . , xx) = 1
n!

∑

σ∈Sn
f(xσ(1), . . . , xσ(n)).

The map (n!)−1/2 In can then be seen to be an isometry from L2([0, 1]n) to L2(Ω). The nth
Wiener chaos is the set of all integrals

{

In (f) : f ∈ L2([0, 1]n)
}

; the Wiener chaoses form
orthogonal sets in L2 (Ω). Summarizing, we have

E (In(f)Im(g)) = n!〈f, g〉L2([0,1]n) if m = n, (6)

E (In(f)Im(g)) = 0 if m 6= n.

The product for two multiple integrals can be expanded explicitly (see [21]): if f ∈
L2([0, 1]n) and g ∈ L2([0, 1]m) are symmetric, then it holds that

In(f)Im(g) =

m∧n
∑

ℓ=0

ℓ!Cℓ
mCℓ

nIm+n−2ℓ(f ⊗ℓ g) (7)

where the contraction f ⊗ℓ g belongs to L2([0, 1]m+n−2ℓ) for ℓ = 0, 1, . . . ,m∧n and is given by

(f ⊗ℓ g)(s1, . . . , sn−ℓ, t1, . . . , tm−ℓ)

=

∫

[0,1]ℓ
f(s1, . . . , sn−ℓ, u1, . . . , uℓ)g(t1, . . . , tm−ℓ, u1, . . . , uℓ)du1 . . . duℓ.

Note that the contraction (f ⊗ℓ g) is not necessary symmetric. We will denote by (f⊗̃ℓg) its
symmetrization.

Our analysis will be based on the following result, due to Nualart and Peccati (see
Theorem 1 in [22]).

Proposition 1 Let n be a fixed integer. Let In(fN ) be a sequence of symmetric square inte-
grable random variables in the nth Wiener chaos such that limN→∞ E

[

In(fN )2
]

= 1. Then
the following are equivalent:
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(i) As N → ∞, the sequence {In(fN ) : N ≥ 1} converges in distribution to a standard
Gaussian random variable.

(ii) For every τ = 1, . . . , n − 1

lim
N→∞

||fN ⊗τ fN ||2
L2[[0,1](2n−2τ)]

= 0.

2.2 Rosenblatt process and filters: definitions, notation, and chaos repre-

sentation

The Rosenblatt process is the (non-Gaussian) Hermite process of order 2 with Hurst index
H ∈ (1

2 , 1). It is self-similar with stationary increments, lives in the second Wiener chaos and
can be represented as a double Wiener-Itô integral of the form

Z(H)(t) := Z(t) =

∫ t

0

∫ t

0
Lt(y1, y2)dWy1dWy2 . (8)

Here {Wt, t ∈ [0, 1]} is a standard Brownian motion and Lt(y1, y2) is the kernel of the Rosen-
blatt process

Lt(y1, y2) = d(H)1[0,t](y1)1[0,t](y2)

∫ t

y1∨y2

∂KH
′

∂u
(u, y1)

∂KH
′

∂u
(u, y2)du, (9)

where

H ′ =
H + 1

2
and d(H) =

1

H + 1

(

H

2(2H − 1)

)−1/2

and KH is the standard kernel of fBm, defined for s < t and H ∈ (1
2 , 1) by

KH(t, s) := cHs
1
2
−H

∫ t

s
(u − s)H− 3

2 uH− 1
2 du (10)

where cH =
(

H(2H−1)

β(2−2H,H− 1
2
)

)
1
2

and β(·, ·) is the beta function. For t > s, we have the following

expression for the derivative of KH with respect to its first variable:

∂KH

∂t
(t, s) := ∂1K

H(t, s) = cH

(s

t

)
1
2
−H

(t − s)H− 3
2 . (11)

The term Rosenblatt random variable denotes any random variable which has the same distri-
bution as Z(1). Note that this distribution depends on H.

Definition 1 A filter α of length ℓ ∈ N and order p ∈ N \ 0 is an (ℓ + 1)-dimensional vector
α = {α0, α1, . . . , αℓ} such that

ℓ
∑

q=0

αqq
r = 0, for 0 ≤ r ≤ p − 1, r ∈ Z

ℓ
∑

q=0

αqq
p 6= 0

7



with the convention 00 = 1.

If we associate such a filter α with the Rosenblatt process we get the filtered process
V α according to the following scheme:

V α

(

i

N

)

:=
ℓ
∑

q=0

αqZ

(

i − q

N

)

, for i = ℓ, . . . ,N − 1.

Some examples are the following:

1. For α = {1,−1}
V α

(

i

N

)

= Z

(

i

N

)

− Z

(

i − 1

N

)

.

This is a filter of length 1 and order 1.

2. For α = {1,−2, 1}

V α

(

i

N

)

= Z

(

i

N

)

− 2Z

(

i − 1

N

)

+ Z

(

i − 2

N

)

.

This is a filter of length 2 and order 2.

3. More generally, longer filters produced by finite-differencing are such that the coefficients
of the filter α are the binomial coefficients with alternating signs. Therefore, borrowing
the notation ∇ from time series analysis, ∇Z (i/N) = Z (i/N)−Z ((i − 1) /N), we define
∇j = ∇∇j−1 and we may write the jth-order finite-difference-filtered process as follows

V αj

(

i

N

)

:=
(

∇jZ
)

(

i

N

)

.

From now on we assume the filter order is strictly greater than 1 (p ≥ 2).

For such a filter α the quadratic variation statistic is defined as

VN :=
1

N − ℓ

N−1
∑

i=ℓ

[
∣

∣V α
(

i
N

)∣

∣

2

E
∣

∣V α
(

i
N

)∣

∣

2 − 1

]

.
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Using the definition of the filter, we can compute the covariance of the filtered process V α
(

i
N

)

:

πα
H(j) := E

[

V α

(

i

N

)

V α

(

i + j

N

)]

=
ℓ
∑

q,r=0

αqαrE

[

Z

(

i − q

N

)

Z

(

i + j − r

N

)]

=
N−2H

2

ℓ
∑

q,r=0

αqαr

(

|i − q|2H + |i + j − r|2H − |j + q − r|2H
)

= −N−2H

2

ℓ
∑

q,r=0

αqαr|j + q − r|2H +
N−2H

2

ℓ
∑

q,r=0

αqαr

(

|i − q|2H + |i + j − r|2H
)

.

Since the term
∑ℓ

q,r=0 αqαr

(

|i − q|2H + |i + j − r|2H
)

vanishes we get that

πα
H(j) = −N−2H

2

ℓ
∑

q,r=0

αqαr|j + q − r|2H . (12)

Therefore, we can rewrite the variation statistic as follows

VN =
1

N − ℓ

N−1
∑

i=ℓ

[
∣

∣V α
(

i
N

)∣

∣

2

πα
H(0)

− 1

]

=
2N2H

N − ℓ



−
ℓ
∑

q,r=0

αrαq|q − r|2H





−1
N−1
∑

i=ℓ

[

∣

∣

∣

∣

V α

(

i

N

)∣

∣

∣

∣

2

− πα
H(0)

]

=
2N2H

c(H)(N − ℓ)

N−1
∑

i=ℓ

[

∣

∣

∣

∣

V α

(

i

N

)∣

∣

∣

∣

2

− πα
H(0)

]

,

where

c(H) = −
ℓ
∑

q,r=0

αrαq|q − r|2H . (13)

The next lemma is informative, and will be useful in the sequel.

Lemma 1 c (H) is positive for all H ∈ (0, 1]. Also, c (0) = 0.

Proof. For H < 1, we may rewrite c (H) by using the representation of the function
|q − r|2H via fBm BH , as its canonical metric given in (3), and its covariance function RH

9



given in (1). Indeed we have

c (x) = −
ℓ
∑

q,r=0

αrαqE
[

(

BH (q) − BH (r)
)2
]

= −
ℓ
∑

q,r=0

αrαq (RH (q, q) + RH (r, r) − 2RH (q, r))

= −2





ℓ
∑

q=0

αq





(

ℓ
∑

r=0

αrRH (r, r)

)

+ 2

ℓ
∑

q,r=0

αrαqRH (q, r)

= 0 + 2

ℓ
∑

q,r=0

αrαqRH (q, r) = E









ℓ
∑

q=0

αqB
H (q)





2

 > 0

where in the second-to-last line we used the filter property which implies
∑ℓ

q=0 αq = 0, and

the last inequality follows from the fact that
∑ℓ

q=0 αqB
H (q) is Gaussian and non-constant.

When H = 1, the same argument as above holds because the Gaussian process X such that

X (0) = 0 and E
[

(X (t) − X (s))2
]

= |t − s|2 is evidently equal in law to X (t) = tN where N

is a fixed standard normal r.v. The assertion that c(0) = 0 comes from the filter property.
Observe that we can write the filtered process as an integral belonging to the second

Wiener chaos

V α

(

i

N

)

=

ℓ
∑

q=0

αqZ

(

i − q

N

)

= I2





ℓ
∑

q=0

αqL i−q
N



 := I2 (Ci) ,

where

Ci :=

ℓ
∑

q=0

αqL i−q
N

. (14)

Using the product formula (7) for multiple stochastic integrals now results in the Wiener chaos
expansion of VN .

Proposition 2 With Ci as in (14), the variation statistic VN is given by

VN =
2N2H

c(H)(N − l)

N−1
∑

i=ℓ

[

|I2(Ci)|2 − πα
H(0)

]

=
2N2H

c(H)(N − ℓ)

[

N−1
∑

i=ℓ

I4 (Ci ⊗ Ci) + 4
N−1
∑

i=ℓ

I2 (Ci ⊗1 Ci)

]

:= T4 + T2,

where T4 is a term belonging to the 4th Wiener chaos and T2 a term living in the 2nd Wiener
chaos.

10



In order to prove that a variation statistic has a normal limit we may use the charac-
terization of N (0, 1) by Nualart and Ortiz-Latorre (Proposition 1). Thus, we need to start by
calculating E

[

|VN |2
]

so that we can then scale appropriately, in an attempt to apply the said
proposition.

3 Scale constants for T2 and T4

In order to determine the convergence of VN , using the orthogonality of the integrals belonging
in different chaoses, we will study each term separately. This section begins by calculating the
second moments of T2 and T4.

In this section we use an alternative expression for the filtered process. More specifically,
denoting bq :=

∑q
r=0 αr, we rewrite Ci as follows, for any i = ℓ, . . . ,N − 1:

Ci,ℓ := Ci =

ℓ
∑

q=0

αqL i−q
N

= α0

(

L i
N
− L i−1

N

)

+ (α0 + α1)
(

L i−1
N

− L i−2
N

)

+ . . . + (α0 + . . . + αℓ−1)
(

L i−(ℓ−1)
N

− L i−ℓ
N

)

=
ℓ
∑

q=0

bq

(

L i−(q−1)
N

− L i−q

N

)

. (15)

Recall that the filter properties imply
∑ℓ

q=0 αq = 0 and αℓ = −∑ℓ−1
q=0 αq.

3.1 Term T2

By Proposition 2, we can express E(T 2
2 ) as:

E(T 2
2 ) =

64 N4H

c(H)2(N − ℓ)2
E





(

N−1
∑

i=ℓ

I2 (Ci ⊗1 Ci)

)2


 =
2! 64 N4H

c(H)2(N − ℓ)2

N−1
∑

i,j=ℓ

〈Ci ⊗1 Ci, Cj ⊗1 Cj〉L2([0,1]2)

Proposition 3 We have

lim
N→∞

E
[

∣

∣N1−H T2

∣

∣

2
]

= c2,H .

where

c2,H =
64

c(H)2

(

2H − 1

H (H + 1)2

)







ℓ
∑

q,r=0

bqbr

[

|1 + q − r|2H
′

+ |1 − q + r|2H
′

− 2|q − r|2H
′]







2

.

(16)

This proposition is proved in the Appendix.
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3.2 Term T4

In this paragraph we estimate the second moment of T4, the fourth chaos term appearing in the
decomposition of the variation VN . Here the function

∑N−1
i=ℓ (Ci ⊗ Ci) is no longer symmetric

and we need to symmetrize this kernel to calculate T4’s second moment. In other words, by
Proposition 2, we have that

E
(

T 2
4

)

=
4N4H

c(H)2(N − ℓ)2
E





(

N−1
∑

i=ℓ

I4(Ci ⊗ Ci)

)2




=
4N4H

c(H)2(N − ℓ)2
4!

N−1
∑

i,j=ℓ

〈Ci⊗̃Ci, Cj⊗̃Cj〉L2([0,1]4)

where Ci⊗̃Ci := C̃i ⊗ Ci. Thus, we can use the following combinatorial formula:
If f and g are two symmetric functions in L2([0, 1]2), then

4!〈f⊗̃f, g⊗̃g〉L2([0,1]4)

= (2!)2〈f ⊗ f, g ⊗ g〉L2([0,1]4) + (2!)2〈f ⊗1 g, g ⊗1 f〉L2([0,1]2).

It implies

E
(

T 2
4

)

=
4N4H

c(H)2(N − ℓ)2
4!

N−1
∑

i,j=ℓ

〈Ci⊗̃Ci, Cj⊗̃Cj〉L2([0,1]4)

=
4N4H

c(H)2(N − ℓ)2
4

N−1
∑

i,j=ℓ

〈Ci ⊗ Ci, Cj ⊗ Cj〉L2([0,1]4)

+
4N4H

c(H)2(N − ℓ)2
4

N−1
∑

i,j=ℓ

〈Ci ⊗1 Cj, Cj ⊗1 Ci〉L2([0,1]2)

:= T4,(1) + T4,(2).

The proof of the next proposition, in the Appendix, shows that the two terms T4,(1) and T4,(2)

have the same order of magnitude, with only the normalizing constant being different.

Proposition 4 Recall the constant c (H) defined in (13). Let

τ1,H :=
∞
∑

k=ℓ

ℓ
∑

q1,q2,r1,r1=0

bq1bq2br1br2

∫

[0,1]4
dudvdu′dv′

[

|u − v + k − q1 + r1|2H′−2
∣

∣u′ − v′ + k − q2 + r2

∣

∣

2H′−2

∣

∣u − u′ + k − q1 + q2

∣

∣

2H′−2 ∣
∣v − v′ + k − r1 + r2

∣

∣

2H′−2
]

.
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and

ρα
H(k) :=

∑ℓ
q,r=0 αqαr |k + q − r|2H

c(H)

Then we have the following asymptotic variance for
√

NT4:

lim
N→∞

E

[

∣

∣

∣

√
N T4

∣

∣

∣

2
]

= c1,H := 4!

(

1 +
∞
∑

k=0

|ρα
H(k)|2

)

+ τ1,H . (17)

This proposition is proved in the Appendix. Observe that in the Wiener chaos decom-
position of VN the leading term is the term in the second Wiener chaos (i.e. T2) since it is of
order NH−1, while T4 is of the smaller order N−1/2. We note that, in contrast to the case of
filters of lenght 1 and power 1, the barrier H = 3/4 does not appear anymore in the estimation
of the magnitude of T4 Thus, the asymptotic behavior of VN is determined by the behavior of
T2. In other words, the previous three propositions imply the following.

Theorem 1 For all H ∈ (1/2, 1) we have that

lim
N→∞

E
[

∣

∣N1−H VN

∣

∣

2
]

= c2,H ,

where c2,H is defined in (16).

¿From the practical point of view, one only needs to compute the constant c2,H to
find the first order asymptotics of VN . This constant is easily computed exactly from its
formula (16), unlike the constant c1,H in Proposition (4) which can only be approximated via
its unwieldy series-integral representation given therein.

4 Normality of the term T4

We study in this section the limit of the renormalized term T4 which lives in the fourth
Wiener chaos and appears in the expression of the variation VN . Of course, due to Theorem
1 above, this term does not affect the first order behavior of VN but it is interesting from the
mathematical point of view because its limit is similar to those of the variation based on the
fractional Brownian motion ([29]). In addition, in Section 6, we will show that the asymptotics
of T4, and indeed the value of c1,H , are not purely academic. They are needed in order to
calculate the asymptotic variance of the adjusted variations, those which have a normal limit
when H ∈ (1/2, 2/3).

Define the quantity

GN :=

√
N

c1,H
T4 =

√
N

√
c1,H

2N2H

c(H)(N − ℓ)

N−1
∑

i=ℓ

I4 (Ci ⊗ Ci)

= I4

( √
N 2 N2H

√
c1,H c(H) (N − ℓ)

N−1
∑

i=ℓ

(Ci ⊗ Ci)

)

:= I4(gN ). (18)
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¿From the calculations above we proved that limN→∞ E(G2
N ) = 1. Using the Nualart–Peccati

criterion in Proposition 1, we can now prove that GN is asymptotically standard normal.

Theorem 2 For all H ∈ (1/2, 1) GN defined in (18) converges in distribution to the standard
normal.

Setup of proof of Theorem 2. To prove this theorem, by Proposition 4 and Propo-
sition 1, it is sufficient to show that for all τ = 1, 2, 3,

lim
N→∞

∥

∥gN ⊗̃τgN

∥

∥

L2([0,1](8−2τ))
= 0.

For τ = 1, 2, 3, this quantity can be written as

lim
N→∞

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2
∥

∥

∥

∥

∥

∥

N−1
∑

i,j=ℓ

(Ci ⊗ Ci)⊗̃τ (Cj ⊗ Cj)

∥

∥

∥

∥

∥

∥

2

L2([0,1](8−2τ))

≤ lim
N→∞

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2
∥

∥

∥

∥

∥

∥

N−1
∑

i,j=ℓ

(Ci ⊗ Ci) ⊗τ (Cj ⊗ Cj)

∥

∥

∥

∥

∥

∥

2

L2([0,1](8−2τ))

= lim
N→∞

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2 N−1
∑

i,j,m,n=ℓ

〈(Ci ⊗ Ci) ⊗τ (Cj ⊗ Cj), (Cm ⊗ Cm) ⊗τ (Cn ⊗ Cn)〉 .

The Appendix can now be consulted for proof that for each τ = 1, 2, 3 this quantity
converges to 0, establishing the theorem. �

5 Anormality of the T2 term and Asymptotic Distribution of

the 2-Variation

For the asymptotic distribution of the variation statistic we have the following proposition.

Theorem 3 For all H ∈ (1/2, 1), both N1−H
√

c2,H
T2 and the normalized 2-variation N1−H

√
c2,H

VN con-

verge in L2(Ω) to the Rosenblatt random variable Z(1).

Setup of proof of Theorem 3. The strategy for proving this theorem is simple. First
of all Proposition 4 implies immediately that N1−HT4 converges to zero in L2(Ω). Thus if we
can show the theorem’s statement about T2, the statement about VN will following immediately
from Proposition 2.

Next, to show N1−H
√

c2,H
T2 converges to the random variable Z (1) in L2 (Ω), recall that T2 is

a second-chaos random variable of the form I2(fN ), where fN(y1, y2) is a symmetric function in
L2([0, 1]2), and that this double Wiener-Itô integral is with respect to the Brownian motion W
used to define Z (1), i.e. that Z (1) = I2 (L1) where L1 is the kernel of the Rosenblatt process
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at time 1, as defined in (9). Therefore, by the isometry property of Wiener-Itô integrals (see

(6)), it is necessary and sufficient to show that N1−H
√

c2,H
fN converges in L2([0, 1]2) to L1. This is

proved in the Appendix. �

6 Normality of the adjusted variations

In the previous section we proved that the distribution of the variation statistic VN is never
normal, irrespective of the order of the filter. However, in the decomposition of VN , there
is a normal part, T4, which implies that if we subtract T2 from VN the remaining part will
converge to a normal law. But T2 is not observed in practice. Following the idea of the adjusted
variations in [28], instead of T2 we subtract Z(1) which is observed. Z(1) is the value of the
Rosenblatt process at time 1. Thus, we study the convergence of the adjusted variation:

VN −
√

c2,H

N1−H
Z(1) = VN − T2 + T2 −

√
c2,H

N1−H
Z(1)

:= T4 + U2.

In Section 4 we showed that
√

N
c1,H

T4 converges to a normal law. For the quantity U2 we

prove the following proposition

Proposition 5 For H ∈
(

1
2 , 2

3

)

,
√

NU2 converges in distribution to normal with mean zero
and variance given by

c3,H := c2,H

∞
∑

k=1

(N − k − 1)k2HF

(

1

k

)

, (19)

where c2,H is defined as in (16) and F is defined as follows

F (x) = d(H)2α(H)2
ℓ
∑

q1q2r1r2=0

∫

[0,1]4
dudvdu′dv′

∣

∣(u − u′ + q2 − q1)x + 1
∣

∣

2H′−2

[

128α(H)2d(H)2

c2,Hc(H)2
|u − v − q1 + r1|2H′−2

∣

∣u′ − v′ − q2 + r2

∣

∣

2H′−2

∣

∣(v − v′ − r1 + r2)x + 1
∣

∣

2H′−2 − 16d(H)α(H)
√

c2,Hc(H)
|u − v − q1 + r1|2H′−2

∣

∣(v − u′ − q2 + r1)x + 1
∣

∣

2H′−2
+
∣

∣(u − u′ + q1 − q2)x + 1
∣

∣

2H′−2
]

.

Proof. The proof follows the proof of [28, Proposition 5] and is omitted here.

Therefore, for the adjusted variation we can prove the following
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Theorem 4 Let Zt : t ∈ (0, 1) be a Rosenblatt process with H ∈ (1/2, 2/3). Then the adjusted
variation √

N

c1,H + c3,H

(

VN (2, α) − c2,H

N1−H
Z(1)

)

.

converges to a standard normal law. Here c1,H , c2,H , and c3,H are given in (17), (16), and
(19).

Proof. The proof follows the steps of the proof of [28, Theorem 6] and is omitted.

7 Estimators for the self-similarity index

We construct estimators for the self-similarity index of a Rosenblatt process Z based on the
discrete observations at times 0, 1

N , 2
N , . . . , 1. Their strong consistency and asymptotic distri-

bution will be consequences of the theorems above.

7.1 Setup of the estimation problem

Consider the quadratic variation statistic for a filter α of order p based on the observations of
our Rosenblatt process Z:

SN :=
1

N

N
∑

i=ℓ





ℓ
∑

q=0

αqZ

(

i − q

N

)





2

. (20)

We have already established that E [SN ] = −N−2H

2

∑ℓ
q,r=0 αqαr|q − r|2H (see expression (12)

). By considering that E [SN ] can be estimated by the empirical value SN , we can construct
an estimator ĤN for H by solving the following equation:

SN = −N−2ĤN

2

ℓ
∑

q,r=0

αqαr|q − r|2ĤN .

In this case, unlike the case of a filter of length 1 which was studied in [28], we cannot com-
pute an analytical expression for the estimator. Nonetheless, the estimator ĤN can be easily
computed numerically by solving the following non-linear equation for fixed N , with unknown
x ∈ [1/2, 1]:

− N−2x

2

ℓ
∑

q,r=0

αqαr|q − r|2x − SN (2, α) = 0. (21)

This equation is not entirely trivial, in the sense that one must determine whether it has a
solution in [1/2, 1], and whether this solution is unique. As it turns out, the answer to both
questions is affirmative for large N , as seen in the next Proposition, proved further below.

Proposition 6 Almost surely, for large N , equation (21) has exactly one solution in [1/2, 1].
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Definition 2 We define the estimator ĤN of H to be the unique solution of (21).

Note that Equation (21) can be rewritten as SN = c(x)N−2x/2 where the function c
was defined in (13). The proposition is established via the following lemma.

Lemma 2 For any H ∈ (1/2, 1), almost surely, limN→∞ N2HSN = c (H) /2.

Proof. Firstly, we show that VN converges to zero almost surely as N → ∞. We
already know that this is true in L2 (Ω). Consider the following

P
(

|VN | > N−β
)

≤ N qβE (|VN |q) ≤ cq,4

[

E
(

V 2
N

)]q/2 ≤ c N qβN (H−1)q.

If we choose β < 1 − H and q large enough so that (1 − H − β)q > 1. This implies that

∞
∑

N=0

P
(

|VN | > N−β
)

≤ c

∞
∑

N=0

N (β+H−1)q < +∞

Therefore, the Borel-Cantelli lemma implies |VN | → 0 a.s., with speed of convergence equal to
N−β, for all β < 1 − H. Since VN = SN

E(SN ) − 1 we have

1 + VN = − 2N2H

∑ℓ
q,r=0 αqαr|q − r|2H

SN = 2N2HSN/c (H) . (22)

The almost-sure convergence of VN to 0 yields the statement of the lemma.

Proof of Proposition 6. For x ∈ [12 , 1] and for any fixed N , define the function

FN (x) =
c(x)

2
N−2x − SN = −N−2x

2

ℓ
∑

q,r=0

αqαr|q − r|2x − SN .

Equation (21) is FN (x) = 0. Observe that FN (x) is strictly decreasing. Indeed, we have that

F ′
N (x) = log

(

N−2x
)

ℓ
∑

q,r=0

αqαr|q − r|2x − N−2x
ℓ
∑

q,r=0

αqαr log |q − r| |q − r|2x.

Then, F ′
N (x) < 0 is equivalent to

N > exp

{

∑ℓ
q,r=0 αqαr log |q − r| |q − r|2x

∑ℓ
q,r=0 αqαr|q − r|2x

}

,

since we know, using Lemma 1, that c (x) =
∑ℓ

q,r=0 αqαr|q−r|2x, which is evidently continuous

on [12 , 1], is strictly negative on that interval. Thus, if we choose N to be large enough, i.e.

N > max
x∈[ 1

2
1]

exp

{

∑ℓ
q,r=0 αqαr log |q − r| |q − r|2x

∑ℓ
q,r=0 αqαr|q − r|2x

}
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the function FN (x) is invertible on [12 , 1], and equation (21) has no more than one solution
there.

To guarantee existence of a solution, we use Lemma 2. This lemma implies the existence
of a sequence εN such that 2N2HSN = c(H) + εN and limN→∞ εN = 0 almost surely. Since in
addition c is continuous, then almost surely, we can choose N large enough, so that 2N2HSN

is in the image of [12 , 1] by the function c. Thus the equation c (x) = 2N2HSN has at least
one solution in [12 , 1]. Since this equation is equivalent to (21), the proof of the proposition is
complete.

7.2 Properties of the estimator

Now, it remains to prove that any such ĤN is consistent and to determine its asymptotic
distribution.

Theorem 5 For H ∈ (1/2, 1) assume that the observed process used in the previous definition
is a Rosenblatt process with Hurst parameter H. Then strong consistency holds for ĤN , i.e.

lim
N→∞

ĤN = H, a.s.

In fact, we have more precisely that limN→∞
(

H − ĤN

)

log N = 0 a.s.

Proof. ¿From line (22) in the proof of Lemma 2, and using the fact that ĤN solves

equation (21), i.e. c
(

ĤN

)

N−ĤN = 2SN , we can write

1 + VN = − 2N2H

∑ℓ
q,r=0 αqαr|q − r|2H

SN =
c(ĤN )

c (H)
N2(H−ĤN ).

Now note that c(ĤN )/c (H) is the ratio of two values of the continuous function c
at two points in [1/2, 1]. However, Lemma 1 proves that on this interval, the function c
is strictly positive; since it is continuous, it is bounded above and away from 0. Let a =
minx∈[1/2,1] c (x) > 0 and A = maxx∈[1/2,1] c (x) < ∞. These constants a and A are of course

non random. Therefore c(ĤN )/c (H) is always in the interval [a/A,A/a]. Thus, almost surely,

∣

∣

∣log
(

c(ĤN )/c (H)
)∣

∣

∣ ≤ log
A

a
.

We may now write

log (1 + VN ) = 2
(

H − ĤN

)

log N + log

(

c(ĤN )

c (H)

)

. (23)

Since in addition limN→∞ log (1 + VN ) = 0 a.s., we get that almost surely,

∣

∣

∣
H − ĤN

∣

∣

∣
= O

(

1

log N

)

.
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This implies the first statement of the proposition.
The second statement, which is more precise, is now obtained as follows. Since ĤN → H

almost surely, and c is continuous, log
(

c(ĤN )/c (H)
)

converges to 0. The second statement

now follows immediately.

The asymptotic distribution of the estimator ĤN is stated in the next result. Its proof
uses Theorem 3 and Theorem 1, plus the expression (23). While novel and interesting, this
proof is more technical than the proofs of the proposition and theorem above, and is therefore
relegated to the Appendix.

Theorem 6 For any H ∈ (1
2 , 1), the convergence

lim
N→∞

2c
−1/2
2,H N1−H

(

ĤN − H
)

log N = Z(1)

holds in L2 (Ω), where Z(1) is a Rosenblatt random variable.

As can be seen from Theorem 3 and Theorem 6, the renormalization of the statistic
VN , as well as the renormalization of the difference ĤN − H, depend on H: it is of order
of N1−H . The quantities N1−HVN and N1−HĤN cannot be computed numerically from the
empirical data, thereby compromising the use of the asymptotic distributions for statistical
purposes such as model validation. Therefore one would like to have other quantities with
known asymptotic distribution which can be calculated using only the data. The next theorem
addresses this issue by showing that one can replace H by ĤN in the term N1−H , and still
obtain a convergence as in Theorem 6, this time in L1 (Ω). Its proof is in the Appendix.

Theorem 7 For any H ∈ (1
2 , 1), with the Rosenblatt random variable Z (1),

lim
N→∞

E
[∣

∣

∣2 c
−1/2
2,H N1−ĤN log N

(

ĤN − H
)

− Z (1)
∣

∣

∣

]

= 0.

8 Numerical Computation of the Asymptotic Variance

In practice certain issues may occur when we compute the asymptotic variance. The most
crucial question is what order of filter we should choose. Indeed, from (16) with ĤN instead of
H, it follows that the constants of the variance not only depend on the filter length/order (ℓ,
p), but also on the number of observations (N). We measure the “accuracy” of the estimator
ĤN by its standard error which is the following quantity:

√

c2,ĤN

2N1−ĤN log N
.

There are several types of filters that we can use. In this paper, we choose to work with
finite-difference and wavelet-type filters.
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• The finite-difference filters are produced by finite-differencing the process. In this case
the filter length is the same as the order of the filter. The coefficients of the order-ℓ finite
difference filter are given by

αk = (−1)k+1

(

ℓ

k

)

, k = 0, . . . , ℓ.

• The wavelet filters we are using are the Daubechies filters with k-vanishing moments.
(By vanishing moments we mean that all moments of the wavelet filter are zero up to a
power). The Daubechies wavelets form a family of orthonormal wavelets with compact
support and the maximum number of vanishing moments. In this scenario, the number
of vanishing moments determines the order of the filter and the filter length is twice the
order. For more details, the reader can refer to [17].

We computed the standard error for N = 10, 000 observations, filters of order varying
from 2 to 20 and Hurst parameters varying from 0.55 to 0.95. This means that the correspond-
ing lengths of the finite-difference filters were 2 to 20 and for the wavelets 4 to 40. The code
we use to simulate the Rosenblatt process is based on a Donsker-type limit theorem and was
provided to us by J.M. Bardet [1]. The results are illustrated in the figures 1, 2, and 3, on

the next page; these are graphs of the asymptotic standard error
√

c2,H/(2N1−ĤN log N) for
various fixed values of H as the order of the filters increase.

We observe that the standard error decreases with the order of the filter. Furthermore,
we observe that the wavelet filters are more effective than the finite-difference ones, since they
have a higher impact on the decrease of the standard error for the same order, as the filter
increases. Specifically, the graph in Fig. 1, with the finite difference filters, shows that for fixed
H, there is no advantage to using a filter beyond a certain order p, since the standard error
tends to a constant as p → ∞. This does not occur for the wavelet filters, where the standard
error continues to decrease as p → ∞ in all cases as seen in the graph in Fig. 2. On the other
hand, the finite-difference filters have lower errors than the wavelet filters for low filter lengths;
only after a certain order p∗ do the latter become more effective; this comparison is seen in
the graph in Fig. 3, where p∗ is roughly 9.

In addition, since the order of convergence depends on the true value of the Hurst
parameter H, we investigated the behavior of the error with respect to H. It seems that the
higher H is, the more we lose in terms of accuracy; this is visible in all three graphs.

In general, the choice of a longer filter might lead to a smaller error, but at the same
time it increases the computational time needed in order to compute Ĥ and its standard error.
In a future work, we will study extensively this trade-off and other consequences of using longer
filters.
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Fig. 1: Finite Difference Filters. Fig. 2.: Wavelet Filters.

Fig. 3.: Comparison between the two types of filter.
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9 Appendix: proofs.

9.1 Proof of Proposition 3

We start by computing the contraction term Ci ⊗1 Ci:

(Ci ⊗1 Ci)(y1, y2) =

∫ 1

0
Ci(x, y1)Ci(x, y2)dx

=
ℓ
∑

q,r=0

bqbr

∫ 1

0

(

L i−(q−1)
N

(x, y1) − L i−q

N

(x, y1)
)(

L i−(r−1)
N

(x, y2) − L i−r
N

(x, y2)
)

dx

= d(H)2
ℓ
∑

q,r=0

bqbr1[0, i−q+1
N

](y1)1[0, i−r+1
N

](y2)

∫
i−q+1

N
∧ i−r+1

N

0
dx

×
(

∫ i−q+1
N

i−q

N

∂KH
′

∂u
(u, x)

∂KH
′

∂u
(u, y1)du

)(

∫ i−r+1
N

i−r
N

∂KH
′

∂v
(v, x)

∂KH
′

∂v
(v, y2)dv

)

= d(H)2
ℓ
∑

q,r=0

bqbr1[0, i−q+1
N

](y1)1[0, i−r+1
N

](y2)

×
∫

Iiq

∫

Iir

du dv
∂KH

′

∂u
(u, y1)

∂KH
′

∂u
(v, y2)dudv

(

∫ u∧v

0
dx

∂KH
′

∂u
(u, x)

∂KH
′

∂v
(v, x)

)

= α(H)d(H)2
ℓ
∑

q,r=0

bqbr1[0, i−q+1
N

](y1)1[0, i−r+1
N

](y2)

∫

Iiq

∫

Iir

du dv|u − v|2H
′−2 ∂KH

′

∂u
(u, y1)

∂KH
′

∂v
(v, y2)dudv,

where Iiq =
(

i−q
N , i−q+1

N

]

.
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Now, the inner product computes as

〈Ci ⊗1 Ci, Cj ⊗1 Cj〉L2[0,1]2

= α(H)2d(H)4
ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫ 1

0

∫ 1

0
dy1dy2

∫

Iiq1

∫

Iir1

∫

Ijq2

∫

Ijr2

dudvdu
′

dv
′ |u − v|2H

′−2|u′ − v
′ |2H

′−2

∂KH
′

∂u
(u, y1)

∂KH
′

∂v
(v, y2)

∂KH
′

∂u′ (u
′

, y1)
∂KH

′

∂v′ (v
′

, y2)dudvdu
′

dv
′

= α(H)2d(H)4
ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

Iiq1

∫

Iir1

∫

Ijq2

∫

Ijr2

dudvdu
′

dv
′ |u − v|2H

′−2|u′ − v
′ |2H

′−2

(

∫ u∧u′

0

∂KH
′

∂u
(u, y1)

∂KH
′

∂u′ (u
′

, y1)dy1

)(

∫ v∧v′

0

∂KH
′

∂u
(u, y1)

∂KH
′

∂v′ (v
′

, y2)dy2

)

= α(H)4d(H)4
ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

Iiq1

∫

Iir1

∫

Ijq2

∫

Ijr2

dudvdu
′

dv
′

× |u − v|2H
′−2|u′ − v

′ |2H
′−2|u − u

′ |2H
′−2|v − v

′ |2H
′−2.

We make the following change of variables

ū =

(

u − i − q1

N

)

N
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and the second moment of T2 becomes

E
(

T 2
2

)

=
128 α(H)4d(H)4

c(H)2
N4H

(N − ℓ)2

N−1
∑

i,j=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

Iiq1

∫

Iir1

∫

Ijq2

∫

Ijr2

dudvdu
′

dv
′

× |u − v|2H
′−2|u′ − v

′ |2H
′−2|u − u

′ |2H
′−2|v − v

′ |2H
′−2

=
128 α(H)4d(H)4

c(H)2
N4H

(N − ℓ)2
1

N4N8H′−8

N−1
∑

i,j=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

[0,1]4
dudvdu

′

dv
′

× |u − v − q1 + r1|2H
′−2|u′ − v

′ − q2 + r2|2H
′−2

× |u − u
′

+ i − j − q1 + q2|2H
′−2|v − v

′

+ i − j − r1 + r2|2H
′−2

=
128 α(H)4d(H)4

c(H)2
1

(N − ℓ)2

N−1
∑

i,j=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

[0,1]4
dudvdu

′

dv
′

× |u − v − q1 + r1|2H
′−2|u′ − v

′ − q2 + r2|2H
′−2

×
(

|u − u
′

+ i − j − q1 + q2|2H
′−2|v − v

′

+ i − j − r1 + r2|2H
′−2
)

.

Let cst. = 128 α(H)4d(H)4

c(H)2 . We study first the diagonal terms of the above double sum

E
(

T 2
2−diag

)

= cst.
N − ℓ − 1

(N − ℓ)2

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

[0,1]4
dudvdu

′

dv
′

× |u − v − q1 + r1|2H
′−2|u′ − v

′ − q2 + r2|2H
′−2|u − u

′ − q1 + q2|2H
′−2|v − v

′ − r1 + r2|2H
′−2.

We conclude that
E
(

T 2
2−diag

)

= O
(

N−1
)

.

Let’s consider now the non-diagonal terms

E
(

T 2
2−off

)

= 2cst.

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

×
∫

[0,1]4
dudvdu

′

dv
′ × |u − v − q1 + r1|2H

′−2|u′ − v
′ − q2 + r2|2H

′−2

× 1

(N − ℓ)2





N−1
∑

i,j=ℓ, i6=j

|u − u
′

+ i − j − q1 + q2|2H
′−2|v − v

′

+ i − j − r1 + r2|2H
′−2.



 (24)
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Observe that the term (24) can be calculated as follows:

1

(N − ℓ)2

N−1
∑

i,j=ℓ i6=j

|u − u
′

+ i − j − q1 + r1|2H
′−2|v − v

′

+ i − j − r1 + r2|2H
′−2

=
1

(N − ℓ)2

N−1
∑

i=ℓ

N−i
∑

k=1

|u − u
′

+ k − q1 + q2|2H
′−2|v − v

′

+ k − r1 + r2|2H
′−2

=
1

(N − ℓ)2

N−1
∑

k=ℓ

(N − k − 1)|u − u
′

+ k − q1 + q2|2H
′−2|v − v

′

+ k − r1 + r2|2H
′−2

= N4H
′−4 N

(N − ℓ)2

×
N−1
∑

k=ℓ

(

1 − k + 1

N

)

∣

∣

∣

∣

∣

u − u
′

N
+

k

N
− q1 − q2

N

∣

∣

∣

∣

∣

2H
′−2 ∣
∣

∣

∣

∣

v − v
′

N
+

k

N
− r1 − r2

N

∣

∣

∣

∣

∣

2H
′−2

.

We may now use a Riemann sum approximation and the fact that 4H
′ − 4 = 2H − 2 > −1.

Since ℓ is fixed and q1 and q2 are less than ℓ, we get that the term in (24) is asymptotically
equivalent to

N−1
∑

k=ℓ

(

1 − k

N

) ∣

∣

∣

∣

k

N

∣

∣

∣

∣

2H
′−2 ∣
∣

∣

∣

k

N

∣

∣

∣

∣

2H
′−2

=

∫ 1

0
(1 − x)x2H−2dx + o (1) =

1

2H (2H − 1)
+ o (1) .

We conclude that

E
(

T 2
2

)

+ o
(

N2H−2
)

=
cst.N2H−2

H(2H − 1)

×
ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

[0,1]4
dudvdu

′

dv
′ |u − v − q1 + r1|2H

′−2|u′ − v
′ − q2 + r2|2H

′−2.

Using the fact that

∫

[0,1]2
|u − v − q + r|2H

′−2dudv

=
1

2H ′(2H ′ − 1)

[

|1 + q − r|2H
′

+ |1 − q + r|2H
′

− 2|q − r|2H
′]

the proposition follows.
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9.2 Proof of Proposition 4

9.2.1 The term E
(

T 2
4,(1)

)

We have

E
(

T 2
4,(1)

)

=
4N4H

c(H)2(N − ℓ)2
4!

N−1
∑

i,j=ℓ

〈Ci ⊗ Ci, Cj ⊗ Cj〉L2([0,1]4)

=
4N4H

c(H)2(N − ℓ)2
4!

N−1
∑

i,j=ℓ

∣

∣〈Ci, Cj〉L2([0,1]2)

∣

∣

2

The scalar product computes as

〈Ci, Cj〉L2([0,1]2) =

〈

ℓ
∑

q=0

αqL i−q
N

,

ℓ
∑

r=0

αrL j−r
N

〉

L2([0,1]2)

=

∫ 1

0

∫ 1

0





ℓ
∑

q=0

αqL i−q

N

(y1, y2)





(

ℓ
∑

r=0

αrL j−r

N

(y1, y2)

)

dy1dy2

= d(H)2
ℓ
∑

q,r=0

αqαr

∫ 1

0

∫ 1

0

[

∫ i−q

N

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du

]

×
[

∫
j−r

N

y1∨y2

∂KH′

∂v
(v, y1)

∂KH′

∂v
(v, y2)dv

]

dy1dy2

= d(H)2
ℓ
∑

q,r=0

αqαr

∫ i−q

N

0

∫ j−r

N

0

(

∫ u∧v

0

∂KH′

∂u
(u, y1)

∂KH′

∂v
(v, y1)dy1

)2

dudv

= α(H)2 d(H)2
ℓ
∑

q,r=0

αqαr

∫ i−q

N

0

∫ j−r

N

0
|u − v|2H−2dudv

where α(H) = H(H+1)
2 = H

′
(2H

′ − 1) and

∫
i−q

N

0

∫
j−r

N

0
|u− v|2H−2dudv =

1

H(2H − 1)

[

∣

∣

∣

∣

i − q

N

∣

∣

∣

∣

2H

+

∣

∣

∣

∣

j − r

N

∣

∣

∣

∣

2H

−
∣

∣

∣

∣

j − i + q − r

N

∣

∣

∣

∣

2H
]

(25)

28



Using the fact that α(H)2 d(H)2

H(2H−1) = 1
2 and (25) the scalar product becomes

〈Ci, Cj〉L2([0,1]2) =
α(H)2 d(H)2

H(2H − 1)

ℓ
∑

q,r=0

αqαr

[

∣

∣

∣

∣

i − q

N

∣

∣

∣

∣

2H

+

∣

∣

∣

∣

j − r

N

∣

∣

∣

∣

2H

−
∣

∣

∣

∣
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N

∣

∣

∣

∣

2H
]
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1

2
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∑
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αqαr

[

∣

∣

∣

∣

i − q

N

∣

∣

∣

∣

2H

+

∣

∣

∣

∣

j − r

N

∣

∣

∣

∣
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−
∣

∣

∣

∣
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N

∣

∣

∣

∣

2H
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1

2
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∑
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αq

∣

∣

∣

∣

i − q
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∣

∣

∣

∣
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(

ℓ
∑
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αr

)

+

(
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∑

r=0
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∣

∣

∣

∣
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∣

∣

∣

∣

2H
)





ℓ
∑
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∣

∣

∣

∣
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∣

∣

∣

∣
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2
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∣

∣

∣

∣
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∣

∣

∣

∣

2H
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H(i − j).

The last equality is true since
∑ℓ

q=0 αq = 0 by the filter definition. Therefore, we have
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∣
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∣

∣
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∣
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∣
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∣
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∣

∣

∣
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∣

∣
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∣
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∣

∣
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∣
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∣

∣
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∣

∣
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∣
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∣

∣
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∣
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∣

∣
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∣
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∣

∣
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∣

∣
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∣

∣
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∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

∣

2

+
N−4H

4

N−2
∑

k=0

k

∣

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

∣

2

.

At this point we need the next lemma to estimate the behavior of the above quantity. This
lemma is the key point which implies the fact that the longer variation statistics has, in the
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case when the observed process is the fractional Brownian motion, a Gaussian limit without
any restriction on H (see [12]).

• Lemma 3 For all H ∈ (0, 1), we have that

(i)
∑∞

k=1

∣

∣

∣

∑ℓ
q,r=0 αqαr|k + q − r|2H

∣

∣

∣

2
< +∞

(ii)
∑∞

k=1 k
∣

∣

∣

∑ℓ
q,r=0 αqαr|k + q − r|2H

∣

∣

∣

2
< +∞.

Proof. Proof of (i). Let f(x) =
∑ℓ

q,r=0 αqαr (1 + (q − r)x)2H , so the summand can be
written as

ℓ
∑

q,r=0

αqαr|k + q − r|2H = k2Hf

(

1

k

)

.

Using a Taylor expansion at x0 = 0 for the function f(x) we get that

(1 + (q − r)x)2H ≈ 1 + 2H(q − r)x + . . . +
2H(2H − 1) . . . (2H − n + 1)

n!
(q − r)nxn.

For small x we observe that the function f(x) is asymptotically equivalent to

2H(2H − 1) . . . (2H − (p − 1))x2p,

where p is the order of the filter. Therefore, the general term of the series is equivalent
to

(2H)2(2H − 1)2 . . . (2H − (p − 1))2k4H−4p

Therefore for all H < p− 1
4 the series converges to a constant depending only on H. Due

to our choice for the order of the filter p ≥ 2, we obtain the desired result.

Proof of (ii). Similarly as before, we can write the general term of the series as

k

∣

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr|k + q − r|2H

∣

∣

∣

∣

∣

∣

2

= k

∣

∣

∣

∣

k2Hf

(

1

k

)∣

∣

∣

∣

2

≈ (2H)2(2H − 1)2 . . . (2H − (p − 1))2k4H−4p−1

Therefore for all H < p the series converges to a constant depending only on H.
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Combining all the above we have

E
(

T 2
4,(1)

)

=
4 N4H

c(H)2(N − ℓ)2
4!

N
∑

i,j=1

∣

∣〈Ci, Cj〉L2([0,1]2)

∣

∣

2

=
4 N4H

c(H)2(N − ℓ)2
4!

[

1

4
c(H)2(N − ℓ − 1)N−4H +

N−4H+1

4

N−2
∑

k=0

∣

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

∣

2

− 2
N−4H

4

N−2
∑

k=0

∣

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

∣

2

+
N−4H

4

N−2
∑

k=0

k

∣

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

∣

2 ]

=
4!

c(H)2

[

c(H)2
N − ℓ − 1

(N − ℓ)2
+

(

N1

(N − ℓ)2
− 2

1

(N − ℓ)2

) N−2
∑

k=0

∣

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

∣

2

+
1

(N − ℓ)2

N−2
∑

k=0

k

∣

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

∣

2 ]

=
4!

c(H)2

[

c(H)2
(

N

(N − ℓ)2
− l + 1

(N − ℓ)2

)

+
N − 2

(N − ℓ)2

N−2
∑

k=0

∣

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

∣

2

+
1

(N − ℓ)2

N−2
∑

k=0

k

∣

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

∣

2 ]

≈ 4!

c(H)2

[

c(H)2
(

N−1 − (ℓ + 1)N−2
)

+
(

N−1 − 2N−2
)

N−2
∑

k=0

∣

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

∣

2

+ N−2
N−2
∑

k=0

k

∣

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

∣

2 ]

.

Since the leading term is of order N−1 we have that

E
(

T 2
4,(1)

)

≃ 4! c(H)−2N−1



c(H)2 +

N−2
∑

k=0

∣

∣

∣

∣

∣

∣

ℓ
∑

q,r=0

αqαr |k + q − r|2H

∣

∣

∣

∣

∣

∣

2

 .

If we define the correlation function of the filtered process as

ρα
H(k) =

πα
H(k)

πα
H(0)

=

∑ℓ
q,r=0 αqαr |k + q − r|2H

c(H)

we can express the asymptotic variance limN→∞ N E
(

T 2
4,(1)

)

in terms of a series involv-

ing ρα
H(k).
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9.2.2 The term E
(

T 2
4,(2)

)

In order to handle this term we use the alternate expression (15) of Ci. Therefore, following
similar calculations as in the T2 case we get that

E
(

T 2
4,(2)

)

=
c
(1)
4,H

(N − ℓ)2

ℓ
∑

q1,q2,r1,r1=0

bq1bq2br1br2

∫

[0,1]4
dudvdu′dv′

×
N−1
∑

i,j=ℓ

[

|u − v + i − j − q1 + r1|2H′−2
∣

∣u′ − v′ + i − j − q2 + r2

∣

∣

2H′−2

∣

∣u − u′ + i − j − q1 + q2

∣

∣

2H′−2 ∣
∣v − v′ + i − j − r1 + r2

∣

∣

2H′−2
]

=
c
(2)
4,H

(N − ℓ)2

ℓ
∑

q1,q2,r1,r1=0

bq1bq2br1br2

∫

[0,1]4
dudvdu′dv′

×
N−1
∑

i=ℓ

N−ℓ−i
∑

k=0

[

|u − v + k − q1 + r1|2H′−2
∣

∣u′ − v′ + k − q2 + r2

∣

∣

2H′−2

∣

∣u − u′ + k − q1 + q2

∣

∣

2H′−2 ∣
∣v − v′ + k − r1 + r2

∣

∣

2H′−2
]

=
c
(3)
4,H

(N − ℓ)2

ℓ
∑

q1,q2,r1,r1=0

bq1bq2br1br2

∫

[0,1]4
dudvdu′dv′

×
N−ℓ
∑

k=0

(N − k − 1)

[

|u − v + k − q1 + r1|2H′−2
∣

∣u′ − v′ + k − q2 + r2

∣

∣

2H′−2

∣

∣u − u′ + k − q1 + q2

∣

∣

2H′−2 ∣
∣v − v′ + k − r1 + r2

∣

∣

2H′−2
]

.
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We study the convergence of the above series as N → ∞
N−1
∑

k=0

(N − k − 1)

[

|u − v + k − q1 + r1|2H′−2
∣

∣u′ − v′ + k − q2 + r2

∣

∣

2H′−2

∣

∣u − u′ + k − q1 + q2

∣

∣

2H′−2 ∣
∣v − v′ + k − r1 + r2

∣

∣

2H′−2
]

= (N − 1)

N−1
∑

k=0

[

|u − v + k − q1 + r1|2H′−2
∣

∣u′ − v′ + k − q2 + r2

∣

∣

2H′−2

∣

∣u − u′ + k − q1 + q2

∣

∣

2H′−2 ∣
∣v − v′ + k − r1 + r2

∣

∣

2H′−2
]

−
N−1
∑

k=0

k

[

|u − v + k − q1 + r1|2H′−2
∣

∣u′ − v′ + k − q2 + r2

∣

∣

2H′−2

∣

∣u − u′ + k − q1 + q2

∣

∣

2H′−2 ∣
∣v − v′ + k − r1 + r2

∣

∣

2H′−2
]

:= (I) + (II).

Therefore the general term of the series is asymptotically equivalent to

(

(2H ′ − 2) . . . (2H ′ − 2p − 1)

(2p)!

)4

(u − v − q1 + r1)
2p (u′ − v′ − q2 + r2)

2p

· (u − u′ − q1 + q2)
2p (v − v′ − r1 + r2)

2p k4H−4−8p,

which converges for all H ∈ (1
2 , 1). We treat the second series (II) in the same way and we get

that it is asymptotically equivalent to cst. k4H−4−8p. Combining all the above we have

E
(

T 2
4,(2)

)

=
c
′

4,H

(N − ℓ)2

ℓ
∑

q1,q2,r1,r1=0

bq1bq2br1br2

∫

[0,1]4
dudvdu′dv′

{

(N − ℓ)

N−1
∑

k=ℓ

[

|u − v + k − q1 + r1|2H′−2
∣

∣u′ − v′ + k − q2 + r2

∣

∣

2H′−2

∣

∣u − u′ + k − q1 + q2

∣

∣

2H′−2 ∣
∣v − v′ + k − r1 + r2

∣

∣

2H′−2
]

−
N−1
∑

k=ℓ

k

[

|u − v + k − q1 + r1|2H′−2
∣

∣u′ − v′ + k − q2 + r2

∣

∣

2H′−2

∣

∣u − u′ + k − q1 + q2

∣

∣

2H′−2 ∣
∣v − v′ + k − r1 + r2

∣

∣

2H′−2
]}

.
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The leading term in E
(

T 2
4,(2)

)

is of order N−1 and the constant computes as

τ1,H =
∞
∑

k=ℓ

ℓ
∑

q1,q2,r1,r1=0

bq1bq2br1br2

∫

[0,1]4
dudvdu′dv′

[

|u − v + k − q1 + r1|2H′−2
∣

∣u′ − v′ + k − q2 + r2

∣

∣

2H′−2

∣

∣u − u′ + k − q1 + q2

∣

∣

2H′−2 ∣
∣v − v′ + k − r1 + r2

∣

∣

2H′−2
]

.

Therefore, combining the two terms we get the statement of the proposition.

9.3 End of proof of Theorem 2

Recall that we only need to show that for τ = 1, 2, 3 the terms ||gN ⊗τ gN ||2L2([0,1]8−2τ ) converge
to 0 as N tends to infinity.

• Term for τ = 1.

J1 =

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2 N−1
∑

i,j,m,n=ℓ

〈(Ci ⊗ Ci) ⊗1 (Cj ⊗ Cj), (Cm ⊗ Cm) ⊗1 (Cn ⊗ Cn)〉

=

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2 N−1
∑

i,j,m,n=ℓ

〈Ci, Cm〉L2([0,1]2) 〈Cj , Cn〉L2([0,1]2)

×〈Ci ⊗1 Cj , Cm ⊗1 Cn〉L2([0,1]2).
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Thus, we have

J1 =

≤ cst.
N8H+2

(N − ℓ)4
1

N4

N−1
∑

i,j,m,n=ℓ

ℓ
∑

q1,r1,q2,r2,q3,r3,q4,r4=0

bq1br1bq2br2bq3br3bq4br4

×
∣

∣

∣

∣

i − m + q1 − r1

N

∣

∣

∣

∣

2H ∣

∣

∣

∣

j − n + q2 − r2

N

∣

∣

∣

∣

2H

×
[ ∫

[0,1]4
dudvdu′dv′

∣

∣

∣

∣

u − v + i − j − q3 + r3

N

∣

∣

∣

∣

2H′−2 ∣
∣

∣

∣

u′ − v′ + m − n − q4 + r4

N

∣

∣

∣

∣

2H′−2

×
∣

∣

∣

∣

u − u′ + i − m − q3 + q4

N

∣

∣

∣

∣

2H′−2 ∣
∣

∣

∣

v − v′ + j − n + r3 + r4

N

∣

∣

∣

∣

2H′−2 ]

≤ cst.
N2

(N − ℓ)4

N−1
∑

i,j,m,n=ℓ

ℓ
∑

q1,r1,q2,r2,q3,r3,q4,r4=0

bq1br1bq2br2bq3br3bq4br4

× |i − m + q1 − r1|2H |j − n + q2 − r2|2H

×
[ ∫

[0,1]4
dudvdu′dv′|u − v + i − j − q3 + r3|2H′−2|u′ − v′ + m − n − q4 + r4|2H′−2

× |u − u′ + i − m − q3 + q4|2H′−2|v − v′ + j − n + r3 + r4|2H′−2

]

.

As in the computations for T4,(2) we can show that the above series converges and thus

J1 = O(N−2), which implies that for all H ∈ (1
2 , 1)

lim
N→∞

J1 = 0.

• Term for τ = 2

J2 =

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2 N−1
∑

i,j,m,n=ℓ

〈(Ci ⊗ Ci) ⊗2 (Cj ⊗ Cj), (Cm ⊗ Cm) ⊗2 (Cn ⊗ Cn)〉

=

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2 N−1
∑

i,j,m,n=ℓ

〈Ci, Cj〉L2([0,1]2) 〈Cm, Cn〉L2([0,1]2)

×〈Ci, Cm〉L2([0,1]2) 〈Cj , Cn〉L2([0,1]2).
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J2 ≤ cst.
N8H+2

(N − ℓ)4

N−1
∑

i,j,m,n=ℓ

〈Ci, Cj〉L2[0,1]2〈Ci, Cm〉L2[0,1]2〈Cm, Cn〉L2[0,1]2〈Cj , Cn〉L2[0,1]2

= cst.
N8H+2

(N − ℓ)4

N−1
∑

i,j,m,n=ℓ

ℓ
∑

q1q2q3q4=0

αq1αq2αq3αq4

∣

∣

∣

∣

i − j + q1 − q2

N

∣

∣

∣

∣

2H

×
∣

∣

∣

∣

i − m + q1 − q3

N

∣

∣

∣

∣

2H ∣
∣

∣

∣

m − n + q3 − q4

N

∣

∣

∣

∣

2H ∣
∣

∣

∣

j − n + q2 − q4

N

∣

∣

∣

∣

2H

= cst.
N2

(N − ℓ)4

N−1
∑

i,j,m,n=ℓ

ℓ
∑

q1q2q3q4=0

αq1αq2αq3αq4 |i − j + q1 − q2|2H

× |i − m + q1 − q3|2H |m − n + q3 − q4|2H |j − n + q2 − q4|2H .

The series converges for all H ∈ (1/2, 1), so the whole term is of order O(N−2) which means
that goes to zero as N → ∞.

• Term for τ = 3.

J3 =

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2 N−1
∑

i,j,m,n=ℓ

〈(Ci ⊗ Ci) ⊗3 (Cj ⊗ Cj), (Cm ⊗ Cm) ⊗3 (Cn ⊗ Cn)〉

=

(

4N4H+1

c1,Hc(H)2(N − ℓ)2

)2 N−1
∑

i,j,m,n=ℓ

〈Ci, Cj〉L2([0,1]2) 〈Cm, Cn〉L2([0,1]2)

×〈Ci ⊗1 Cj , Cm ⊗1 Cn〉.

With similar computations as in the case of T4 we conclude that J3 = O(N−2).

9.4 Proof of Theorem 3

According to our previous computations we can write

fN (y1, y2) =

=
8N2H

c(H)(N − ℓ)

N−1
∑

i=ℓ

(Ci ⊗1 Ci)(y1, y2)

=
8d(H)2α(H)

c(H)

N2H

(N − ℓ)

N−1
∑

i=ℓ

ℓ
∑

q,r=0

bqbr1[0, i−q+1
N

](y1)1[0, i−r+1
N

](y2)

×
∫

Iiq

∫

Iir

dudv|u − v|2H′−2 ∂1K
H′

(u, y1)∂1K
H′

(v, y2)
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Let us show first that we can reduce this function to the interval y1 ∈ [0, i−q
N ] and y2 ∈ [0, i−r

N ].

We will show that if y1 ∈ Iiq , y2 ∈ [0, i−r
N ] (and similarly for the situations y1 ∈ [0, i−q

N ], y2 ∈ Iir

and y1 ∈ Iiq , y2 ∈ Iir) the corresponding terms goes to zero as N → ∞. We have, due to the
fact that the intervals Iiq are disjoint,

‖N1−HN2H

(N − ℓ)

N−1
∑

i=ℓ

ℓ
∑

q,r=0

bqbr1Iiq
(y1)1[0, i−r

N
](y2)

∫

Iiq

∫

Iir

dudv|u − v|2H′−2 ∂1K
H′

(u, y1)∂1K
H′

(v, y2)‖2
L2([0,1]2)

=
N2+2H

(N − ℓ)2

N
∑

i=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

Iiq1

∫

Iir1

∫

Iiq2

∫

Iir2

dv′du′dvdu

×
(

|u − v| · |u′ − v′| · |u − u′| · |v − v′|
)2H′−2

=
N2+2H

(N − ℓ)2
1

N4

1

N4(2H′−2)

N
∑

i=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

[0,1]4
dudvdu

′

dv
′

× |u − v − q1 + r1|2H
′−2|u′ − v

′ − q2 + r2|2H
′−2

|u − u
′ − q1 + q2|2H

′−2|v − v
′ − r1 + r2|2H

′−2 ≍ N1−2H

which tends to zero because 2H > 1.
This proves the following asymptotic equivalence in L2([0, 1]2):

fN (y1, y2) ≃
8d(H)2α(H)

c(H)

N2H

(N − ℓ)

N−1
∑

i=ℓ

ℓ
∑

q,r=0

bqbr1[0, i−q

N
](y1)1[0, i−r

N
](y2)

×
∫

Iiq

∫

Iir

dudv|u − v|2H′−2 ∂1K
H′

(u, y1)∂1K
H′

(v, y2).

We will show that the above term, normalize by N1−H
√

c2,H
, converges pointwise for y1, y2 ∈ [0, 1]

to the kernel of the Rosenblatt random variable.
On the interval Iiq × Iir we may attemp to replace the evaluation of ∂1K

H′
at u and v

by setting u = (i − q)/N and v = (i − r)/N . More precisely, we can write

∂1K
H′

(u, y1)∂1K
H′

(v, y2) =

(

∂1K
H′

(u, y1) − ∂1K
H′

(
i − q

N
, y1)

)

∂1K
H′

(v, y2)

+ ∂1K
H′

(
i − q

N
, y1)

(

∂1K
H′

(v, y2) − ∂1K
H′ − ∂1K

H′

(
i − r

N
, y2)

)

and all the above summand above can be treated in the same manner. For the first one,
using the definition of the derivative of KH′

with respect to the first variable, we get for any

37



y1 ∈ [0, i−q
N ],

∂1K
H′

(u, y1) − ∂1K
H′

(
i − q

N
, y1)

= cHy
1
2
−H

1

(

(u − y1)
H− 3

2 uH− 1
2 −

(

i − q

N
− y1

)H− 3
2

(
i − q

N
)H− 1

2

)

≤ cHy
1
2
−H

1

(

i − q

N
− y1

)H− 3
2
(

uH− 1
2 − (

i − q

N
)H− 1

2

)

≤ cHy
1
2
−H

1

(

i − q

N
− y1

)H− 3
2

(u − (
i − q

N
))H− 1

2

≤ cHN
1
2
−Hy

1
2
−H

1

(

i − q

N
− y1

)H− 3
2

and for any y2 ∈ [0, i−r
N ]

∂1K
H′

(v, y2) = cHy
1
2
−H

2 (v − y2)
H− 3

2 vH− 1
2

≤ cHy
1
2
−H

2

(

i − r

N
− y1

)H− 3
2

(
i − r + 1

N
)H− 1

2 .

As a consequence of the above estimates,

N1−H N2H

N − ℓ

N−1
∑

i=ℓ

ℓ
∑

q,r=0

bqbr1[0, i−q

N
](y1)1[0, i−r

N
](y2)

×
∫

Iiq

∫

Iiq

dvdu|u − v|2H′−2

(

∂1K
H′

(u, y1) − ∂1K
H′

(
i − q

N
, y1)

)

∂1K
H′

(v, y2)

≤ cN
1
2
−H N1+H

N − ℓ

N−1
∑

i=ℓ

ℓ
∑

q,r=0

bqbr1[0, i−q
N

](y1)1[0, i−r
N

](y2)

×
(

i − q

N
− y1

)H− 3
2
(

i − r

N
− y2

)H− 3
2

(
i − r + 1

N
)H− 1

2

∫

Iiq

∫

Iiq

dvdu|u − v|2H′−2

≤ cN
1
2
−H 1

N − ℓ

N−1
∑

i=ℓ

ℓ
∑

q,r=0

bqbr1[0, i−q

N
](y1)1[0, i−r

N
](y2)

×
(

i − q

N
− y1

)H− 3
2
(

i − r

N
− y2

)H− 3
2

(
i − r + 1

N
)H− 1

2 . (26)

The quantity 1
N−ℓ

∑N−1
i=ℓ 1[0, i−q

N
](y1)1[0, i−r

N
](y2)

(

i−q
N − y1

)H− 3
2 ( i−r

N − y2

)H− 3
2 ( i−r+1

N )H− 1
2 is com-

parable, for large N, to the integral
∫ 1
y1∨y2

(u − y1)
H− 3

2 (u − y2)
H− 3

2 uH− 1
2 and the term N

1
2
−H

in front gives the convergence to zero of (26) for any fixed y1, y2.
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This means we have proved the following pointwise asymptotically equivalent for fN(y1, y2):

N1−H

√
c2,H

fN (y1, y2) ≃
8d(H)2α(H)
√

c2,H c(H)

N1+H

(N − ℓ)

N−1
∑

i=ℓ

ℓ
∑

q,r=0

1[0, i−q

N
](y1)1[0, i−r

N
](y2)bqbr

× ∂1K
H′

(
i − q

N
, y1)∂1K

H′

(
i − r

N
, y2)

∫

Iiq

∫

Iir

dudv|u − v|2H′−2.

Recall that

∫

Iiq

∫

Iir

dvdu|u − v|2H′−2 =
N−(1+H)

2H ′(2H ′ − 1)

{

|1 − q + r|2H′

+ |1 + q − r|2H′ − 2|q − r|2H′
}

.

Thus we get

N1−H

√
c2,H

fN (y1, y2)

≃ 8d(H)2α(H)

c2,H c(H)

ℓ
∑

q,r=0

bqbr

{

|1 − q + r|2H′

+ |1 + q − r|2H′ − 2|q − r|2H′
}

× 1

(N − ℓ)

N−1
∑

i=ℓ

∂1K
H′

(
i − q

N
, y1)∂1K

H′

(
i − r

N
, y2).

Further, we can ignore the terms q/N and r/N in comparison with i/N in the last line above,
and thus invoke a Riemann sum approximation, which proves that, for every y1, y2 ∈ (0, 1)2

lim
N→∞

N1−H

c2,H
fN (y1, y2)

=
8d(H)2α(H)

c2,H c(H)

ℓ
∑

q,r=0

bqbr

{

|1 − q + r|2H′

+ |1 + q − r|2H′ − 2|q − r|2H′
}

1

(N − ℓ)
lim

N→∞

N−1
∑

i=ℓ

∂1K
H′

(
i − q

N
, y1)∂1K

H′

(
i − r

N
, y2)

= d(H)

∫

y1∨y2

∂1K
H′

(
u

N
, y1)∂1K

H′

(
u

N
, y2)du

= L1(y1, y2).

To finish the proof it suffices to check that N1−HfN is a Cauchy sequence in L2([0, 1]2). Up
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to a constant depending on H we have that for all M , N ,

||N1−HfN − M1−HfM ||2L2([0,1]2)

= N2−2H ||fN ||2L2([0,1]2) + M2−2H ||fM ||2L2([0,1]2) − 2N1−HM1−H〈fN , fM 〉L2([0,1]2)

= cst.
N2H+2

(N − ℓ)2

N−1
∑

i,j=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

IN
iq1

∫

IN
ir1

∫

IN
jq2

∫

IN
jr2

dudvdu′dv′

× |u − v|2H′−2|u′ − v′|2H′−2|u − u′|2H′−2|v − v′|2H′−2

+ cst.
M2H+2

(M − ℓ)2

M−1
∑

i,j=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

IM
iq1

∫

IM
ir1

∫

IM
jq2

∫

IM
jr2

dudvdu′dv′

× |u − v|2H′−2|u′ − v′|2H′−2|u − u′|2H′−2|v − v′|2H′−2

− cst.
M1+HN1+H

(M − ℓ)(N − ℓ)

N−1
∑

i=ℓ

M−1
∑

j=ℓ

ℓ
∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

IN
iq1

∫

IN
ir1

∫

IM
jq2

∫

IM
jr2

dudvdu′dv′

× |u − v|2H′−2|u′ − v′|2H′−2|u − u′|2H′−2|v − v′|2H′−2.

The first two terms have already been studied and will converge to the same constant as
M,N → ∞. Concerning the inner product, by making the usual change of variable we have

(MN)H+1

(M − ℓ)(N − ℓ)

(NM)2H′−2

N2M2

N−1
∑

i=ℓ

M−1
∑

j=ℓ

ℓ
∑

q1,r1,q2,r2=0

∫

[0,1]4
dudvdu′dv′

× |u − v − q1 + r1|2H′−2|u′ − v′ − q3 + r3|2H′−2

×
∣

∣

∣

∣

u

N
− u′

M
+

i

N
− j

N
− q1

N
+

q2

N

∣

∣

∣

∣

2H′−2 ∣
∣

∣

∣

v

N
− v′

M
+

i

N
− j

N
− r1

N
+

r2

N

∣

∣

∣

∣

2H′−2

.

For large i, j we can ignore the terms u
N , u′

N , q1

N , etc., compared to i
N and j

N . Therefore, the
above quantity is a Riemann sum that converges to the same constant as the squared terms,
as M,N → ∞. This finishes the proof of the theorem.

9.5 Proof of Theorem 6

We wish to show that, as N → ∞,

E := E

[

(

Z (1) − 2c
−1/2
2,H N1−H

(

ĤN − H
)

log N
)2
]

→ 0.

A minor technical difficulty occurs when VN is not small. We deal with this as follows. We
decompose the above expectation E according to whether or not |VN | ≤ 1/2: we have E =
E1 + E2 where

E1 = E

[

1|VN |>1/2

(

Z (1) − 2c
−1/2
2,H N1−H

(

ĤN − H
)

log N
)2
]

.
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Dealing with this term first, Schwarz’s and Minkowski’s inequalities yields

E1 ≤ 2P1/2 [|VN | > 1/2]

(

E1/2
[

Z (1)4
]

+ 4c−1
2,HN2−2H log2 N E1/2

[

(

ĤN − H
)4
])

.

Since ĤN is bounded, the sum of the two rooted expectation terms above is bounded above
by a constant multiple of N2−2H . Therefore to deal with E1, one only needs to show that
P [|VN | > 1/2] ≪ N−4+4H . It is well known that any random variable X which can be written
as a finite sum of Wiener chaos terms up to order q satisfies, for any integer n, E

[

X2n
]

≤
Kn,q

(

E
[

X2
])n

where Kn,q depends only on n and q. This can be proved iteratively by using
formula (7), for instance. Therefore, since VN is a sum of terms in the second and 4th chaos
(q = 4), by Chebyshev’s inequality, and using Theorem 1, with N large enough,

P [|VN | > 1/2] ≤ 4nE
[

|VN |2n
]

≤ 4ncn,4

(

E
[

|VN |2
])n

≤ 8nKn,4c
n
2,HN2Hn−2n.

It is thus sufficient to choose n = 3 to guarantee that E1 → 0.

We now only need to study E2. We invoke the mean value theorem to express
(

ĤN − H
)

log N more explicitly. For any x, y ∈ [1/2, 1], there exists ξ ∈ (x, y) such that

log
c (x)

c (y)
= (x − y) (log c)′ (ξ) .

Here the function (log c)′ is bounded on [1/2, 1], because c′ is bounded and c is bounded below.
Therefore, denoting by ξN ∈ [1/2, 1] the value corresponding to x = H and y = ĤN , and using
line (23) in the proof of Theorem 5, we can write

log (1 + VN ) =
(

ĤN − H
)

(

2 log N + (log c)′ (ξN )
)

and thus
(

ĤN − H
)

(2 log N) = log (1 + VN ) − log (1 + VN )

2 log N + (log c)′ (ξN )
.

Since
∣

∣(log c)′ (ξN )
∣

∣ is bounded (by a non-random value), by choosing N large enough, an
upper bound for the last fraction above, in absolute value, is 2VN/ log N . Therefore (using
Minkowski’s inequality),

√

E2 = E1/2

[

1|VN |≤1/2

(

Z (1) − 2c
−1/2
2,H N1−H

(

ĤN − H
)

log N
)2
]

≤ E1/2

[

1|VN |≤1/2

(

Z (1) − c
−1/2
2,H N1−H (log (1 + VN ))

)2
]

(27)

+ E1/2

[

1|VN |≤1/2

(

2c
−1/2
2,H N1−HVN/ log N

)2
]

. (28)
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By Theorem 1, the term in line (28) is bounded above by 1/ log2 N , and thus converges
to 0. For the term in line (27), because of the indicator 1|VN |≤1/2, we use the fact that when
|x| ≤ 1/2, we have |x − log (1 + x)| ≤ x2. Thus this line is bounded above by

E1/2

[

1|VN |≤1/2

(

Z (1) − c
−1/2
2,H N1−HVN

)2
]

(29)

+ E1/2

[

1|VN |≤1/2

(

c
−1/2
2,H N1−H |VN |2

)2
]

. (30)

The term in line (29) converges to 0 by Theorem 3. Finally, by Theorem 1 again, and the
earlier statement about higher powers of random variables with finite chaos expansions, the
term in line (30) is of order N2H−2, and therefore converges to 0 as well. This proves that E2

converges to 0, finishing the proof of the theorem.

9.6 Proof of Theorem 7

It is sufficient to prove that

lim
N→∞

E
[∣

∣

∣

(

N1−ĤN − N1−H
)(

ĤN − H
)

log N
∣

∣

∣

]

= 0.

We decompose the probability space depending on whether ĤN is far or not from its mean.
For a fixed value ε > 0 it is convenient to define the event

D =
{

ĤN > ε + 2H − 1
}

.

We have

E
[∣

∣

∣

(

N1−ĤN − N1−H
)(

ĤN − H
)

log N
∣

∣

∣

]

=

= E
[

1D

∣

∣

∣

(

N1−ĤN − N1−H
)(

ĤN − H
)

log N
∣

∣

∣

]

+

+ E
[

1Dc

∣

∣

∣

(

N1−ĤN − N1−H
)(

ĤN − H
)

log N
∣

∣

∣

]

:= A + B.

Proof.

Term A :
Introduce the notation x = max

(

1 − H, 1 − ĤN

)

and y = min
(

1 − H, 1 − ĤN

)

.

∣

∣

∣
N1−ĤN − N1−H

∣

∣

∣
= ex log N − ey log N = ey log N

(

e(x−y) log N − 1
)

≤ Ny(log N)(x − y)Nx−y = 2 log NNx
∣

∣

∣
H − ĤN

∣

∣

∣

= log NNx
∣

∣

∣
H − ĤN

∣

∣

∣
.
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Thus,

A ≤ E

[

1DNx
∣

∣

∣H − ĤN

∣

∣

∣

2
log2 N

]

= E

[

Nx−(2−2H)1DN2−2H
∣

∣

∣
H − ĤN

∣

∣

∣

2
log2 N

]

Now, choose ε ∈ (0, 1−H). In this case, if ω ∈ D and x = 1−H, we get x− (2− 2H) =
−x < −ε. On the other hand, for ω ∈ D and x = 1 − ĤN we get x − (2 − 2H) =
2 − 2ĤN − (2 − 2H) < −ε. In conclusion, on D, x − (2 − 2H) < −ε which implies
immediately

A ≤ N−εE

[

N2−2H
∣

∣

∣
ĤN − H

∣

∣

∣

2
log2 N

]

.

and since the last expectation is bounded

lim
N→∞

A = 0.

Term B :
Now, let ω ∈ Dc then H − ĤN > 1 − H − ε. Since ε < 1 − H it implies H > ĤN .

Consequently, it is not sufficient to bound
∣

∣

∣N1−ĤN − N1−H
∣

∣

∣ above by N1−ĤN . In the

same fashion we bound
∣

∣

∣Ĥ − H
∣

∣

∣ above by H. Using Hölder’s inequality with powers 1
4

and 3
4

B ≤ H log NE
[

1DcN1−ĤN

]

≤ H log N [P (Dc)]3/4
(

E
[

N (1−ĤN )4
])1/4

.

By Chebyshev’s inequality, we have

P3/4 [Dc] ≤
E3/4

[

∣

∣

∣H − Ĥ
∣

∣

∣

2
]

(1 − H − ε)3/2
≤ cN−3(2−2H)/4 (31)

for some constant c depending only H. Dealing with the other term in the upper bound
for B is a little less obvious. We must return to the definition of Ĥ. We have

1 + VN = N2(H−Ĥ) = N4(H−Ĥ) = N4(1−Ĥ)N−4(1−H).

Therefore,

E1/4
[

N(1−Ĥ)4
]

≤ N1−HE1/(4) [1 + VN ] ≤ 2N1−H .

Finally, we get
B ≤ 2Hc (log N)N−(1−H).

Finally, B goes to 0 as N → ∞. This finishes the proof of the theorem.
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