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This paper provides a definition of epistemic stability of sets of strategy profiles, and uses it to characterize variants of curb sets in finite games, including the set of rationalizable strategies and minimal curb sets.

Introduction

In most applications of noncooperative game theory, Nash equilibrium is used as a tool to predict behavior. Under what conditions, if any, is this approach justified?

In his Ph D thesis, Nash (1950) suggested two interpretations of Nash equilibrium, one rationalistic, in which all players are fully rational, know the game, and play it exactly once. In the other, "mass action" interpretation, there is a large population of actors for each player role of the game, and now and then exactly one actor from each player population is drawn at random to play the game in his or her player role, and this is repeated (i.i.d.) indefinitely over time. Whereas the latter interpretation is studied in the literature on evolutionary game theory and social learning, the former -more standard one in economics -is studied in a sizeable literature on epistemic foundations of Nash equilibrium. It is by now well-known from this literature that players' rationality and beliefs or knowledge about the game and each others' rationality in general do not imply that they necessarily play a Nash equilibrium or even that their conjectures about each others' actions form a Nash equilibrium; see [START_REF] Bernheim | Rationalizable strategic behavior[END_REF], [START_REF] Pearce | Rationalizable strategic behavior and the problem of perfection[END_REF], [START_REF] Aumann | Epistemic conditions for Nash equilibrium[END_REF].

The problem is not only a matter of coordination of beliefs (conjectures or expectations), as in a game with multiple equilibria. It also concerns the fact that, in Nash equilibrium, each player's belief is supposed to correspond to specific randomizations over the others' strategies. In particular, given her beliefs, a player may have multiple pure strategies that maximize her expected payoff. Hence, any randomization over these is a best reply. Yet in Nash equilibrium, each player's belief singles out those randomizations over the others' pure best replies that serve to keep their opponents indifferent across their mixed-strategy supports. In addition, each player's belief concerning the behavior of others assigns positive probability only to best replies; players are not allowed to entertain any doubt about the rationality of their fellow players.

Our aim is to formalize a notion of epistemic stability that relaxes these requirements. In order to achieve this, we have to move away from point-valued to set-valued solutions. Roughly speaking, we define a set X of pure strategy profiles as epistemically stable if there exists a corresponding set Y of profiles of "player types" such that:

(i) The strategies in X coincide with the best replies of the player types in Y .

(ii) The set Y contains any player type that believes with sufficient probability that the others are of types in Y and choose best replies. While (ii) specifies a stable set of beliefs, (i) specifies a stable set of strategies in response to it.

Any strict Nash equilibrium, viewed as a singleton product set, is epistemically stable in this sense. Each player is then believed by the others to choose her unique best reply to the others' actions. To deviate to any other action would be strictly worse, and remains so, as long as the player is sufficiently sure that the others stick to their actions. By contrast, non-strict Nash equilibria by definition have alternative best replies and are consequently not epistemically stable: players who strive to maximize their expected payoffs might well choose such alternative best replies even if they are sure that others are playing their equilibrium strategies. As will be shown below, every epistemically stable set contains at least one strategically stable set.

The notion of persistent retracts [START_REF] Kalai | Persistent equilibria in strategic games[END_REF]) goes part of the way towards epistemic stability. These are product sets requiring the presence of at least one best reply to arbitrary beliefs close to the set. In other words, they are robust to small belief perturbations, but admit alternative best replies outside the set.

Full epistemic stability is achieved by variants of curb sets. A curb setmnemonic for 'closed under rational behavior' -is a Cartesian product of purestrategy sets, one for each player, that includes all best replies to all probability distributions over the strategies in the set. 1 Hence, if a player believes that her opponents stick to strategies from their components of a curb set, then her component contains all her best replies, so she'd better stick to her strategies as well.

A Cartesian product of pure-strategy sets is fixed under rational behavior (furb) if each player's component not only contains, but is identical with the set of best replies to all probability distributions over the set. Hence, furb sets are the natural set-valued generalization of strict Nash equilibria. [START_REF] Basu | Strategy subsets closed under rational behavior[END_REF] -who 1 Curb sets and variants were introduced by [START_REF] Basu | Strategy subsets closed under rational behavior[END_REF] and became of importance in the literature on strategy adaptation in finite games. Several classes of adaptation processes eventually settle down in a minimal curb set; cf. [START_REF] Hurkens | Learning by forgetful players[END_REF], [START_REF] Sanchirico | A probabilistic model of learning in games[END_REF], [START_REF] Young | Individual Strategy and Social Structure[END_REF][START_REF] Fudenberg | The Theory of Learning in Games[END_REF][START_REF] Fudenberg | The Theory of Learning in Games[END_REF]. Such sets also give appealing results in communication games [START_REF] Hurkens | Multi-sided pre-play communication by burning money[END_REF][START_REF] Blume | Communication, risk, and efficiency in games[END_REF] and network formation games [START_REF] Galeotti | Network formation with heterogeneous players[END_REF]. For closure properties under generalizations of the best-response correspondence, see [START_REF] Ritzberger | Evolutionary selection in normal-form games[END_REF]. refer to furb sets as 'tight' curb sets -show that minimal curb sets and the product set of rationalizable strategies [START_REF] Bernheim | Rationalizable strategic behavior[END_REF][START_REF] Pearce | Rationalizable strategic behavior and the problem of perfection[END_REF] are important special cases of furb sets.

In order to illustrate our line of reasoning, consider first the two-player game

l c u 3, 1 1, 2 m 0, 3 2, 1
In its unique Nash equilibrium, player 1's equilibrium strategy assigns probability 2/3 to her first pure strategy and player 2's equilibrium strategy assigns probability 1/4 to his first pure strategy. However, even if player 1's belief about the behavior of player 2 coincides with his equilibrium strategy, (1/4, 3/4), player 1 would be indifferent between her two pure strategies. Hence, any pure or mixed strategy would be optimal for her, under the equilibrium belief about player 2. For all other beliefs about her opponent's behavior, only one of her pure strategies would be optimal, and likewise for player 2. The unique curb set and unique epistemically stable set in this game is the full set S = S 1 × S 2 of pure-strategy profiles.

Add a third pure strategy for each player to obtain the two-player game l c r u 3, 1 1, 2 0, 0 m 0, 3 2, 1 0, 0 d 5, 0 0, 0 6, 4

(1)

Strategy profile x * = (x * 1 , x * 2 ) = ¡¡ 2 3 , 1 3 , 0 ¢ , ¡ 1 4 , 3 4 , 0
¢¢ is a Nash equilibrium (indeed a perfect and proper equilibrium). However, if player 2's belief concerning the behavior of 1 coincides with x * 1 , then 2 is indifferent between his pure strategies l and c, and if 1 assigns equal probability to these two pure strategies of player 2, then 1 will play the unique best reply d, a pure strategy outside the support of the equilibrium. Moreover, if player 2 expects 1 to reason this way, then 2 will play r: the smallest epistemically stable set containing the support of the mixed equilibrium x * is the entire pure strategy space. By contrast, the pure-strategy profile (d, r) is a strict equilibrium. In this equilibrium, no player has any alternative best reply and each equilibrium strategy remains optimal also under some uncertainty as to the other player's action: the set {d} × {r} is epistemically stable. In this game, all pure strategies are rationalizable, S = S 1 × S 2 is a furb set, and the game's unique minimal curb set and unique minimal furb set is T = {d} × {r}.

Our results on epistemic stability can be heuristically described as follows. By Proposition 1(a), epistemically stable sets must be curb sets. Conversely, although curb sets2 may involve strategies that are not best replies -e.g., strategies that are strictly dominated -every curb set contains an epistemically stable subset.

Proposition 1(b) characterizes the largest one, whereas the smallest one(s), minimal curb sets, receive special attention in Proposition 3. Proposition 2 establishes that furb sets can be characterized in terms of epistemic stability, by removing player types that do not believe with sufficient probability that the others choose best replies. Proposition 3 starts with an algorithm (Prop. 3(a)) to generate epistemically stable sets from any product set of types: epistemic stability requires including all beliefs over the opponents' best replies, and any beliefs over opponents' types that has such beliefs over their opponents, and so on. After all these beliefs have been included, the corresponding product set of best responses to it is epistemically stable and indeed the smallest curb set containing the best responses to the type set one started with. With this algorithm in hand, minimal curb sets, the prime focus of attention in applications of curb sets (recall footnote 1), can be characterized by means of a path-independence property: a product set X of pure strategies is a minimal curb set if and only if it is the outcome of the algorithm, whenever you initiate it with a type profile assigning probability one to something from X being played.

As our notion of epistemic stability implies stability to alternative best replies, it is natural to follow, for instance, [START_REF] Asheim | The Consistent Preferences Approach to Deductive Reasoning in Games[END_REF] and [START_REF] Brandenburger | Admissibility in games[END_REF], and model players as having beliefs about the opponents without modeling the players' actual behavior. Moreover, we consider complete epistemic models. In these respects, our modeling differs from that of [START_REF] Aumann | Epistemic conditions for Nash equilibrium[END_REF] characterization of Nash equilibrium. In its motivation in terms of epistemic stability of solution concepts and in its use of p-belief, the present approach is related to [START_REF] Tercieux | p-Best response set[END_REF] analysis. His epistemic approach, however, is completely different from ours. Starting from a two-player game, he introduces a Bayesian game where payoff functions are perturbations of the original ones and he investigates which equilibria are robust to this kind of perturbation. [START_REF] Zambrano | Epistemic conditions for rationalizability[END_REF] studies the stability of non-equilibrium concepts in terms of mutual belief and is hence more closely related to our analysis. In contrast with our approach, however, [START_REF] Zambrano | Epistemic conditions for rationalizability[END_REF] restricts attention to rationalizability and probability-1 beliefs. His main result follows from our Proposition 2. Also [START_REF] Hu | On p-rationalizability and approximate common certainty of rationality[END_REF] restricts attention to rationalizability, but allows for p-beliefs, where p < 1. In the games considered in [START_REF] Hu | On p-rationalizability and approximate common certainty of rationality[END_REF], pure strategy sets are permitted to be infinite. By contrast, our analysis is restricted to finite games, but under the weaker condition of mutual, rather than Hu's common, p-belief of opponent rationality and of opponents' types belonging to given type sets.

The remainder of the paper is organized as follows. Section 2 contains the game theoretic and epistemic definitions used. Section 3 gives the characterizations of variants of curb sets. Proofs of the propositions are provided in the appendix.

The model 2.1 Game theoretic definitions

Consider a finite normal-form game hN, (S i ) i∈N , (u i ) i∈N i, where N = {1, . . . , n} is the non-empty and finite set of players. Each player i ∈ N has a non-empty, finite set of pure strategies S i and a payoff function u i : S → R defined on the set

S := S 1 × • • • × S n of pure-strategy profiles. For any player i, let S -i := × j6 =i S j .
It is over this set of other players' pure-strategy combinations that player i will form his or her probabilistic beliefs. These beliefs may, but need not be product measures over the other player's pure-strategy sets. We extend the domain of the payoff functions to probability distributions over pure strategies as usual.

For an arbitrary Polish (separable and completely metrizable) space F , let M(F ) denote the set of Borel probability measures on F , endowed with the topology of weak convergence. For each player i ∈ N , pure strategy s i ∈ S i , and probabilistic belief σ -i ∈ M(S -i ), write

u i (s i , σ -i ) := X s -i ∈S -i σ -i (s -i )u i (s i , s -i ). Define i's best-reply correspondence β i : M(S -i ) → 2 S i as follows: For all σ -i ∈ M(S -i ), β i (σ -i ) := {s i ∈ S i | u i (s i , σ -i ) ≥ u i (s 0 i , σ -i ) ∀s 0 i ∈ S i } . Let S := {X ∈ 2 S | ∅ 6 = X = X 1 × • • • × X n } denote the collection of non-
empty Cartesian products of subsets of the players' strategy sets. For X ∈ S we abuse notation slightly by writing, for each

i ∈ N , β i (M(X -i )) as β i (X -i ). Let β(X) := β 1 (X -1 ) × • • • × β n (X -n ). Each constituent set β i (X -i ) ⊆ S i in this
Cartesian product is the set of best replies of player i to all probabilistic beliefs over the others' strategy choices X -i ⊆ S -i .

Following [START_REF] Basu | Strategy subsets closed under rational behavior[END_REF], a set X ∈ S is:

closed under rational behavior (curb) if β(X) ⊆ X;
fixed under rational behavior (furb) if β(X) = X;

minimal curb (mincurb) if it is curb and does not properly contain another one: β(X) ⊆ X and there is no X 0 ∈ S with X 0 ⊂ X and

β(X 0 ) ⊆ X 0 .
Basu and Weibull (1991) call a furb set a 'tight' curb set. The reversed inclusion, X ⊆ β(X), is sometimes referred to as the 'best response property' [START_REF] Pearce | Rationalizable strategic behavior and the problem of perfection[END_REF](Pearce, , p. 1033)). It is shown in Basu and Weibull (1991, Prop. 1 and 2) that a mincurb set exists, that all mincurb sets are furb, and that the product set of rationalizable strategies is the game's largest furb set. While [START_REF] Basu | Strategy subsets closed under rational behavior[END_REF] require that players believe that others' strategy choices are statistically independent, σ -i ∈ × j6 =i M(S j ), we here allow players to believe that others' strategy choices are correlated, σ -i ∈ M(S -i ). 3 Thus, in games with more than two players, the present definition of curb is somewhat more demanding than that in [START_REF] Basu | Strategy subsets closed under rational behavior[END_REF], in the sense that we require closedness under a wider space of beliefs. Hence, the present definition may, in games with more than two players, lead to different mincurb sets.4 

Epistemic definitions

The epistemic analysis builds on the concept of player types, where a type of a player is characterized by a probability distribution over the others' strategies and types.

For each i ∈ N , denote by T i player i's non-empty Polish space of types. The state space is defined by Ω := S ×T , where

T := T 1 ו • •×T n .
For each player i ∈ N , write

Ω i := S i × T i and Ω -i := × j6 =i Ω j . To each type t i ∈ T i of every player i is associated a Borel probability measure μ i (t i ) ∈ M(Ω -i ).
For each player i, we thus have the 3 Our results carry over -with minor modifications in the proofs -to the case of independent strategies.

player's pure-strategy set S i , type space T i and a mapping μ i :

T i → M(Ω -i ) that
to each of i's types t i assigns a probabilistic belief, μ i (t i ), over the others' strategy choices and types. The structure (S 1 , . . . , S n , T 1 , . . . , T n , μ 1 , . . . , μ n ) is called an Sbased (interactive) probability structure. Assume that for each i ∈ N :

• μ i is onto: all Borel probability measures on Ω -i are represented in T i . A probability structure with this property is called complete.

• μ i is continuous.

• T i is compact.
An adaptation of the proof of Brandenburger, Friedenberg, and Keisler (2008, Proposition 7.2) establishes the existence of such a complete probability structure.5 

In the setting to be developed here, we consider players who choose best replies to their beliefs -but need not believe that all other players do so, only that this is sufficiently likely.

For each i ∈ N , denote by s i (ω) and t i (ω) i's strategy and type in state ω ∈ Ω.

In other words, s i : Ω → S i is the projection of the state space to i's strategy set, assigning to each state ω ∈ Ω the strategy s i = s i (ω) that i uses in that state.

Likewise, t i : Ω → T i is the projection of the state space to i's type space. For each player i ∈ N and positive probability p ∈ (0, 1], the p-belief operator B p i maps each event (Borel-measurable subset of the state space) E ⊆ Ω to the set of states where player i's type attaches at least probability p to E:

B p i (E) := {ω ∈ Ω | μ i (t i (ω))(E ω i ) ≥ p} ,
where

E ω i := {ω -i ∈ Ω -i | (ω i , ω -i ) ∈ E}.
This is the same belief operator as in Hu (2007). 6 One may interpret B p i (E) as the event 'player i believes E with probability at least p'. For all p ∈ (0, 1],

B p i satisfies B p i (∅) = ∅, B p i (Ω) = Ω, B p i (E 0 ) ⊆ B p i (E 00 ) if E 0 ⊆ E 00 (monotonicity), and B p i (E) = E if E = proj Ω i E × Ω -i .
The last property means that each player i always p-believes his own strategy-type pair, for any positive probability p. Since also

B p i (E) = proj Ω i B p i (E) × Ω -i for all events E ⊆ Ω, each operator B p i satisfies both positive (B p i (E) ⊆ B p i (B p i (E))) and negative (¬B p i (E) ⊆ B p i (¬B p i (E)) introspection.
For all p ∈ (0, 1], B p i violates the truth axiom, meaning that B p i (E) ⊆ E need not hold for all E ⊆ Ω. In the special case p = 1, we have

B p i (E 0 ) ∩ B p i (E 00 ) ⊆ B p i (E 0 ∩ E 00 )
for all E 0 , E 00 ⊆ Ω. Define i's choice correspondence C i : T i → 2 S i as follows: For each of i's types

t i ∈ T i , C i (t i ) := β i (marg S -i μ i (t i ))
consists of i's best replies when player i is of type t i . Let T denote the collection of non-empty Cartesian products of subsets of the players' type spaces:

T := {Y ∈ 2 T | ∅ 6 = Y = Y 1 × • • • × Y n }.
For any such set Y ∈ T and player i ∈ N , write

C i (Y i ) := S t i ∈Y i C i (t i ) and C(Y ) := C 1 (Y 1 ) × • • • × C n (Y n ).
In other words, these are the choices and choice profiles associated with Y . If Y ∈ T and i ∈ N , write

[Y i ] := {ω ∈ Ω | t i (ω) ∈ Y i }.
This is the event that player i is of a type in the subset

Y i . Likewise, write [Y ] := T i∈N [Y i ]
for the event that the type profile is in Y . Finally, for each player i ∈ N , write R i for the event that player i uses a best reply:

R i := {ω ∈ Ω | s i (ω) ∈ C i (t i (ω))}.
One may interpret R i as the event that i is rational: if ω ∈ R i , then s i (ω) is a best reply to marg S -i μ i (t i (ω)).

Epistemic stability

We define a product set X ∈ S of strategies to be epistemically stable if there exists a p < 1 such that, for all probabilities p ∈ [p, 1], there is a set of type profiles

Y ∈ T such that C(Y ) = X (2)
and

B p i ³ \ j6 =i ¡ R j ∩ [Y j ] ¢ ´⊆ [Y i ] ∀i ∈ N. (3) 
Condition (2) states that the strategies in X are precisely those that rational players whose types are in Y may use. For each p < 1, condition (3) allows each player i to attach a positive probability to the event that others do not play best replies and/or are of types outside Y .

Proposition 1(a) establishes that epistemically stable sets are necessarily curb sets. Proposition 1(b) establishes that any curb set X contains an epistemically stable subset, and also characterizes the largest such subset.

Denote, for each i ∈ N and X i ⊆ S i the pre-image (upper inverse) of X i under player i's best response correspondence by

β -1 i (X i ) := {σ -i ∈ M(S -i ) | β i (σ -i ) ⊆ X i } .
For a given subset X i of i's pure strategies, β -1 i (X i ) consists of beliefs over others' strategy profiles having the property that all best replies to these beliefs are contained in X i .

Proposition 1 Let X ∈ S. (a) If X is epistemically stable, then X is a curb set. (b) If X is a curb set, then × i∈N β i (β -1 i (X i ))
⊆ X is epistemically stable. Furthermore, it is the largest epistemically stable subset of X.

Claim (a) implies that every epistemically stable set contains at least one strategically stable set, both as defined in [START_REF] Kohlberg | On the strategic stability of equilibria[END_REF] and as defined in [START_REF] Mertens | Stable equilibria -a reformulation, part I: Definition and basic properties[END_REF], see [START_REF] Ritzberger | Evolutionary selection in normal-form games[END_REF] and [START_REF] Demichelis | From Evolutionary to Strategic Stability[END_REF], respectively.7 Concerning claim (b), we note that × i∈N β i (β -1 i (S i )) equals the set of profiles of strategies that are best replies to some belief. Hence, since for each i ∈ N , both β i (•) and β -1 i (•) are monotonic w.r.t. set inclusion, it follows from Proposition 1(b) that any epistemically stable set involves only strategies surviving one round of strict elimination.

Our proof shows that Proposition 1 can be slightly strengthened. For (a), one only needs the stability conditions with p = 1; as long as there is a Y ∈ T such that C(Y ) = X and (3) holds, X is curb.8 Moreover, although epistemic stability allows that Y ∈ T depends on p, the proof of (b) defines Y independently of p.

Also furb sets can be characterized in terms of epistemic stability: Proposition 2 X ∈ S is a furb set if and only if X is epistemically stable and

(3) holds with equality.

As a corollary, Proposition 2 characterizes the set of rationalizable strategy profiles [START_REF] Bernheim | Rationalizable strategic behavior[END_REF][START_REF] Pearce | Rationalizable strategic behavior and the problem of perfection[END_REF], since this is the game's largest furb set [START_REF] Basu | Strategy subsets closed under rational behavior[END_REF], without involving any explicit assumption of common belief of rationality; only mutual p-belief of rationality and type sets are assumed. Proposition 2 generalizes the main result of [START_REF] Zambrano | Epistemic conditions for rationalizability[END_REF] to p-belief for p sufficiently close to 1. Proposition 2 also applies to mincurb sets, as these sets are furb.

By Proposition 1, the smallest epistemically stable sets are exactly the game's mincurb sets. As much of the literature on curb sets (recall footnote 1) focuses on minimal ones, we now turn to an epistemic characterization of mincurb sets. The characterization has two parts. The first part starts from an arbitrary product set Y of types and generates en epistemically stable set by including all beliefs over the opponents' best replies, and any beliefs over opponents' types that has such beliefs over their opponents, and so on. The so obtained product set of best replies is epistemically stable and is the smallest curb set containing C(Y ). The second part characterizes mincurb sets in terms of a path independence condition: a product set of pure strategies X is a mincurb set if and only if it is the output of the algorithm in the first part, whenever the algorithm starts from a singleton set consisting of a profile of types that assign probability one to strategies in X.

Formally, define for any Y ∈ T the sequence hY (k)i k by Y (0) = Y and, for each

k ∈ N and i ∈ N , [Y i (k)] := [Y i (k -1)] ∪ B 1 i ³ \ j6 =i ¡ R j ∩ [Y j (k -1)] ¢ ´. (4) 
Define the correspondence E :

T i → 2 S i , for any Y ∈ T , by E(Y ) := C ³ [ k∈N Y (k) 
´.

Note that for each set X ∈ S in any finite game, there exists a unique smallest curb set X 0 ∈ S with X ⊆ X 0 (that is, X 0 is a subset of all other curb sets X 00 , if any, with X ⊆ X 00 ).9 

Fix i ∈ N , and consider any σ -i ∈ M(X -i ). Since C(Y ) = X, it follows that, for each s -i ∈ S -i with σ -i (s -i ) > 0, there exists t -i ∈ Y -i such that, for all j 6 = i, s j ∈ C j (t j ). Hence, since the probability structure is complete, there exists a

ω ∈ B 1 i ³ \ j6 =i ¡ R j ∩ [Y j ] ¢ ´⊆ [Y i ] with marg S -i μ i (t i (ω)) = σ -i . So β i (X -i ) := β i (M(X -i )) ⊆ [ t i ∈Y i β i (marg S -i μ i (t i )) := C i (Y i ) = X i .
Since this holds for all i ∈ N , X is a curb set.

Part (b). Assume that X ∈ S is a curb set, i.e., X satisfies β(X) ⊆ X. It suffices to prove that × i∈N β i (β -1 i (X i )) ⊆ X is epistemically stable.
That it is the largest epistemically stable subset of X then follows immediately from the fact that,

for each i ∈ N , both β i (•) and β -1 i (•) are monotonic w.r.t. set inclusion. Define Y ∈ T by taking, for each i ∈ N , Y i := {t i ∈ T i | C i (t i ) ⊆ X i }. Since the probability structure is complete, it follows that C i (Y i ) = β i (β -1 i (X i )). For notational convenience, write X 0 i = β i (β -1 i (X i )) and X 0 = × i∈N X 0 i . Since the game is finite, there is, for each player i ∈ N , a p i ∈ (0, 1) such that β i (σ -i ) ⊆ β i (X 0 -i ) for all σ -i ∈ M(S -i ) with σ -i (X 0 -i ) ≥ p i . Let p = max{p 1 , . . . , p n }.
We first show that β(X 0 ) ⊆ X 0 . By definition, X 0 ⊆ X, so for each i ∈ N :

M(X 0 -i ) ⊆ M(X -i ). Moreover, as β(X) ⊆ X and, for each i ∈ N , β i (X i ) := β i (M(X -i )), it follows that M(X -i ) ⊆ β -1 i (X i ). Hence, for each i ∈ N , β i (X 0 i ) := β i (M(X 0 -i )) ⊆ β i (M(X -i )) ⊆ β i (β -1 i (X i )) = X 0 i .
For all p ∈ [p, 1] and i ∈ N , we have that

B p i ³ \ j6 =i (R j ∩ [Y j ]) = B p i ³ \ j6 =i {ω ∈ Ω | s j (ω) ∈ C j (t j (ω)) ⊆ X 0 j } ⊆ © ω ∈ Ω | μ i (t i (ω)){ω -i ∈ Ω -i | for all j 6 = i, s j (ω) ∈ X 0 j } ≥ p ª ⊆ {ω ∈ Ω | marg S -i μ i (t i (ω))(X 0 -i ) ≥ p} ⊆ {ω ∈ Ω | C i (t i (ω)) ⊆ β i (X 0 -i )} ⊆ {ω ∈ Ω | C i (t i (ω)) ⊆ X 0 -i } = [Y i ],
using β(X 0 ) ⊆ X 0 .

For X ∈ S and p ∈ (0, 1], write, for each i ∈ N ,

β p i (X -i ) := {s i ∈ S i | ∃σ -i ∈ M(S -i ) with σ -i (X -i ) ≥ p such that u i (s i , σ -i ) ≥ u i (s 0 i , σ -i ) ∀s 0 i ∈ S i } . Let β p (X) := β p 1 (X -1 ) × • • • × β p n (X -n ). Following Tercieux (2006), a set X ∈ S is a p-best response set if β p (X) ⊆ X. Claim: Let X ∈ S and p ∈ (0, 1]. If Y ∈ T is such that C(Y ) = X and (3) holds for each i ∈ N , then X is a p-best response set. Proof. By assumption, there is a Y ∈ T with C(Y ) = X such that for each i ∈ N , B p i ³ T j6 =i ¡ R j ∩ [Y j ] ¢ ´⊆ [Y i ].
Fix i ∈ N and consider any

σ -i ∈ M(S -i ) with σ -i (X -i ) ≥ p. Since C(Y ) = X,
it follows that, for each s -i ∈ X -i , there exists t -i ∈ Y -i such that s j ∈ C j (t j ) for all j 6 = i. Hence, since the probability structure is complete, there exists a

ω ∈ B p i ³ \ j6 =i ¡ R j ∩ [Y j ] ¢ ´⊆ [Y i ]
with marg S -i μ i (t i (ω)) = σ -i . So, by definition of β p i (X -i ):

β p i (X -i ) ⊆ [ t i ∈Y i β i (marg S -i μ i (t i )) := C i (Y i ) = X i .
Since this holds for all i ∈ N , X is a p-best response set.

Proof of Proposition 2. (If ) By assumption, there is a

Y ∈ T with C(Y ) = X such that for all i ∈ N , B 1 i ³ T j6 =i ¡ R j ∩ [Y j ] ¢ ´= [Y i ].
Fix i ∈ N . Since C(Y ) = X, and the probability structure is complete, there exists,for any σ -i ∈ M(S -i ), an

ω ∈ B 1 i ³ \ j6 =i ¡ R j ∩ [Y j ] ¢ ´= [Y i ] with marg S -i μ i (t i (ω)) = σ -i if and only if σ -i ∈ M(X -i ). So β i (X -i ) := β i (M(X -i )) = [ t i ∈Y i β i (marg S -i μ i (t i )) := C i (Y i ) = X i .
Since this holds for all i ∈ N , X is a furb set.

(Only if ) Assume that X ∈ S satisfies X = β(X). Since the game is finite, there exists, for each player i ∈ N, a p i ∈ (0, 1) such that

β i (σ -i ) ⊆ β i (X -i ) if σ -i (X -i ) ≥ p i . Let p = max{p 1 , . . . , p n }.
For each p ∈ [p, 1], construct the sequence of Cartesian products of type subsets

hY p (k)i k as follows: For each i ∈ N , let Y p i (0) = {t i ∈ T i | C i (t i ) ⊆ X i }.
Using continuity of μ i , the correspondence C i : T i ⇒ S i is upper hemi-continuous. Thus Y p i (0) ⊆ T i is closed, and, since T i is compact, so is Y p i (0). There exists a closed set 

Y p i (1) ⊆ T i such that [Y p i (1)] = B p i ³ \ j6 =i ¡ R j ∩ [Y p j (0)] ¢ ´. It follows that Y p i (1) ⊆ Y p i (0). Since Y p i (0) is compact, so is Y p i (1). By induction, [Y p i (k)] = B p i ³ \ j6 =i ¡ R j ∩ [Y p j (k -1)] ¢ ´. (6 
(0)) = β (X), since the probability structure is complete. Since X is furb, we thus have C(Y p (0)) = X. For each i ∈ N , [Y p i (1)] ⊆ {ω ∈ Ω | marg S -i μ i (t i (ω))(X -i ) ≥ p} , implying that C i (Y p i (1)) ⊆ β i (X -i ) = X -i
by the construction of p. Moreover, since the probability structure is complete, for each i ∈ N and σ -i ∈ M(X -i ), 

there exists ω ∈ [Y p i (1)] = B p i ¡T j6 =i (R j ∩ [Y p j (0)]) ¢ with marg S -i μ i (t i (ω)) = σ -i , implying that C i (Y p i (1)) ⊇ β i (X -i ) = X -i . Hence, C i (Y p i (1)) = β i (X -i ) = X i . By induction, it holds for all k ∈ N that C(Y p (k)) = β(X) = X . Since hY p i (k)i k is a decreasing chain, we also have that C(Y p ) ⊆ X.
E k = \ j6 =i ¡ R j ∩ [Y p j (k)] ¢ and E = \ j6 =i ¡ R j ∩ [Y p j ] ¢ .
Since, for each j ∈ N , hY p j (k)i k is a decreasing chain with limit Y p j , it follows that hE k i k is a decreasing chain with limit E.

To show B p i (E) ⊆ [Y p i ],
note that by ( 6) and monotonicity of B p i , we have, for each k ∈ N, that

B p i (E) ⊆ B p i (E k-1 ) = [Y p i (k)] .
As the inclusion holds for all k ∈ N:

B p i (E) ⊆ \ k∈N [Y p i (k)] = [Y p i ] . To show B p i (E) ⊇ [Y p i ], assume that ω ∈ [Y p i ]. 10 This implies that ω ∈ [Y p i (k)
] for all k, and, using ( 6

): ω ∈ B p i (E k ) for all k. Since E k = Ω i × proj Ω -i E k , we have that E ω i k = proj Ω -i E k . It follows that μ i (t i (ω))(proj Ω -i E k ) ≥ p for all k .
Thus, since hE k i k is a decreasing chain with limit E,

μ i (t i (ω))(proj Ω -i E) ≥ p . Since E = Ω i × proj Ω -i E, we have that E ω i = proj Ω -i E.
Hence, the inequality implies that ω ∈ B p i (E).

Proof of Proposition 3. Part (a). Let X ∈ S be the smallest curb set containing C(Y ): (i) C(Y ) ⊆ X and β(X) ⊆ X and (ii) there exists no X 0 ∈ S with C(Y ) ⊆ X 0 and β(X 0 ) ⊆ X 0 ⊂ X. We must show that X = E(Y ).

Consider the sequence hY (k)i k defined by Y (0) = Y and (4) for each k ∈ N and i ∈ N . We show, by induction, that C(Y (k)) ⊆ X for all k ∈ N. By assumption, Y (0) = Y ∈ T satisfies this condition. Assume that C(Y (k -1)) ⊆ X for some k ∈ N, and fix i ∈ N . Then, ∀j 6 = i, β j (marg S -j μ j (t j (ω))) ⊆ X j if ω ∈ [Y j (k -1)] and s j (ω) ∈ X j if, in addition, ω ∈ R j . Hence, if

ω ∈ B 1 i ¡T j6 =i ¡ R j ∩ [Y j (k -1)] ¢¢ ,
then marg S -i μ i (t i (ω)) ∈ M(X -i ) and C i (t i (ω)) ⊆ β i (X -i ) ⊆ X -i . Since this holds for all i ∈ N , we have C(Y (k)) ⊆ X. This completes the induction.

Secondly, since the sequence hY (k)i k is non-decreasing and C(•) is monotonic w.r.t. set inclusion, and the game is finite, there exist a k 0 ∈ N and some X 0 ⊆ X such that C(Y (k)) = X 0 for all k ≥ k 0 . Let k > k 0 and consider any player i ∈ N . Since the probability structure is complete, there exists, for each σ -i ∈ M(X 0 -i ) a state ω ∈ [Y i (k)] with marg S -i μ i (t i (ω)) = σ -i , implying that β i (X 0 -i ) ⊆ C i (Y i (k)) = X 0 i . Since this holds for all i ∈ N , β(X 0 ) ⊆ X 0 . Therefore, if X 0 ⊂ X would hold, then this would contradict that there exists no X 0 ∈ S with C(Y ) ⊆ X 0 such that β(X 0 ) ⊆ X 0 ⊂ X. Hence, X = C ¡S k∈N Y (k)

¢ = E(Y ).
Write X = E(Y ). To establish that X is epistemically stable, by Proposition 1(b), it is sufficient to show that

X ⊆ × i∈N β i (β -1 i (X i )) ,
keeping in mind that, for all X 0 ∈ S,

X 0 ⊇ × i∈N β i (β -1 i (X 0 i )). Fix i ∈ N. Define Y 0 i ∈ T by taking Y 0 i := {t i ∈ T i | C i (t i ) ⊆ X i }.
Since the probability structure is complete, it follows that C i (Y 0 i ) = β i (β -1 i (X i )). Furthermore, for all k ∈ N, Y (k) ⊆ Y 0 and, hence, S k∈N Y (k) ⊆ Y 0 . This implies that

X i = C ³ [ k∈N Y (k) ´⊆ C i (Y 0 i ) = β i (β -1 i (X i ))
since C i (•) is monotonic w.r.t. set inclusion.

Part (b). (Only if ) Let X ∈ S be a mincurb set. Let t ∈ T satisfy (5).

By construction, C({t}) ⊆ X. By part (a), E({t}) is the smallest curb set with C({t}) ⊆ E({t}). But then E({t}) ⊆ X. The inclusion cannot be strict, as X is a mincurb set.

(If) For each t ∈ T satisfying (5), C({t}) ⊆ E({t}) = X, so X is a curb set.

To show that X is a minimal curb set, suppose -to the contrary -that there is a curb set X 0 ⊂ X. Let t 0 ∈ T be such that marg S -i μ i (t 0 i )(X 0 -i ) = 1 for each i ∈ N . By construction, C({t 0 }) ⊆ X 0 , so X 0 is a curb set containing C({t 0 }). By part (a), E({t 0 }) is the smallest curb set containing C({t 0 }). Moreover, as X 0 ⊂ X, t 0 satisfies (5), so X 0 ⊇ E({t 0 }) = X, contradicting that X 0 ⊂ X.

  is a non-empty and compact subset ofT i . For each k, let Y p (k) = × i∈N Y p i (k)and let Y p :=

	)
	i (k)i k of compact and non-empty defines, for each player i, a decreasing chain hY p subsets: Y p i (k + 1) ⊆ Y p i (k) for all k. By the finite-intersection property, Y p i := T k∈N Y p i (k) T k∈N Y p (k). Again, these are non-empty and compact
	sets.
	Next, C(Y p

  The converse inclusion follows by upper hemi-continuity of the correspondence C. To see this, suppose that x By the Bolzano-Weierstrass Theorem, we can extract a convergent subsequence for which y k → y o , where y o ∈ Y p , since Y p is closed. Moreover, since the correspondence C is closedvalued and u.h.c., with S compact (it is in fact finite), graph (C) ⊆ T × S is closed, and thus (y o , x o ) ∈ graph (C), contradicting the hypothesis that x o / ∈ C (Y p ). This establishes the claim that C(Y p ) ⊆ X.

	It remains to prove that, for each i ∈ N , (3) holds with equation for Y p . Fix i ∈ N , and let

o ∈ X but x o / ∈ C (Y p ). Since x o ∈ X, x o ∈ C (Y p (k)

) for all k. By the Axiom of Choice:

for each k there exists a y k ∈ Y p (k) such that (y k , x o ) ∈ graph (C).

Recall that the entire pure strategy space of a game is a curb set.

We also note that a pure strategy is a best reply to some belief σ -i ∈ M(S -i ) if and only if it is not strictly dominated (by any pure or mixed strategy). This follows from Lemma 3 in Pearce(1984), which, in turn, is closely related to Lemma 3.2.1 in van[START_REF] Van Damme | Refinements of the Nash Equilibrium Concept[END_REF].

The exact result we use is Proposition

6.1 in an earlier working paper version[START_REF] Brandenburger | Admissibility in games[END_REF]. Existence can also be established by constructing a universal state space (cf.[START_REF] Mertens | Formulation of Bayesian analysis for games with incomplete information[END_REF][START_REF] Brandenburger | Hierarchies of beliefs and common knowledge[END_REF].6 See also[START_REF] Monderer | Approximating common knowledge with common beliefs[END_REF].

In fact, these inclusions hold under the slightly weaker definition of curb sets in[START_REF] Basu | Strategy subsets closed under rational behavior[END_REF], in which a player's belief about other players is restricted to be a product measure over the others' pure-strategy sets.

In the appendix we also prove that if p ∈ (0, 1] and Y ∈ T are such that C(Y ) = X and (3) holds for all i ∈ N, then X is a p-best response set in the sense of[START_REF] Tercieux | p-Best response set[END_REF].

To see that this holds for all finite games, note that the collection of curb sets containing a given set X ∈ S is non-empty and finite, and that the intersection of two curb sets containing X is again a curb set containing X.

We thank Itai Arieli for suggesting this proof of the reversed inclusion, shorter than our original proof. A proof of both inclusions can also be based on property (8) of[START_REF] Monderer | Approximating common knowledge with common beliefs[END_REF].

Proposition 3 (a) Let Y ∈ T . Then X = E(Y ) is the smallest curb set satisfying C(Y ) ⊆ X. Furthermore, E(Y ) is epistemically stable.

(b) X ∈ S is a mincurb set if and only if for each t ∈ T with ∀i ∈ N : marg

it holds that E({t}) = X.

Remark 1 If the set C(Y ) in claim (a) includes strategies that are not rationalizable, then E(Y ) will not be furb. Therefore, the epistemic stability of E(Y ) does not follow from Proposition 2: its stability is established by invoking Proposition 1(b).

In order to illustrate Proposition 3, consider the Nash equilibrium x * in game (1) in the introduction. This equilibrium corresponds to a type profile (t 1 , t 2 ) where t 1 assigns probability 1/4 to (l, t 2 ) and probability 3/4 to (c, t 2 ), and where t 2 assigns probability 2/3 to (u, t 1 ) and probability 1/3 to (m, t 1 ). We have that C({t 1 , t 2 }) = {u, m} × {l, c}, while the full strategy space S is the smallest curb set that includes

it does not coincide with the smallest curb set that includes it. Recalling the discussion from the introduction: if player 2's belief concerning the behavior of 1 coincides with x * 1 , then 2 is indifferent between his pure strategies l and c, and if 1 assigns equal probability to these two pure strategies of player 2, then 1 will play the unique best reply d, a pure strategy outside the support of the equilibrium.

Moreover, if player 2 expects 1 to reason this way, then 2 will play r. Hence, to assure epistemic stability, starting from type set {t 1 , t 2 }, the repeated inclusion of all beliefs over opponents' best replies eventually leads to the smallest curb set, here S, that includes the Nash equilibrium that was our initial point of departure.

By contrast, for the type profile (t 0 1 , t 0 2 ) where t 0 1 assigns probability 1 to (r, t 0 2 ) and t 0 2 assigns probability 1 to (d, t 0 1 ) we have that C({t 0 1 , t 0 2 }) = {(d, r)} coincides with the smallest curb set that includes it. Thus, the strict equilibrium (d, r) to which

2 ) corresponds is epistemically stable, when viewed as a singleton set.

Appendix

Proof of Proposition 1. Part (a). By assumption, there is a Y ∈ T with