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Mathematical description of bacterial traveling

pulses

Nikolaos Bournaveas ∗ , Axel Buguin † , Vincent Calvez ‡ ,

Benôıt Perthame § , Jonathan Saragosti † , Pascal Silberzan †

Abstract

The Keller-Segel system has been widely proposed as a model for
bacterial waves driven by chemotactic processes. Current experiments
on E. coli have shown precise structure of traveling pulses. We present
here an alternative mathematical description of traveling pulses at a
macroscopic scale. This modeling task is complemented with numeri-
cal simulations in accordance with the experimental observations. Our
model is derived from an accurate kinetic description of the meso-
scopic run-and-tumble process performed by bacteria. This model can
account for recent experimental observations with E. coli. Qualita-
tive agreements include the asymmetry of the pulse and transition in
the collective behaviour (clustered motion versus dispersion). In ad-
dition we can capture quantitatively the main characteristics of the
pulse such as the speed and the relative size of tails. This work opens
several experimental and theoretical perspectives. Coefficients at the
macroscopic level are derived from considerations at the cellular scale.
For instance the stiffness of the signal integration process turns out to
have a strong effect on collective motion. Furthermore the bottom-up
scaling allows to perform preliminary mathematical analysis and write
efficient numerical schemes. This model is intended as a predictive tool
for the investigation of bacterial collective motion.
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1 Introduction

Since Adler’s seminal paper [1], several groups have reported the forma-
tion and the propagation of concentration waves in bacteria suspensions
[8, 32]. Typically, a suspension of swimming bacteria such as E. coli self-
concentrates in regions where the environment is slightly different such as
the entry ports of the chamber (more exposed to oxygen) or regions of dif-
ferent temperatures. After their formation, these high concentration regions
propagate along the channel, within the suspension. It is commonly admit-
ted that chemotaxis (motion of cells directed by a chemical signal) is one of
the key ingredients triggering the formation of these pulses. We refer to [38]
for a complete review of experimental assays and mathematical approaches
to model these issues and to [3] for all biological aspects of E. coli.

Our goal is to derive a macroscopic model for chemotactic pulses based
on a mesoscopic underlying description (made of kinetic theory adapted
to the specific run-and-tumble process that bacteria undergo [2, 31]). We
base our approach on recent experimental evidence for traveling pulses (see
Fig. 1). These traveling pulses possess the following features which we
are able to recover numerically: constant speed, constant amount of cells,
short timescale (cell division being negligible), and strong asymmetry in the
profile.

We describe as usual the population of bacteria by its density ρ(t, x)
(at time t > 0 and position x ∈ R). We restrict our attention to the one-
dimensional case due to the specific geometry of the channels. The cell den-
sity follows a drift-diffusion equation, combining brownian diffusion together
with directed fluxes being the chemotactic contributions. This is coupled
to reaction-diffusion equations driving the external chemical concentrations.
In this paper we consider the influence of two chemical species, namely the
chemoattractant signal S(t, x), and the nutrient N(t, x). Although this is a
very general framework, it has been shown in close but different conditions
that glycine can play the role of the chemoattractant [35]. Similarly, glucose
is presumed to be the nutrient. The exact nature of the chemical species
has very little influence on our modeling process. In fact there is no need
to know precisely the mechanisms of signal integration at this stage. The
model reads as follows:





∂tρ = Dρ∆ρ−∇ · (ρuS + ρuN ) ,

∂tS = DS∆S − αS + βρ ,

∂tN = DN∆N − γρN .

(1.1)
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The chemoattractant is assumed to be secreted by the bacteria (at a
constant rate β), and is naturally degraded at rate α, whereas the nutrient
is consumed at rate γ. Both chemical species diffuse with possibly different
molecular diffusion coefficients. We assume a linear integration of the signal
at the microscopic scale, resulting in a summation of two independent con-
tributions for the directed part of the motion expressed by the fluxes uS and
uN . We expect that the flux uS will contribute to gather the cell density and
create a pulse. The flux uN will be responsible for the motion of this pulse
towards higher nutrient levels. Several systems of this type have been pro-
posed and the upmost classical is the so-called Keller-Segel equation [22, 28]
for which fluxes are proportional to the gradient of the chemical:

uS = χ(S)∇S , uN = χ(N)∇N .

In the absence of nutrient, such systems enhance a positive feedback which
counteracts dispersion of individuals and may eventually lead to aggregation.
There is a large amount of literature dealing with this subtle mathematical
phenomenon (see [34, 17] and references therein). Self-induced chemotaxis
following the Keller-Segel model has been shown successful for modeling self-
organization of various cell populations undergoing aggregation (slime mold
amoebae, bacterial colony,. . . ). In the absence of a chemoattractant S being
produced internally, this model can be used to describe traveling pulses.
However it is required that the chemosensitivity function χ(N) is singular
at N = 0 [22]. Following the work of Nagai and Ikeda [30], Horstmann and
Stevens have constructed a class of such chemotaxis problems which admit
traveling pulses solutions [19], assuming the consumption of the (nutrient)
signal together with a singular chemosensitivity. We also refer to [38] for a
presentation of various contributions to this problem, and to [25] for recent
developments concerning the stability of traveling waves in some parabolic-
hyperbolic chemotaxis system. In addition, the contribution of cell division
to the dynamics of Keller-Segel systems (and specially traveling waves) has
been considered by many authors (see [24, 15, 29] and the references therein).
However these constraints (including singular chemosensitivity or growth
terms) seem unreasonable in view of the experimental setting we aim at
describing.

An extension of the Keller-Segel model was also proposed in seminal
paper by Brenner et al. [6] for the self-organization of E. coli. Production
of the chemoattractant by the bacteria triggers consumption of an exter-
nal field (namely the succinate). Their objective is to accurately describe
aggregation of bacteria along rings or spots, as observed in earlier exper-
iments by Budrene and Berg [8] that were performed over the surface of
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gels. One phase of the analysis consists in resolving a traveling ansatz for
the motion of those bacterial rings. However the simple scenario they first
adopt cannot resolve the propagation of traveling pulses. The authors give
subsequently two possible directions of modeling: either observed traveling
rings are transient, or they result from a switch in metabolism far behind
the front. The experimental setting we are based on is quite different from
Budrene and Berg’s experiments (in particular regarding the dynamics): for
the experiments discussed in the present paper, the bacteria swim in a liquid
medium and not on agar plates. Therefore we will not follow [6].

On the other hand Salman et al. [35] consider a very similar experimental
setting. However the model they introduce to account for their observations
is not expected to exhibit pulse waves (although the mathematical analysis
would be more complex in its entire form than in [19]). Actually Fig. 5
in [35] is not compatible with a traveling pulse ansatz (because the pulse
amplitude is increasing for the time of numerical experiments).

Traveling bands have also been reported in other cell species, and espe-
cially the slime mold Dictyostelium discoideum [39]. Notice that the original
model by Keller and Segel [22] was indeed motivated by the observation of
traveling pulses in Dictyostelium population under starvation. This question
has been developped more recently by Höfer et al. [18] using the Keller-
Segel model, as well as Dolak and Schmeiser [11] and Erban and Othmer
[13] using kinetic equations for chemotaxis. According to these models, the
propagating pulse waves of chemoattractant (namely cAMP) are sustained
by an excitable medium. The cells respond chemotactically to these waves
by moving up to the gradient of cAMP. Great efforts have been successfully
performed to resolve the ”back-of-the-wave paradox”: the polarized cells are
supposed not to turn back when the front passed away (this would result
in a net motion outwards the pulsatile centers of cAMP). Although we are
also focusing on the description of pulse waves, the medium is not expected
to be excitable and the bacteria are not polarized. Nevertheless, we will re-
tain from these approaches the kinetic description originally due to Alt and
coauthors [2, 31]. This mathematical framework is well-suited for describing
bacterial motion following a microscopic run-and-tumble process.

A new class of models for the collective motion of bacteria has emerged
recently. It differs significantly from the classical Keller-Segel model. Rather
than following intuitive rules (or first order approximations), the chemotac-
tic fluxes are derived analytically from a mesoscopic description of the run-
and-tumble dynamics at the individual level and possibly internal molecular
pathways, see [16, 10, 14, 12, 9, 34]. The scaling limit which links the
macroscopic flux uS (or similarly uN ) to the kinetic description is now well
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Figure 1: Experimental evidence for pulses of Escherichia coli traveling across a
channel. The propagation speed is constant and the shape of the pulse front is
remarkably well conserved. Observe that the profile is clearly asymmetric, being
stiffer at the back of the front (see also Fig. 2). Cell division may not play a crucial
role regarding the short time scale.

understood since the pioneering works [2, 31]. Here we propose to follow the
analysis in [11], which is based on the temporal response of bacteria [7, 36],
denoted by φδ in Appendix (A.8). Namely we write these fluxes as:

uS = χSJφ (−ǫ∂tS, |∇S|)
∇S

|∇S|
, (1.2)

where ǫ is a (small) parameter issued from the microscopic description of
motion. Namely ǫ is the ratio between the pulse speed and the speed of
individual cells (they differ by one order of magnitude at least according
to experimental measurements). The function Jφ contains the microscopic
features that stem from the precise response of a bacterium to a change
in the environment (see the Appendix (A.8)). It mainly results from the
so-called ’response function’ at the kinetic level that describe how a single
bacterium responds to a change in the concentration of the chemoattractant
S in its surrounding environment. We give below analytical and numerical
evidence that traveling pulses exist following such a modeling framework.
We also investigate the characteristic features of those traveling pulses at
the light of experimental observations.

The experiments presented in the present paper will be described in
more details in a subsequent paper. Briefly, in a setup placed under a low
magnification fluorescence microscope maintained at 30 ◦C, we fill polymer
microchannels – section: ca. 500µm× 100µm, length ca. 1cm – with a sus-
pension of fluorescent E. coli bacteria – strain RP437 considered wild-type
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for motility and chemotaxis, transformed with a pZE1R-gfp plasmid allow-
ing quantitative measurement of bacteria concentration inside the channel.
We concentrate the cells at the extremity of the channel and monitor the
progression of the subsequent concentration wave along the channel. In par-
ticular, we dynamically extract the shape of the front and its velocity (see
Fig. 1).

Coupling the model (1.1) with the formula (1.2) results in a parabolic
type partial differential equation for the bacterial density ρ, such as in the
Keller-Segel system. It significantly differs from it however, as it derives
in our case from a kinetic description of motion. Especially the flux uS

is uniformly bounded, whereas the chemotactic flux in Keller-Segel model
generally becomes unbounded when aggregative instability occurs, which is
a strong obstacle to the existence of traveling pulses.

2 Traveling pulses under competing fluxes

2.1 Stiff response function: pulse wave analytical solutions

It is usually impossible to compute explicitely traveling pulse solutions for
general systems such as (1.1). To obtain qualitative properties is also a
difficult problem: we refer to [30, 19, 29] for examples of rigorous results.
Here, we are able to handle analytical computations in the limiting case of
a stiff signal response function, when the fluxes are given by the expression
(see the Appendix (A.8)):

uS = χS

(
1 −

(
ǫ∂tS

∂xS

)2
)

+

sign (∂xS) , (2.1)

uN = χN

(
1 −

(
ǫ∂tN

∂xN

)2
)

+

sign (∂xN) . (2.2)

In other words, a specific expression for Jφ in (1.2) is considered in this
section. It eventually reduces to uS = χSsign (∂xS) as ǫ→ 0.

We seek traveling pulses, in other words particular solutions of the form
ρ(t, x) = ρ̃(x − σt), S(t, x) = S̃(x − σt), N(t, x) = Ñ(x − σt) where σ
denotes the speed of the wave. This reduces (1.1) to a new system with a
single variable z = x− σt:





−σρ′(z) = Dρρ
′′(z) − (ρ(z)uS(z) + ρ(z)uN (z))′ ,

−σS′(z) = DSS
′′(z) − αS(z) + βρ(z) ,

−σN ′(z) = DNN
′′(z) − γρ(z)N(z) .

(2.3)
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We prescribe the following conditions at infinity:

ρ(±∞) = 0 , S(±∞) = 0 , N(±∞) = N± . (2.4)

We impose σ > 0 without loss of generality. This means that the fresh
nutrient is located on the right side, and thus we look for an increasing
nutrient concentration N ′(z) > 0. We expect that the chemoattractant
profile exhibits a maximum coinciding with the cell density peak (say at
z = 0), and we look for a solution where S′(z) changes sign only once at
z = 0. Then, the fluxes (2.1)-(2.2) express under the traveling wave ansatz
as:

uS(z) = −χS

(
1 − (ǫσ)2

)
+

sign (z) ,

uN (z) = χN

(
1 − (ǫσ)2

)
+
.

Integrating once the cell density equation we obtain,

Dρρ
′(z) = ρ(z) (uS(z) + uN (z) − σ) .

The flux uS takes two values (with a jump at z = 0), whereas the flux uN

is constant. Therefore the cell density is a combination of two exponential
distributions:

ρ(z) =





ρ0 exp (λ−z) , λ− =
−σ + (χS + χN )

(
1 − (ǫσ)2

)

Dρ
> 0 , if z < 0 ,

ρ0 exp (λ+z) , λ+ =
−σ + (−χS + χN )

(
1 − (ǫσ)2

)

Dρ
< 0 , if z > 0 .

This combination of two exponentials perfectly match with the numerical
simulations (Fig. 2).

2.2 Formula for the traveling speed

To close the analysis it remains to derive the two unknowns: the maximum
cell density ρ0 and the speed σ, given the mass and the constraint that ∂zS
vanishes at z = 0 (because S(z) reaches a maximum).

On the one hand, the total mass of bacteria is given by M = ρ0(1/λ
− +

1/|λ+|). On the other hand the chemotactic field is given by S(z) = (K ∗
βρ)(z), where the fudamental solution of the equation for S(z) is

K(z) = a1 exp(−a2|z|−a3z) , a1 =
1

2a2DS
, a2 =

√
a2

3 +
α

DS
, a3 =

σ

2DS
.
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Figure 2: (Top) Experimental evidence of a traveling pulse: time snapshots of the
full experiments described in Fig. 1. The density profile is clearly asymmetric and
preserved along the time course of the experiment. Main contribution to growth
takes place at the back of the pulse. This suggests that nutrients are not totally
consumed by the pulse. The number of bacteria in the pulse is approximately
constant during the pulse course. (Bottom) A generic density profile obtained
with the model (1.1) (see also Fig. 3). The bacteria (plain line) are attracted by
a nutrient (dashed line) which is consumed. They secrete in addition their own
chemical signal (dash-dotted line) which is concentrated at the peak location.
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To match the transition in monotonicity condition, the chemical signal
should satisfy S′(0) = 0, that is (K ′ ∗ βρ)(0) = 0, which leads to

0 = ρ0

∫ 0

−∞
a1(a2 + a3) exp(a2z + a3z) exp(λ−z) dz

+ρ0

∫ ∞

0
a1(−a2 + a3) exp(−a2z + a3z) exp(λ+z) dz

0 = a1

(
a2 + a3

a2 + a3 + λ−
−

−a2 + a3

−a2 + a3 + λ+

)
.

This leads to the following equation that we shall invert to obtain the front
speed:

λ−

|λ+|
=

a2 + a3

a2 − a3
,

−σ + (χS + χN )
(
1 − (ǫσ)2

)

σ + (χS − χN )
(
1 − (ǫσ)2

) =

√
4DSα+ σ2 + σ√
4DSα+ σ2 − σ

. (2.5)

From this relation we infer:

χN −
σ

1 − (ǫσ)2
= χS

σ√
4DSα+ σ2

. (2.6)

We deduce from monotonicity arguments that there is a unique possible
traveling speed σ ∈ (0, ǫ−1).

According to (2.6) the expected pulse speed does not depend upon the
total number of cells when the response function is stiff. This can be related
to a recent work by Mittal et al. [27] where the authors observe experimen-
tally such a fact in a different context (see Section 2.3 below). In the case of
a smooth tumbling kernel in (A.8), our model would predict a dependency
of the speed upon the quantity of cells. But this analysis suggests that the
number of cells is presumably not a sensitive biophysical parameter.

Observe that the speed does not depend on the bacterial diffusion co-
efficient either. Therefore we expect to get the same formula if we follow
the hyperbolic approach of [11] in order to derive a macroscopic model.
Indeed the main difference at the macroscopic level lies in the diffusion co-
efficient which is very small in the hyperbolic system. Nevertheless, the
density distribution would be very different, being much more confined in
the hyperbolic system. Furthermore, scaling back the system to its original
variables, we would obtain a pulse speed being comparable to the individual
speed of bacteria (see Appendix). This is clearly not the case.
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2.3 Cluster formation

Stiff response function.

Mittal et al. have presented remarkable experiments where bacteria E. coli

self-organize in coherent aggregated structures due to chemotaxis [27]. The
cluster diameters are shown essentially not to depend on the quantity of
cells being trapped. This experimental observation can be recovered from
direct numerical simulations of random walks [21].

We can recover this feature in our context using a model similar to (1.1)
derived from a kinetic description. Following Section 2.1 we compute the
solutions of (2.3) in the absence of nutrient (assuming again a stiff response
function). Observe that stationary solutions correspond here to zero-speed
traveling pulses. The problem is reduced to finding solutions of the following
system:

{
−Dρρ

′(x) + ρ(x)uS(x) = 0 , uS(x) = χSsign (S′(x)) ,

−DSS
′′(x) + αS(x) = βρ(x) .

(2.7)

We assume again that sign (S′(x)) = −sign (x). This simply leads to,

ρ(x) = ρ0 exp(−λ|x|) , where λ =
χS

Dρ
.

This is compatible with the postulate that S(x) changes sign only once, at
x = 0 (the source βρ(x) being even). The typical size of the clusters is of
the order λ−1, which does not depend on the total number of cells. This
is in good agreement with experiments exhibited in [27]. The fact that we
can recover them from numerical simulations indicates that these stationary
states are expected to be stable.

General response function.

Cluster formation provides a good framework for investigating the situation
where we relax the stiffness assumption of the response function φδ. Below
φδ is characterized by the stiffness parameter δ through φ′δ(0) = −3/δ (see
Appendix). Consider the caricatural model (in nondimensional form):





∂tρ = ∂2
xxρ− ∂x (ρuS) , uS = −

1

2

∫

v∈(−1,1))
vφδ(ǫ∂tS + v∂xS) dv ,

−∂2
xxS + αS = ρ .

(2.8)
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We rewrite α = l−2,where l denotes the range of action of the chemical
signal. We investigate the linear stability of the constant stationary state
(ρ, S) = (〈ρ〉, α−1〈ρ〉) where 〈ρ〉 is the meanvalue over the domain [0, L]. We
introduce the deviation to the stationary state: n = ρ− ρ, c = S −S. Then
the linearized system writes close to (ρ, S):





∂tn = ∂2
xxn− ∂x (〈ρ〉ũS) , ũS = −

1

2

∫

v∈(−1,1)
v2φ′δ(0)∂xc dv =

∂xc

δ
,

−∂2
xxc+ αc = n .

(2.9)
The associated eigenvalue problem reduces to the following dispersion rela-
tion for ξ = 2πk/L,

λ(k) = −ξ2 +
M

δL

ξ2

α+ ξ2
.

Due to the conservation of mass, we shall only consider k ≥ 1. The eigen-
value becomes positive if there exists k such that

M

δL
> α+ ξ2 , or equivalently

M

2πδ
>

L

2πl2
+ k2 2π

L
.

Therefore the constant solution is linearly stable if the following condition
is fulfilled:

ML

2πδ
<

1

2π

(
L

l

)2

+ 2π .

The picture is not complete as we have not investigated the stability of
the non-trivial steady-state. However this indicates that the mass and the
stiffness parameter δ play important roles regarding cluster formation.

3 Numerical insights

We complete the theoretical analysis with some numerical simulations ex-
hibiting propagation of pulses (or not) in regimes where analytical solutions
are not available (see Fig. 3).

We opt for the following initial conditions in our numerical experiments:
a decreasing exponential function centered on the left side of the channel for
the cell density, no chemical signal, and a constant level of nutriment N0.

Parameters are issued from literature (see [35] and references therein)
and from the mesoscopic derivation of the model (see Appendix ’Parameters
and scales’). Adimensionalizing time and space yields the time and space
scales being respectively 10s and 200µm, such that the total duration of the
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Figure 3: (Top) Experimental results under abundant nutrient conditions: M9
minimal medium supplemented with 4% glucose and 1% casamino acids (both ten
times more concentrated than in the case of Fig. 5). (Bottom) Numerical simula-
tions of system (1.1) in the case of unlimited nutrient, and a stiff response function
φδ. We observe the propagation of a traveling pulse with constant speed and asym-
metric profile. The value of the speed and the features of the profile (combination of
two exponential tails) perfectly match the traveling wave ansatz analysis of Section
2. We use a semi-implicit upwind finite-difference scheme performing a half-point
discretization (in space) of the time derivative of chemical species when comput-
ing the approximate fluxes. Specific parameters are: δ = 10−3 and N0 = 10 (see
Section 3 for the other parameters).
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Figure 4: (Top) In this experiment, bacteria are cultivated at a concentration of
5.108 cells/ml in the same rich medium as in Fig. 3. After, they are resuspended
in LB nutrient to an OD600 of 3.108 cells/ml. We interpret the absence of pulse
propagation as following. Bacteria are adapted to a rich environmnent before re-
suspension. Thus they are not able to sense small chemical fluctuations necessary
for clustering to occur when evolving in a relatively poor medium. (Bottom) In-
fluence of the internal processes stiffness. When the individual response function
φδ is not stiff, the effect of dispersion is too strong and no pulse wave propagates,
as opposed to Fig. 3. Specific parameters are: δ = 10−1 and N0 = 10 (see Section
3 for the other parameters). In mathematical models of bacterial chemotaxis, it is
commonly accepted that adaptation of cells to large chemoattractant changes acts
through the measurement of relative time variations: S−1DS/Dt (see Appendix).
In our context, this is to say that the stiffness parameter δ is proportional to the
chemical level S. Hence after having dramatically changed the environment and
before bacteria adapt themselves, we can consider that the response function φδ is
not stiff.

13



Figure 5: At low level of nutrient the cell population splits into two subpopula-
tions. A fraction remains trapped at the boundary (as a stationary profile) and a
fraction travels accross the channel with constant speed (see also Fig. 6). Specific
parameters are: δ = 10−3 and N0 = 1 (see Section 3 for the other parameters).

Figure 6: (Left) Respective profiles for the bacterial density (plain line), the chem-
ical concentration (dash-dotted line) and the nutrient concentration (dashed line)
in the limited nutrient/stiff response function configuration described in Fig. 5
(δ = 10−3 and N0 = 1). (Right) The net chemoattractive flux uS + uN is plotted.
It clearly shows a transition between the traveling wave (positive flux) and the
equilibrium (negative flux) located at the left boundary.
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computation is approx. 1h, and the length of the computational channel is
4cm. We fix the following parameters, Dρ = 1, χS = χN = 1, for the cell
density equation; DS = 2, α = 0.05 for the chemical concentration [35]. We
assume in addition DN = 0 for the sake of simplicity: the nutriment is not
required to act as a non-local signal (and we expect this coefficient to have
very little influence on the dynamics). By adimensionalizing further the sys-
tem, we may choose M = 1, γ = β = 1 without loss of generality. Finally the
signal response function φδ is chosen as follows: φδ(Y ) = −2/π arctan(Y/δ),
with a stiffness factor δ. We also keep the memory of the drift-diffusion limit
performed in the Appendix, by setting ǫ = 0.1. The only free parameters
subject to variations are N0 and δ.

We can draw the following main conclusions from numerical experiments.

Influence of the stiffness of the internal response function (Fig. 4).

When the stiffness assumption for the internal response function is relaxed,
no pulse propagation is observed numerically. Deriving the exact conditions
that guarantee the propagation of a traveling pulse seems to be a challeng-
ing task. However we give below some heuristics for the particular choice
φδ(Y ) = φ(Y/δ), δ being a stiffness factor.

Although the chemotactic equation of (1.1) is significantly different from
the Keller-Segel model, they coincide as far as the stability of the homoge-
neous (unclustered) configuration is under question. We learn from Section
2.3 that the stiffness parameter δ plays an important role in the stability
of the homogeneous solution. It is well known that the Keller-Segel system
is subject to a bifurcation phenomenon due to its quadratic, non-local non-
linearity. This is well understood in two dimensions of space for instance
[34, 17]. If some nondimensional parameter is small enough, diffusion dom-
inates and no self-organization arises in the system. On the contrary, self-
attraction between cells overcomes diffusion when this parameter is large,
and yields the formation of a singularity (i.e. aggregation point) [34].

Clearly the same kind of mechanism acts here (see Fig. 3 as opposed to
Fig. 4). However there is no mathematical argumentation to sustain those
numerical and intuitive evidence yet.

Limited versus non limited nutrient (Fig. 5).

When the nutrient is limited in the experimental device (and conditions for
a pulse to travel are fulfilled) then only part of the bacterial population
leaves the initial bump. The solution seems to be the superposition of a
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traveling pulse and a stationary state (such as in Section 2.3 in the absence
of nutrient). Solitary modes with smaller amplitudes may appear at the
back of the leading one (not shown). To predict which fraction of mass
starts traveling turns out to be a difficult question.

4 Conclusions and perspectives

We present in this article a simple mathematical description for the collective
motion of bacterial pulses with constant speed and asymmetric profile in a
channel. The nature of this model significantly differs from the classical
Keller-Segel system although it belongs to the same class of drift-diffusion
equations. Our model is formally derived from a mesoscopic description of
the bacterial density, which allows for a more accurate expression of the
cell flux. We are able to compute analytically the speed of the pulse and
its profile in the limit of a stiff response function φδ. The theoretical pulse
speed has some striking features: it does not depend on the total number of
bacteria, neither on the bacterial diffusion coefficient. This can be related
to experimental evidence by Mittal et al. [27] where bacteria self-organize
into size-independent clusters. Our approach can be summarized as follows:
a nutrient is added to pull chemotactic clusters of cells. This creates an
imbalance in the fluxes which induces the asymmetry of the traveling profile.

The next step would be to work at the kinetic level. Much has to be done
for the design of efficient kinetic schemes for the collective motion of cells
subject to chemotactic interactions. It would also be feasible to point out
the dependency of the tumbling operator upon some internal variable (e.g.
the cytoplasmic concentration of protein CheY). This approach carries out
the coupling between an internal protein network and the external chemoat-
tractant signals [37, 21]. Kinetic models are also relevant for describing this
microscopic mechanism [12, 5] (the network is basically transported along
the cells’ trajectories). However the increase in complexity forces to reduce
the size of the network, and to use rather caricatural systems mimicking
high sensitivity to small temporal variations (excitation) and adaptation to
constant levels of the chemoattractant.

Assuming independent integration of the chemical signals constitutes a
strong hypothesis of our model. There exist two main membranous receptors
triggering chemotaxis, namely Tar and Tsr. As the signals which act in
the present experiments are not perfectly determined, we have considered
the simplest configuration. To further analyse the interaction between the
external signals, one should include more in-depth biological description of
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the competition for a single class of receptor [23].

A Appendix: Kinetic models for chemotaxis and

their drift-diffusion limit

Kinetic framework.

The classical theory of drift-diffusion limit for kinetic modeling of bacterial
chemotaxis is a way to compute the macroscopic fluxes uS , uN in (1.1)
[16]. Because we assume a linear integration of the different signals for each
individual, we restrict ourselves to the action of a single chemical species S.

The kinetic framework is as follows. A population of bacteria can be
described at the mesoscopic scale by its local density f(t, x, v) of cells located
at the position x and with velocity v at time t. The kinetic equation proposed
in the pioneering works of Alt, Dunbar and Othmer [2, 31] combines free
runs at speed v, and tumbling events changing velocity from v′ (anterior) to
v (posterior), resp. according to the Boltzman type equation:

∂tf + v · ∇xf =

∫

v′∈V

T [S](t, x, v′ → v)f(t, x, v′) dv′

−

∫

v′∈V

T [S](t, x, v → v′)f(t, x, v) dv′ . (A.1)

The velocity space V is bounded and symmetric, usually V = B(0, c) or
V = S(0, c) (bacteria having presumably constant speed). As we deal with
the idealization of a two-dimensional phenomenon in one dimension of space,
we shall perform our computations for V = [−c, c], but the results contained
in this paper do not depend on this particular choice. Kinetic models of
chemotaxis have been studied recently in [20, 4, 5].

The turning kernel T describes the frequency of changing trajectories,
from v′ to v. It expresses the way external chemicals may influence cell tra-
jectories. A single bacterium is able to sense time variations of a chemical
along its trajectory (through a time convolution whose kernel is well de-
scribed since the experiments performed by Segall et al. [36]). For the sake
of simplicity we neglect any memory effect, and we assume that a cell is able
of sensing the variation of the chemical concentration along its trajectory.
Following [11], this is to say that T is given by the expression

T [S](v′ → v) = ψ

(
DS

Dt

)
= ψ

(
∂tS + v′ · ∇xS

)
. (A.2)
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Figure 7: Tumbling frequencies (at the mesoscopic scale) obtained from the nu-
merical experiment described in Fig. 5: the tumbling probability is higher when
moving to the left (upper dashed line) at the back of the pulse, whereas the tum-
bling probability when moving to the right is lower (upper plain line), resulting in
a net flux towards the right, as the pulse travels (see Fig. 6). Notice that these two
curves are not symmetric w.r.t. to the basal rate 1, but the symmetry defect is of
lower order (10−3). The peak location is also shown for the sake of completeness
(lower plain line).

The signal integration function ψ is non-negative and decreasing, expressing
that cells are less likely to tumble (thus perform longer runs) when the
external chemical signal increases (see Fig. 7 for such a tumbling kernel
in the context of the present application). It is expected to have a stiff
transition at 0, when the directional time derivative of the signal changes
sign [36, 37, 21]. Our study in Section 3 boils down to the influence of
the stiffness, by introducing a one parameter family of functions ψδ(Y ) =
ψ(Y/δ).

Parameters and scales.

The main parameters of the model are the total number of bacteria M which
is conserved, the maximum speed of a single bacterium c = max{|v|; v ∈ V },
and the mean turning frequency λ0 = ψ0c

d (where d denotes the dimension
of space according to our discussion above). The main unknown is the speed
of the traveling pulse, denoted by σ. We rescale the kinetic model (A.1) into
a nondimensional form as follows:

t = t̃ t̄ , x = x̃ x̄ , v = ṽ c , V = cṼ , T = T̃ ψ0 .
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We aim at describing traveling pulses in the regime x̄ = σt̄. Experimental
evidence show that the bulk velocity σ is much lower than the speed of a
single bacterium c. This motivates to introduce the ratio ǫ = σ/c. According
to experimental measurements, we have ǫ ≈ 0.1. The kinetic equation writes:

ǫ∂t̃f̃ + ṽ · ∇x̃f̃ =
λ0x̄

c

{∫

ṽ′∈Ṽ

ψ̃
(
ǫ∂t̃S̃ + ṽ′ · ∇x̃S̃

)
f̃(t̃, x̃, ṽ′) dṽ′

−|Ṽ |ψ̃
(
ǫ∂t̃S̃ + ṽ · ∇x̃S̃

)
f̃(t̃, x̃, ṽ)

}
, (A.3)

where ψ̃(z) = ψ(cz/x̄). Following the experimental setting (see Introduc-
tion, Fig. 1 and Fig. 2) and the biological knowledge [3], we choose the
scales x̄ ≈ 200µm, λ0 ≈ 1s−1, and c = 20µm.s−1. Hence λ0x̄/c ≈ 10.
Therefore we rewrite this ratio as:

λ0x̄

c
=
µ

ǫ
,

where the nondimensional coefficient µ is of order 1.

Drift-diffusion limit of kinetic models.

To perform a drift-diffusion limit when ǫ → 0 (see [16, 10, 9, 34], and
[11, 14] for other scaling limits, e.g. hyperbolic), we shall assume that the
variations of ψ around its meanvalue ψ0 are of amplitude ǫ at most. It writes
in the nondimensional version as follows: ψ(Y ) = 1 + ǫφδ(Y ). Hence the
chemotactic contribution is a perturbation of order ǫ of a unbiased process
which is constant in our case because the turning kernel does not depend
on the posterior velocity and the first order contribution is required to be
symmetric with respect to (v′, v). This hypothesis is in agreement with
early biological measurements. It is also relevant from the mathematical
viewpoint as we are looking for a traveling pulse regime where the speed
of the expected pulse is much slower than the speed of a single individual.
This argues in favour of a parabolic scaling as performed in this Appendix.

The rest of this Appendix is devoted to the derivation of the Keller-Segel
type model in one dimension of space:

∂tρ+ ∂x (−Dρ∂xρ+ ρuS) = 0 . (A.4)

Dislike the classical Keller-Segel model (used for instance by Salman et al.
[35]), singularities cannot form (excessively populated aggregates) with the
chemotactic flux uS given in (A.8) below. This is because the latter re-
mains uniformly bounded (see also Mittal et al. [27] where clusters emerge
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which are plateaux and thus not as singular as described for KS system in
a mathematical sense).

Sketch of parabolic derivation. We start from the nondimensional kinetic
equation (A.3):

ǫ∂tf + v · ∇xf =
µ

ǫ

{∫

v′∈V

(
1 + ǫφδ[S](v′)

)
f(t, x, v′) dv′

−|V | (1 + ǫφδ[S](v)) f(t, x, v)} ,

which reads as follows,

ǫ∂tf + v · ∇xf =
µ

ǫ
(ρ(t, x) − |V |f(t, x, v))

+ µ

(∫

v′∈V

φδ[S](v′)f(t, x, v′) dv′ − |V |φδ [S](v)f(t, x, v)

)
. (A.5)

Therefore the dominant contribution in the tumbling operator is a relaxation
towards a uniform distribution in velocity at each position: f(t, x, v) =
ρ(t, x)F (v) as ǫ→ 0, where F (v) = |V |−11{v∈V } . Notice that more involved
velocity profiles can be handled [10, 33], but this is irrelevant in our setting
as the tumbling frequency does not depend on the posterior velocity v.

The space density ρ(t, x) remains to be determined. For this purpose
we first integrate with respect to velocity v and we obtain the equation of
motion for the local density ρ(t, x) =

∫
v∈V

f(t, x, v)dv:

∂tρ+ ∇ · j = 0 , j = ǫ−1

∫

v∈V

vf(t, x, v) dv .

To determine the bacterial flow j we integrate (A.5) against v:

ǫ∂t

(∫

v∈V

vf(t, x, v) dv

)
+ ∇x ·

(∫

v∈V

v ⊗ vf(t, x, v) dv

)

= −µ|V |j − µ|V |

∫

v∈V

vφδ[S](v)f(t, x, v) dv .

We obtain formally, as ǫ→ 0:

j = −∇x

(
ρ(t, x)

1

µd|V |2

∫

v∈V

|v|2 dv

)
− ρ(t, x)

1

|V |

∫

v∈V

vφδ[S](v) dv .

(A.6)
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Finally, the drift-diffusion limit equation (A.4) reads in one dimension of
space:

∂tρ =

(
1

4µ

∫

v∈[−1,1]
|v|2 dv

)
∂2

xxρ+ ∂x

(
ρ

∫

v∈[−1,1]
vφδ (ǫ∂tS + v∂xS)

dv

2

)
.

(A.7)

To sum up, we have derived a macroscopic drift-diffusion equation, where
the bacterial diffusion coefficient and the chemotactic flux are given by:

Dρ =
1

4µ

∫

v∈[−1,1]
|v|2 dv , uS = −

∫

v∈[−1,1]
vφδ (ǫ∂tS + v∂xS)

dv

2
. (A.8)

In the limiting case where the internal response function φδ is bivaluated:
φδ(Y ) = φ01{Y <0} − φ01{Y >0} , the flux rewrites simply as:

uS =
φ0

2

(
1 −

(
ǫ
∂tS

∂xS

)2
)

+

sign (∂xS) .

For the sake of comparison, we highlight the corresponding expressions
which have been obtained by Dolak and Schmeiser. In [11] authors perform
a hyperbolic scaling limit leading to the following chemotactic equation for
the density of bacteria:

∂tρ+ ∇ · (−ǫD∇ρ+ ρUS) = 0 ,

where D is an anisotropic diffusion tensor and the chemotactic flux is given
by:

US =

(
1

A

∫

v∈V

v1
ψ(∂tS + v1∇S|)

dv

)
∇S

|∇S|
,

for some renormalizing factor A. The two approaches do not differ that
much at first glance (especially when ψ is bivaluated). Notice however that
the ”small” ǫ parameter does not appear at the same location: in front of
the diffusion coefficient in the hyperbolic limit and inside the chemotactic
flux in the parabolic limit.
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ics, Birkhäuser Verlag, Basel, 2007.

[35] H. Salman, A. Zilman, C. Loverdo, M. Jeffroy, and A. Libchaber, Soli-

tary modes of bacterial culture in a temperature gradient, Phys. Rev.
Lett. 97 (2006), 118101.

[36] J.E. Segall, S.M. Block and H.C. Berg, Temporal comparisons in bac-

terial chemotaxis, Proc. Natl. Acad. Sci. USA 83 (1986), 8987–8991.

[37] P.A. Spiro, J.S. Parkinson and H.G. Othmer, A model of excitation

and adaptation in bacterial chemotaxis, Proc. Natl. Acad. Sci. USA 94
(1997), 7263–8.

[38] M.J. Tindall, P.K. Maini, S.L. Porter and J.P. Armitage, Overview of

mathematical approaches used to model bacterial chemotaxis II: bacte-

rial populations, Bull Math Biol. 70 (2008), 1570–1607.

[39] C.J. Weijer, Dictyostelium morphogenesis, Curr Opin Genet Dev. 14
(2004), 392–8.

24


