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Abstract

Manganese (Mn) is an essential metal that can exert toxic effects at high concentrations, eventually leading to Parkinsonism. A
major transporter of Mn in mammals is the divalent-metal transporter (DMT1). We characterize here DMT1-like proteins in the
nematode C. elegans, which regulate and are regulated by Mn and iron (Fe) content. We identified three new DMT1-like genes
in C. elegans: smf-1, smf-2 and smf-3. All three can functionally substitute for loss of their yeast orthologues in S. cerevisiae. In the
worm, deletion of smf-1 or smf-3 led to an increased Mn tolerance, while loss of smf-2 led to increased Mn sensitivity. smf mRNA
levels measured by QRT-PCR were up-regulated upon low Mn and down-regulated upon high Mn exposures. Translational GFP-
fusions revealed that SMF-1 and SMF-3 strongly localize to partially overlapping apical regions of the gut epithelium, suggesting
a differential role for SMF-1 and SMF-3 in Mn nutritional intake. Conversely, SMF-2 was detected in the marginal pharyngeal
epithelium, possibly involved in metal-sensing. Analysis of metal content upon Mn exposure in smf mutants revealed that SMF-
3 is required for normal Mn uptake, while smf-1 was dispensable. Higher smf-2 mRNA levels correlated with higher Fe content,
supporting a role for SMF-2 in Fe uptake. In smf-1 and smf-3 but not in smf-2 mutants, increased Mn exposure led to decreased
Fe levels, suggesting that both metals compete for transport by SMF-2. Finally, SMF-3 was post-translationally and reversibly
down-regulated following Mn-exposure. In sum, we unraveled a complex interplay of transcriptional and post-translational
regulations of 3 DMT1-like transporters in two adjacent tissues, which regulate metal-content in C. elegans.
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Introduction

Manganese (Mn) is one of the most abundant natural elements

in the Earth’s crust. It most frequently occurs in the form of oxides,

carbonates and silicates [1]. It is one of 7 essential metals for

animals, acting as a cofactor for multiple proteins with a wide

variety of biological activities, such as transferases, hydrolases,

lyases, arginase, glutamine synthetase, superoxide dismutase and

integrins [2,3]. Consequently, Mn is essential for many physio-

logical processes, such as modulation of the immune system,

stellate process production in astrocytes, as well as protein, lipid

and carbohydrate metabolism [4,5,6,7,8]. Mn is also essential for

optimal brain and skeletal structure development [9,10]; Mn

deficiency has been associated with defective bone formation and

increased susceptibility to seizures [11,12]. Despite being essential

for metabolic functions, Mn at high concentrations can be toxic,

especially to the brain. Though most Mn is obtained through the

diet, Mn toxicity from dietary intake is rare, because Mn balance is

tightly regulated by both the enterocytes (intake) and the biliary

duct cells (excretion). In contrast, pulmonary uptake and

particulate transport via the olfactory bulb [2,13,14] can lead to

deposition of Mn within the striatum and cerebellum, and

inflammation of the nasal epithelium [15]. Exposure to excessive

Mn levels may cause an extrapyramidal syndrome, referred to as

manganism, closely resembling idiopathic Parkinson’s disease

(IPD), both at the molecular and clinical level [16,17,18]. Mn

exposure represents a significant public health matter due to the

use of Mn as a catalyser in countless industrial processes, its

presence in gasoline additive, fungicides such as Maneb and in

permanganate, a drinking water purifier [1,2,19,20,21]. Because

Mn is the only environmental toxicant that has been robustly

associated with IPD, studies on the mechanisms that mediate its
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toxicity offer means for better understanding of neurodegenerative

diseases, the frequency of which is on the rise [22,23,24].

Due to the delicate relationship between essentiality and toxicity,

Mn homeostasis is crucial for all eukaryotes. Previous research has

focused on Mn transport mechanisms across the blood-brain barrier

(BBB), but the nature and relative contributions of the carrier(s)

identified thus far remain controversial. Over the past two decades,

active transport [25] and facilitated diffusion [26,27] mechanisms

have been described. More recently, Mn transport has been

ascribed to high affinity metal transporters of calcium (Ca) and iron

(Fe). Amongst these, attention has been directed to the divalent

metal transporter (DMT1 [28]), which belongs to the family of

natural resistance-associated macrophage protein (NRAMP)

[29,30,31,32]. To avoid confusion, we will further refer to NRAMP

family members as DMT(s) for Divalent Metal Transporter(s).

DMT1, previously known as NRAMP2, was first identified as

an orthologue of NRAMP1, a protein involved in host defense

against several types of infection [29,30]. Subsequently, it was

referred to as divalent cation transporter (DCT1), because of its

ability to transport divalent zinc (Zn2+), manganese (Mn2+), cobalt

(Co2+), cadmium (Cd2+), copper (Cu2+), nickel (Ni2+), lead (Pb2+),

and iron (Fe2+) [32,33,34]. In 1999 it was designated as DMT1

[28]. DMT1 is an integral membrane protein conserved from

bacteria to humans, containing 11 to 12 transmembrane domains

(TMD) and a ‘‘consensus transport sequence’’ (CTS) involved in

divalent metal ion transport [32,33,34,35]. Notably, rodent models

presenting a spontaneous mutation in DMT1, microcytic (mk)

mice and Belgrade (b/b) rats [36], and several human mutations in

DMT1 [37,38,39,40,41,42] suggest an association between

microcytic anemia, impairment of Fe transport and Mn

homeostasis. In vertebrates, DMT1 is ubiquitously expressed,

but more abundant expression is observed in the proximal

duodenum compared to the kidney or the brain [28,32,43].

Within the brain, the basal ganglia express higher levels of DMT1,

where Mn preferentially accumulates [44]. At a subcellular level,

DMT1 is strongly localized at the apical membrane in enterocytes

[45] and sustentacular cells of the olfactory epithelium [14]

whereas in macrophages, it is restricted to the phagosomal

membrane. The vertebrate DMT1 gene produces four alterna-

tively spliced mRNAs differing by the presence or absence of the

exon 0, and a 39 sequence in which an iron regulatory element is

present or absent (+IRE and -IRE respectively). The 39 UTR is

responsible for the modulation of the +IRE mRNA stability by the

intracellular Fe pool [32]. The +IRE vs -IRE mRNAs encode

DMT1 isoforms with distinct carboxy- termini [43,46]. The +IRE

isoforms are found mainly at the apical membrane of epithelial

cells [45,47] and in late endosomes and lysosomes within HEp-2

cells [40,48]. The -IRE isoforms are found predominantly in early

and recycling endosomes [49,50,51]. Studies in yeast have

identified three DMT1 orthologues: Smf1p, Smf2p and Smf3p,

encoded by SMF1, SMF2 and SMF3 respectively. In contrast to

vertebrate DMT1, no typical IRE is found in any of the SMF

genes, and the poor sequence conservation of the C-termini is not

predictive of a correspondence between the vertebrate –IRE/

+IRE isoforms and Smf1p/2p/3p. However, Smf1p was identified

as a non-specific metal ion transporter for Mn2+, Zn2+, Cu2+, Fe2+

and Cd2+ [52,53] and Smf2p was also found to be involved in Mn

transport [54]. Analogous to their vertebrate orthologues, the yeast

DMTs are found in various intracellular compartments: Smf1p at

the cell surface, Smf2p in vesicles and Smf3p exclusively at the

vacuolar membrane [53,55,56]. In addition, they differentially

contribute to Mn homeostasis, since Smfp1 and Smf3p are

dispensable in Mn-replete conditions [53], while Smf2p is essential

for ensuring proper Mn uptake [57,58]. Additionally, the SMF3

promoter is found to contain a target sequence for the Fe-sensing

transcription factor Aft1p, which is responsible for its transcrip-

tional regulation by Fe, whereas Smf1p and Smf2p levels are

unaffected by Fe concentration [55,56].

Currently, both Mn transport and DMT protein function(s) are

poorly understood. This is partly due to the existence of several

DMT proteins differentially regulated at the transcriptional and

post-translational levels, in distinct tissues (intestine, liver, kidney,

brain) and under various conditions (Mn or Fe levels, infection).

Moreover, findings in a unicellular organism like the baker’s yeast

are difficult to translate to metazoans and especially to mammals.

Given the current lack of a genetically amenable animal model, we

used the C. elegans system to address these issues. We identified and

cloned three functional C. elegans DMT1 orthologues SMF-1, SMF-2

and SMF-3, with distinct roles in Mn transport regulation. Our

results support an evolutionary conserved function for DMT1

isoforms in the regulation of Mn uptake, and emphasize the

differential contribution and regulation of DMT1 isoforms expressed

in different tissues and exhibiting different subcellular localizations.

Furthermore, our study identifies SMF-3 as the main Mn uptake

transporter in the worm, whereas SMF-1 has a minor role in this

process and SMF-2 is involved in metal content regulation.

Methods

Multiple alignment generation and analysis. - Protein sequences were

uploaded from the NCBI website (http://www.ncbi.nlm.nih.gov/

sites/entrez). Multiple alignments and phylogenetic trees were

generated using ClustalX1.81 [59] running ClustalW [60].

Yeast handling, transformation and EGTA sensitivity assessment. - Yeast

strains, maintenance, transformation and culture for the EGTA

sensitivity assay were performed as described [58]. Plasmids pVT-

Cesmf-1, pVT-Cesmf-2 and pVT-Cesmf-3, for yeast expression of

C. elegans genes smf-1, smf-2 and smf-3 respectively, were generated as

follows. smf-1 (from yk452d4) and smf-3 (from yk397h3) cDNA were

kindly provided by Yuji Kohara, while smf-2 cDNA was obtained by

reverse-transcription-PCR. smf-1 was amplified using primers 59-

CAG CGG ATC CGC TTG ATA TCC TGC ATT GTC-39 and

59-GAC CGG TAC CGG AAA GTA TAC ATC GTT CAC-39.

smf-3 was amplified using primers 59-CGCGGATCCAATGG-

AGGTGAAATGAAAT-39 and 59-GCCCGGTACCGCATA-

TCGCATAGACAGTTC-39. smf-1’ smf-2, and smf-3 fragments

were then cloned into pVT101-U using HindIII and PstI.

C. elegans strains and handling of the worms. - C. elegans strains were

handled and maintained at 20uC as previously described [61]. The

following strains were used: N2 (wildtype); IG6, smf-1(eh5) X;

VC171, smf-2(gk133) X; RB1074, smf-3(ok1035) IV; MT455, lon-

2(e678) unc-18(e81) X; MT628, dpy-9(e12) unc-17(e245) IV. All

strains were provided by the Caenorhabditis Genetic Center

(CGC, Minnesota). The IG6, VC171 and RB1074 strains were

outcrossed 4 additional times to generate MAB23, MAB21 and

MAB37, respectively.

Gene cloning and plasmid constructions. - Restriction enzymes were

ordered from New England Biolabs. PCR amplifications used the

LA TaqTM Polymerase (Takara), and were performed on an

Eppendorf2 PCR-machine. Translational C-terminal GFP-fusions

for SMF-1, SMF-2 and SMF-3 localization were generated as

follow. The smf-1 ORF and preceding intergenic region (4.4 kb)

was amplified using primers: 59- TAT TAC CTG CAG GAG

CTA GCT TCA TGT TCA CCG CCA AGC TCG-39, and 59-

TAT TAG GAT CCA ATT GAT ATC CTG CAT TGT CAT

GGA CTGC-39. This fragment was cloned into the pPD95.75

vector (Fire kit) between the SbfI and BamHI restriction sites, in

frame with the GFP (plasmid pMA0015). The smf-2 ORF with its

NRAMP and Mn in C. elegans
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preceding intergenic sequence (3.5 kb) was amplified using

primers: 59-TAT TCT GCA GTC ATA CGA AAA CGA TGC

TCC GTG-39 and 59-TAT TGG TAC CAC AAA GTA TAC

ATC GTT CAC AAC-39. The smf-3 ORF and its preceding

intergenic region (8.4 kb) were amplified using primers: 59-TAT

TCT GCA GAC TTC ATT GGG GAT GTG CTT TGG-39

and 59-GGT ACC CAA TAT CGC ATA GAC AGT TCG

TCG-39. The smf-2 and smf-3 amplification products were then

cloned into pPD95.75 between the PstI and KpnI restriction sites,

in frame with the GFP (plasmid pMA0010 and pMA0004

respectively). Transcriptional constructs for smf-1, smf-2 and smf-3

were obtained by cloning the preceding intergenic region,

respectively up to the 2nd, 6th and 7th exon to include highly

conserved intronic sequences. The following primer sets were

used: 59-CGC AAG CTT CGA GCA GCT CCG ATT G-39 and

59-CGC CTG CAG CCT TGT GCG CCA GAC TGA AGG-39

for smf-1, 59-TAT TGC ATG CTC ATA CGA AAA CGA TGC

TCC GTG-39 and 59-TAT TCT GCA GTA GTC CAA ACT

GAC ATC CCA GG-39 for smf-2, 59-TAT TCT GCA GAC TTC

ATT GGG GAT GTG CTT TGG-39 and 59-TAT TGT CGA

CGG CTC TGG AAT ATA ATT AGG ATT GC-39 for smf-3.

The smf-1 product (1.7 kb) was cloned between the HindIII and

PstI restriction sites in pPD95.75 (promSmf1GFP1). The smf-2

(2.6 kb) fragment was cloned into pPD95.69 (Fire kit) between the

SphI and PstI restriction sites (pMA0009). The smf-3 (5.5 kb)

fragment was cloned into pPD95.69 between the restriction sites

PstI and SalI (pMA0003).

C. elegans transgenesis. - DNA was injected into the syncytial

gonads of N2 hermaphrodites using injection mixes containing

25 ng/ml construct and 175 ng/ml pRF4 as a transformation

marker [62]. A minimum of three independent transgenic strains

per construct showing the same expression pattern were observed.

One strain for each construct was selected for this study: MAB111,

mjaEx074[SMF-1::GFP; rol-6(su1006)]; MAB120, mjaEx083[SMF-

2::GFP; rol-6(su1006)]; MAB105, mjaEx068[SMF-3::GFP; rol-

6(su1006)].

Acute manganese chloride treatments. - Manganese chloride (MnCl2)

solutions were prepared in 85 mM NaCl. For each tested strain,

5000 synchronized L1 worms per tube were exposed to 0 to 4 M of

MnCl2 in siliconized tubes for 30 minutes. Each condition was

performed in tetraplicates. Worms were then pelleted by

centrifugation at 7000 rpm for 3 minutes and washed 5 times in

85 mM NaCl. Worms from each of the siliconized tubes were then

transferred into individual 100 mm OP50-1 coated NGM plates,

which were then blinded. At 24 h post-treatment, for each plate,

live worms were scored in 4 random 1 cm2 grids to estimate the

total number of surviving worms (up to 800 counts per plate).

Scores were normalized to percent control (0 mM MnCl2
exposure).

Mn and Fe content measurement by atomic absorption spectrophotometry

(AAS). - Triplicates of 7000 L1 worms per condition were treated

with MnCl2 as previously described. The samples were washed 8

times in 85 mM NaCl. The samples were dehydrated in a vacuum

oven at 65uC for 2 hours, and further digested in 200 ml ultrapure

nitric acid for 24 hours in a sand-bath (60uC). A 20 ml aliquot of

the digested sample was brought to 1 ml total volume with 2%

nitric acid and analyzed for Mn and Fe content using graphite

furnace atomic absorption spectroscopy (AAS) (Varian AA240,

Varian, Inc USA). Bovine liver digested in ultrapure nitric acid

was used as an internal standard for analysis (NBS Standard

Reference Material, USDC, Washington, DC, diluted at 5 mg

Mn/L and 92 mg Fe/L).

Epifluorescence, DIC and confocal microscopy. - For each slide, at least

30 worms were mounted on 4% agarose pads in M9, and

anaesthetized with 0.2% tricaine/0.02% tetramisole in M9.

Fluorescence observations and DIC imaging were performed with

an epifluorescence microscope (Nikon Eclipse 80i, Nikon)

equipped with a Lambda LS Xenon lamp (Sutter Instrument

Company) and Nikon Plan Fluor 20x dry and Nikon Plan Apo 60x

1.3 oil objectives. The microscope was coupled to a black-and-

white camera (DS-Qi1Mc; Nikon) operated by the Nikon

Elements AR3.0 software (NES AR3.0) for image acquisitions.

Confocal images acquired for illustration or GFP intensity

measurement purposes were captured through Plan-Neofluar

406, Plan-Apochromat 63x, or Plan-Neofluar 1006oil objectives

with a 1.3, 1.4 and 1.3 apertures, respectively, on a LSM510

confocal microscope (Carl Zeiss MicroImaging, Inc.), scanning

every 200 nm for XZ sections. Images were processed with the

Zeiss LSM Image Browser 4.0.0.157 software and edited using

Photoshop 7.0 (Adobe). Microscopes were in air-conditioned

rooms (20–22uC).

Phenotypic characterization of Mn treated worms.- Following Mn

treatment up to 24 h post-treatment, worms were observed under

stereomicroscope (Zeiss), and mounted for microscopy phenotypic

analysis using our Nikon platform aforementioned. After 24 h at

20uC, at least 30 random control worms and 30 treated worms

exposed to 35 mM MnCl2, were imaged at 20x. We assessed their

developmental stage (L1 or L2) and their size using NES AR3.0.

SMF-3::GFP fluorescence measurements. - SMF-3::GFP transgenic

worms (MAB105) were acutely treated as described previously,

transferred on OP50-1 seeded NGM plates and imaged at 1 h, 5 h

and 30 h post-treatment. Fluorescence measurements of SMF-

3::GFP signal were performed on complete confocal Z-stack

projections of C. elegans gut. 5 to 12 animals of the same age were

imaged for each condition. Treated and untreated animals were

mounted on the same slide, and imaged with the same

magnification, gain, offset, pinhole and laser power settings. Due

to the very small signal/noise ratio for treated animals at 5 h, those

settings allowed up to 30% signal saturation for some of the 5 h,

30 h control worms and 30 h recovering worms, so that

fluorescence measurements for these conditions are underesti-

mates. Mean signal intensity of the maximal projection of the

apical membrane of the intestine (from the pharyngeal-intestinal

valve to the rectum) was measured using the freeware ImageJ.

Statistics. - Dose-response lethality curves and histograms for

Mn content measurements were generated using GraphPad Prism

(GraphPad Software Inc.). We used a sigmoidal dose-response

model with a top constraint at 100% to draw the curves and

determine the LD50 values. Statistical analysis of significance was

carried out by one-way ANOVA for the dose-response curves, and

two-way ANOVA for Mn content measurements followed by post-

hoc Bonferroni test when the overall p value was less than 0.05.

For Fe content, Fisher test revealing differences in variances

between the groups, two-tailed unpaired T-test with Welch’s

correction were used to assess differences in Fe content. In all

figures, error bars represent SEM, * p,0.05, ** p,0.01,

*** p,0.001.

RNA isolation, cDNA preparation and Real-time PCR. - 10000 N2,

MAB21, MAB23 and MAB37 synchronized L1 worms per tube

were acutely treated with MnCl2 concentrations of 0, 0.1, 10 and

100 mM, washed in NaCl 85 mM, pelleted and frozen in liquid

nitrogen. They were thawed on ice, frozen again in N2liq and

resuspended in 100 mL H2O and 350 mL Trizol (Invitrogen Life

Technologies) for RNA isolation. RNA extracts were purified using

Qiagene RNeasy mini-kit (Qiagen). Messenger RNAs were reverse-

transcribed with oligo-dT primers using the Superscript III RNAse H

Reverse transcription kit (Invitrogen). cDNAs were stored at 220uC.

Quantitative Real-time-PCR was carried on a ABISystems HT7900,

NRAMP and Mn in C. elegans
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using Brilliant SYBR Green I kit (Stratagene/Agilent Technologies

Inc.), and HPLC purified primers (Operon) at a final concentration

of 120 nM. For amplification of smf-1 cDNA, two sets of 22b primers

were designed over the last intron 59-GCT CCG ATC ACC TTT

GCA TAC G-39/59-ATC CTC GGA TGG AAA CGG TGT C-39,

and between exons 6 and 8 59-TTT CGC ACA TGG ACT TTA

CCA G-39/59- GCA ATA GCT CCA AAC TGG CAT C-39. For

smf-2, primers over intron 6 59-TAT TCG CAG CAG GAC AAT

CAT C-39/59-TTG TGC ATA ATC CGC TTA CTG G-39, and

over intron 10 59-GTT GCT TGC GAA CTT ATG AAC G-39/59-

ACA AAG GTT TCT GTG ATC CAC G-39, were used. Smf-3

cDNA was amplified using primer sets 59-TCC AGT GCT GAC

ATT TGT ATC G-39/59-CAA GGA AAT CAC AAT GGA GAC

C-39 over intron 10 and 59-GGT CTC CAT TGT GATT TCC

TTG-39/59-CGA AAT CGT GGT AGA TGG GCT CC-39 over

intron 11. cdc-42 (primers: 59-CTG CTG GAC AGG AAG ATT

ACG-39/59-CTC GGA CAT TCT CGA ATG AAG-39) and

Y45F10D4F.3 (primers: 59-GTC GCT TCA AAT CAG TTC AGC-

39/59-GTT CTT GTC AAG TGA TCC GAC A-39), were used as

controls to normalize smf expression levels as they were proven to

have stable expression levels independent of age or stress conditions

[63]. The amplification setup included 109 denaturation at 95uC, 20

cycles at 95uC for 300/58uC for 19/70uC for 19, 20 to 25 cycles at

95uC for 300/56uC for 450/72uC for 450, and a dissociation curve to

ascertain that the signal did not result from primer annealing.

Results

The C. elegans genome encodes 3 DMT1 orthologues: SMF-1, SMF-2,

and SMF-3. A search on the C. elegans genome using the human

DMT1 protein sequence revealed three loci encoding DMT1

orthologues: Y69A2AR.4/smf-3 on chromosome IV, and

K11G12.3/smf-2 and K11G12.4/smf-1 on X chromosome. All

three genes encode proteins with a high degree of conservation

(Figure 1). Phylogenetic analysis placed them closer to their insects

and vertebrates orthologues than plant and yeast divalent-metal

transporters (Fig. 1A). A multiple alignment of the C. elegans SMF-

1, SMF-2, SMF-3 with their insect, vertebrates and yeast

orthologues confirmed this analysis. All three C. elegans SMF

exhibit a consensus transport sequence (CTS) quasi-identical to

their vertebrate orthologues and 12 transmembrane domains

(TMD), unlike the yeast SMF, in which the 11th TMD is absent

and the CTS is conserved at 70% (Fig. 1B).

SMF-1, SMF-2 and SMF-3 rescue the sensitivity to EGTA of the yeast

DSMF1+2 mutant. In the yeast S. cerevisiae, Smf1p and Smf2p are

divalent-metal transporters that can function in Mn uptake.

Double mutants for DSMF1+2 are hypersensitive to the divalent-

metal ion scavenger ethylene glycol tetra-acetic acid (EGTA). To

assay the molecular function of C. elegans SMF-1, -2 and -3 proteins

as divalent-metal transporters, we transvected the cDNA encoding

each of the C. elegans proteins into the DSMF1+2 yeast mutant, and

tested these transgenic strains for hypersensitivity to EGTA. All

three C. elegans SMF were able to rescue the hypersensitivity to

EGTA of the DSMF1+2 mutants (Fig. 2). Moreover, the efficacy of

the rescue was at least equivalent to the rescue conferred by

transvection of the mouse NRAMP2 cDNA construct [58].

Noticeably, the most potent effect was obtained with smf-1 cDNA,

which led to a hyper-resistant phenotype to EGTA. These results

indicate that C. elegans SMF-1, SMF-2 and SMF-3 are functionally

similar to their yeast and mammal orthologues and are likely

involved in divalent-metal ion transport.

Mn exposure can induce lethal osmoregulation defects and a developmental

delay in wild type worms. Acute exposure (30 minutes) of wild-type C.

elegans to Mn was lethal at concentrations greater than 10 mM.

Shortly after treatment and dependent upon the exposure level, a

fraction of the worms displayed vacuoles in the main epithelia:

epidermis, excretory cell and gut, tissues whose integrity is essential

for worm survival (Fig. 3). Loss of the excretory cell was the likely

cause of death, since dying worms exhibited the characteristic rod-

like phenotype (Fig. 3F&G) inherent to excretory-cell defective

mutants [64] and excretory-cell ablated worms [65]. Surviving

worms at 24 h were about 70% shorter (Fig. 3H) and displayed an

obvious developmental delay when compared with control

animals. Twenty-four hours post-treatment 83% of survivors

exposed to a 35 mM 30 min Mn treatment were still at the L1

stage, compared to 13% in the control group (Fig. 3I). The lethal

concentration 50% (LD50 at which half the worms are dead

24 hours after treatment) was 47 mM for the wild-type Bristol N2

strain (Fig. 4).

The deletion-mutants smf-1(eh5) and smf-3(ok1035) are hyper-resistant

to Mn exposure. In rodents, Mn taken up by ingestion or inhalation is

transported across the epithelial membrane via DMT1 [66]. If

DMT1 orthologues are responsible for Mn uptake in C. elegans, the

loss of function or down-regulation of these transporters should

reduce Mn sensitivity. To determine if smf-1, smf-2 and smf-3 are

involved in Mn uptake and toxicity in the worm, we made use of

available deletion-mutants for each of the three genes. Mutant smf-

1(eh5), smf-2(gk133) and smf-3(ok1035) strains were obtained from

the Caenorhabditis Genetic Center (CGC). Under standard

culture conditions, none of them displayed any obvious abnormal

phenotype with respect to body morphology, development,

growth, reproduction or behavior (data not shown). The smf-1

deletion eh5 resulted in a truncated SMF-1 protein containing only

the 6 first transmembrane domains and predicted to be devoid of

Mn transport activity (Fig. 1B). When exposed to Mn, smf-1(eh5)

mutants were twice as resistant as wild-type, with a LD50 = 94 mM

(Fig. 4). The smf-3 deletion ok1035 removes about 1,8kb in a region

encompassing exons 4 to 8. It leads to a loss of at least two of the

transmembrane domains 1 to 8, preventing the resulting truncated

protein from adopting its functional topology. In addition, the

likely loss of TMD6 impairs divalent metal (Me2+) transport as this

domain was proven essential for H+/Me2+ symporter activity [47].

In support of this assumption, the smf-3(ok1035) mutant displayed

the highest resistance to Mn exposure with a LD50 = 126 mM

(Fig. 4). The hyper-resistance to Mn exposure exhibited by both

smf-1(eh5) and smf-3(ok1035) mutants suggests that the Mn-induced

toxicity observed in wild type worms was at least, in part, mediated

through Mn uptake by the DMT1-like isoforms. A reasonable

explanation for this observation is that Mn uptake in these mutants

is impaired and that both SMF-3 and SMF-1 are required for

normal and optimal Mn uptake.

The deletion mutant smf-2(gk133) is hypersensitive to Mn treatment.

Concerning smf-2, the gk133 deletion affects the last hundred bases

of its promoter up to the third intron, which likely results in the

production of a defective protein, lacking the N-terminal sequence

up to the 5th TMD (Fig. 1B). Unlike smf-1(eh5) and smf-3(ok1035),

smf-2(gk133) mutant display a significant hypersensitivity to Mn

exposure with a LD50 = 26 mM (Fig. 4), suggesting a protective

role for SMF-2 against Mn toxicity.

smf-3(ok1035) mutants take up less Mn while smf-2(gk133) mutants take

up more. To confirm that the SMF proteins are involved in Mn

uptake, following acute Mn exposure, we collected wild-type, smf-

1(eh5), smf-2(gk133), and smf-3(ok1035) worms, and processed them

for Atomic Absorption Spectroscopy (AAS) analysis to measure

their Mn content. All four strains showed dose-dependent

increases in Mn content (Fig. 5A). smf-1(eh5) mutants accumulated

less Mn than wildtype animals, but the trend was not significant at

any of the tested doses. Strikingly, smf-2(gk133) accumulated
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Figure 1. The C. elegans genome encodes 3 SMF transporters orthologous to the plant, fungi and animal DMT protein family. (A)
Unrooted phylogenetic tree of a subset of eukaryotic members of the DMT family of transporters. C. elegans SMF proteins are more closely related to
the animal than to the fungus or plant orthologues. (B) Multiple alignment of animal DMT1 orthologues. The 12-transmembrane domain topology of
vertebrate DMT1 is conserved in C. elegans SMF proteins (black boxes), as well as the consensus transport sequence (red box). Dotted arrows indicate
regions of the proteins affected by the deletion alleles eh5, gk113, and ok1035 of smf-1, 2, and 3 respectively. Amino acids with similar biochemical
properties are highlighted with the same color. * represent residues conserved in all aligned sequences, : corresponds to highly conserved residues
and. to less conserved residues.
doi:10.1371/journal.pone.0007792.g001
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Figure 2. C. elegans SMF transporters rescue EGTA sensitivity of yeast DSmf1+DSmf-2 mutant. S. cerevisiae double-mutant Smf1D+Smf-2D
is hypersensitive to exposure to the divalent cation chelator EGTA (red), when compared to wildtype (dotted black line). Transvections of C. elegans
smf-1 (blue), smf-2 (green) or smf-3 (orange) cDNA rescue the double-mutant hypersensitivity to EGTA.
doi:10.1371/journal.pone.0007792.g002

Figure 3. Mn exposure leads to severe osmoregulation defects and developmental delay. (A) Excretory canal in a control wild type L1
larva (solid white arrow heads). (B, C) Enlargement of the excretory canal in L1 larvae acutely exposed to 35 mM MnCl2, after 24 h (solid white
arrowheads) is associated with vacuolization (hollow arrowheads). Vacuoles are also observed in the sheath cells of the chemosensory organs (D) and
in the epidermis (E). (F) Control larva 24 h after 0 mM MnCl2 treatment. (G) Dying vacuolated (black arrowheads) larva 24 h after 35 mM MnCl2
exposure. (H) worms exposed to 35 mM MnCl2 (grey) are about 30% shorter than control animals (black). I, most larvae exposed to 35 mM MnCl2 are
still in L1 stage at 24 h post-treatment when control animals are L2. Error bars represent SEM, *** p,0.001, scale bars are 5 mm.
doi:10.1371/journal.pone.0007792.g003
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significantly more Mn at 35 mM (p,0.05), 100 mM (p,0.001)

and 150 mM (p,0.001) than any other strain, while smf-3(ok1035)

mutants accumulated significantly less Mn than the other strains,

both at 100 mM (p,0.001) and 150 mM (p,0.001).

smf-1(eh5) mutants exhibit a Mn-dependent decrease in Fe content while

smf-2(gk133) mutants are naturally depleted in Fe. In addition to Mn2+,

DMT1 can transport a wide range of metallic cations including

Zn2+, Pb2+, Cd2+, Ni2+, Co2+, and Fe2+ [67]. It has been shown in

rodents and cell cultures that Mn and Fe compete for transport via

DMT1 [66,68]. In particular, high intracellular Fe levels lead to

reduced Mn intake in rats [69]. To take into account a potential

influence of Fe levels on Mn content, we analyzed Fe levels in

parallel to Mn content. This analysis revealed that smf-2(gk133)

mutants have a significantly lower Fe content than the other

strains, which was not affected by Mn dose (Fig. 5B). Wildtype Fe

levels were not significantly impacted by 0 to 100 mM Mn

exposures, but showed an increase at 150 mM. Upon transient

Mn depletion, smf-1(eh5) and smf-3(ok1035) mutants displayed

higher Fe levels, but they underwent a gradual Fe depletion with

increasing Mn doses (Fig. 5B). smf-1(eh5) Fe content significantly

dropped below WT levels when exposed to 150 mM Mn,

suggesting a role for SMF-1 in Fe uptake at high Mn doses.

SMF-1 and SMF-3 expression partially overlaps in the main epithelia

while SMF-2 is restricted to minor epithelial tissues.

To understand better the differential roles of the smf genes in C.

elegans, we studied their expression pattern. We generated

transgenic strains expressing the green fluorescent protein (GFP)

under the control of smf-1, smf-2 or smf-3 promoters (smf-1::GFP,

smf-2::GFP, smf-3::GFP), as well as strains expressing GFP-tagged

SMF-1, SMF-2 and SMF-3 (SMF-1::GFP, SMF-2::GFP, SMF-

3::GFP). In all cases the GFP signal was detected from late

embryogenesis to adult stage, with generally higher expression

levels in young larvae (L1 stage). None of the transgenic strains

obtained showed any reproductive, developmental, behavioral or

morphological defects, or intracellular GFP aggregates, thus

establishing that the transgenes did not adversely affect the worms’

physiology and that their expression levels were likely within the

physiological range.

Both smf-1::GFP and SMF-1::GFP were prominently expressed

in the anterior and posterior intestine and associated gland cells

(Fig. 6A, 6B, 6C). A strong expression was observed in the anchor

cell (AC) during larval life and in the adult proximal uterus

resulting from the fusion of AC with uv1, uv2 and utse cells

(Fig. 6A, 6D, 6E). GFP signal was also consistently seen in the

adult spermatheca (Fig. 6F). Fainter expression was observed in

the major epidermis hyp7, in the pharyngeal muscles, and in a

subset of anterior sensory neurons, ring neurons, and posterior-

head neurons (Fig. 6A, 6G). SMF-3::GFP was mostly observed all

along the intestine, with a weaker expression in the most proximal

and distal regions (Fig. 6H, 6I). A weak epidermal expression in

hyp1-6, hyp7 and hyp8-12, and in head and tail neurons was also

seen (Fig. 6J, 6K, 6L, 6M). In contrast to the broad SMF-1::GFP

and SMF-3::GFP expression patterns, SMF-2::GFP was mostly

restricted to the mc1, mc2, mc3 epithelial cells of the pharynx and

the pharyngeal-intestinal valve cells vpi1-6, displaying an anterior-

posterior expression gradient (Fig. 6N, 6O). SMF-2 was also

observed in the gonad sheath cells at the adult stage (Fig. 6P, 6Q).

SMF-1 and SMF-3 are apically localized while SMF-2 is mainly

cytoplasmic. The full-length SMF-1::GFP and SMF-3::GFP allowed

us to observe the intracellular localization of SMF-1 and SMF-3.

In vertebrates, the DMT1 isoforms are mostly localized at the

apical side in intestinal, rectal and kidney epithelial cells [66]. In

agreement, SMF-1::GFP and SMF-3::GFP were localized at the

apical plasma membrane in all epithelia in which they were

expressed (Fig. 7A, 7B). Conversely, SMF-2::GFP was associated

with intracellular cytoplasmic compartments and to a lesser extent

to the apical membrane of the mc epithelial cells (Fig. 7C).

Variation in SMF protein levels/localization upon Mn exposure. Studies

in vertebrates and yeast showed that DMT1 and DMT1-like

isoforms are differentially regulated by metals, such as Fe and Mn

[66]. In particular, modulation of expression and protein levels by

Fe has been extensively studied [66]. In vertebrates, the DMT1

gene encodes two to four isoforms, defining two functional types

which depend upon the presence of an Iron-Responsive Element

(IRE) in their 39UTR (+IRE isoform) or its absence (-IRE isoform)

[70]. A consensus sequence for this IRE has been identified in

Figure 4. Dose-response lethality curves reveal a differential sensitivity to Mn exposure for smf mutants compared to wild type
worms. Upon 30 min exposure to MnCl2 as L1 larvae the lethal concentration 50 (LD50) at which half of the worms were dead at 24 h, was 47 mM for
wildtype worms (black, N = 12), 93 mM for smf-1 mutants (blue, N = 6), 26 mM for smf-2 mutants (green, N = 7), and 126 mM for smf-3 mutants
(orange, N = 5). Error bars represent SEM, *** p,0.001.
doi:10.1371/journal.pone.0007792.g004
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several proteins involved in Fe metabolism and regulation [71].

Yeast studies also showed differential regulation of Smf genes upon

Mn and Fe exposure or depletion [55]. More specifically, in Mn-

replete conditions, Smf1p and Smf2p are targeted to the vacuole

for degradation, but they accumulate at the plasma membrane

and in intracellular vesicles upon Mn depletion [56,72,73]. Unlike

Smf1p and Smf2p, which are regulated by Mn at a post-

translational level, Sm3p is regulated by Fe at a transcriptional

level [56]. Given the impact of metal cation levels (Fe and Mn) on

DMT1 isoform expression and localization in both vertebrate and

fungus models, we addressed the possibility that C. elegans SMF

activity may also change with environmental Mn concentration.

We used C. elegans strains transgenic for the SMF::GFP reporters

to follow DMT1-like protein expression and localization changes

Figure 5. Variations in Mn and Fe content in smf mutant worms upon Mn exposure. (A) WT and smf mutants take up Mn in a dose-
dependent manner. smf-2(gk133) (green) takes up significantly more Mn than WT (black) and other mutant worms following exposure to 35
(# p,0.05), 100 (## p,0.001) and 150 mM (### p,0.001) MnCl2. smf-3(ok1035) (orange) mutants take up significantly less Mn than other worms
at 100 (## p,0.01) and 150 mM (### p,0.001). (B) Fe content varies differentially in smf mutants and WT upon Mn exposure. smf-2(gk133) (green)
display significantly lower Fe levels (# p,0.05), while smf-1(eh5) and smf-3(ok1035) mutants show higher Fe levels (# p,0.05) than WT in absence of
Mn treatment (0 mM), and at very low Mn concentration for smf-1(eh5) (0.001 mM). Error bars represent SEM. While # designate significant
differences between genetic backgrounds exposed to the same manganese dose, * indicate significant differences between exposure doses within
the same C. elegans strain: #/* p,0.05. ##/** p,0.01, ###/*** p,0.001.
doi:10.1371/journal.pone.0007792.g005
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upon Mn exposure. We performed the same L1 acute treatment

protocol as for our Mn toxicity and Mn content measurements,

and collected worms at 1, 5 or 30 hours post-treatments for image

analysis. SMF-1::GFP and SMF-2::GFP expressing worms did not

show any obvious changes in either expression levels or

intracellular localization. However, 1 hour post-treatment,

SMF-3::GFP was translocated to apical vesicular compartments

in the L1 intestine (Fig. 8A, 8B); at 5 hours the intestinal GFP

signal was considerably reduced; it was not solely restricted to the

apical plasma membrane, showing also cytoplasmic expression

(Fig. 8C). This phenomenon was reversible, since at 30 hours

post-exposure, both the expression levels and the subcellular

localization of SMF-3::GFP returned to normal (Fig. 8D). These

observations are supported by quantifications of SMF-3::GFP

fluorescence at 5 and 30 hours, showing a significant decrease of

SMF-3::GFP levels at 5 hours, but not at 30 hours post-treatment

(Fig. 8E). This result suggests that SMF-3 function is regulated by

Mn levels and further supports a major role for SMF-3 in Mn

uptake.

Variation in smf gene expression by RT-PCR. Given the fact that C.

elegans expresses DMT1-like isoforms with partially overlapping

expression patterns, we examined if they displayed some

functional redundancy and if their relative expression levels were

dependent on each other and on metal levels. We also wondered

whether SMF-3::GFP down-regulation upon Mn exposure could

be explained by transcriptional inhibition. To address these issues

we conducted quantitative real-time reverse-PCR assays (QRT-

PCR) on wild-type, smf-1(eh5), smf-2(gk133), and smf-3(ok1035)

worms acutely exposed to 0, 1, 10, 100 mM of MnCl2. Both

primers sets used to monitor smf gene transcriptional levels showed

that smf-1 and smf-3 were up-regulated at 0.1 mM of Mn and

down-regulated at 10 and 100 mM Mn in WT and smf mutants,

but not in smf-2(gk133) (Fig. 9A, 9B, 9C). As expected, smf-1

expression was undetectable in smf-1(eh5), since the smf-1 primers

were chosen within the deleted region in smf-1(eh5) (Fig. 9A). In

smf-1(eh5) and smf-3(ok1035) mutants, smf-2 was also up-regulated

at 0.1 mM of Mn and down-regulated at 10 and 100 mM Mn,

while in WT, smf-2 expression was not affected by any of the Mn

levels (Fig. 9B).

Noticeably, smf-2 was strongly overexpressed in smf-1(eh5)

(Fig. 9B). In smf-3(ok1035), all smf genes were found overexpressed

compared to WT, especially smf-3 (Fig. 9C), implying that a

functional SMF-3 is required to maintain normally low smf gene

expression. Lastly, smf gene expression was not influenced by Mn

exposure in the smf-2(gk133) genetic background (Fig. 9A, 9B, 9C).

This observation supports a role for SMF-2 in smf gene regulation

upon changes in environmental Mn status.

Discussion

We identified three new functional members of the DMT1

family in C. elegans. All three rescued the yeast DSMF1+2 EGTA

sensitivity, and revealed important for metal homeostasis in the

worm, with very little functional overlap. SMF-1 and SMF-3 were

Figure 6. Expression pattern analysis of C. elegans smf genes. A,
SMF-1::GFP strongly localizes to the anterior and posterior intestine
(solid white arrowheads), to the anchor cell (hollow arrowhead) and to
head neurons (white arrows). smf-1::GFP and SMF-1::GFP reveal
expression of smf-1 gene in rectal gland cells (B,C, black asterisks), in
the uterus (uv1, uv2, utse syncytium, D,E, solid white asterisks) as well as
in the adult spermatheca (F) and the L1 hyp7 epidermis (G, white
arrowheads). Dotted lines outline the cuticle of the worm. Hollow

asterisks indicate position of fertilized embryos. Hollow arrowheads
indicate position of the vulva. smf-3 is mainly expressed in the intestine
as revealed by smf-3::GFP (H) and SMF-3::GFP (I), in the major epidermis
hyp7 (J, dotted line) and head epidermis hyp1-6 (K, dotted line), and in
head (L) and tail neurons (M). An antero-posterior gradient of smf-2
expression is noticeable in the 9 marginal epithelial cells of the pharynx
(mc1, mc2, mc3) and the 6 vpi cells of the pharyngeo-intestinal valve (N
and O). Fainter expression is consistently observed in the proximal
gonad (P, Q). Scale bars are 5 mm.
doi:10.1371/journal.pone.0007792.g006
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broadly expressed in C. elegans epithelia; they were required for

Mn uptake and toxicity, and exhibited the classical apical

localization of DMT1. Conversely, SMF-2 expression was

essentially restricted to specialized pharyngeal cells, where it was

predominantly cytoplasmic, and to endow partial protection

against Mn-induced toxicity. SMF-1 and SMF-2 were both

required for normal Fe intake, SMF-2 being necessary for Mn-

dependent Fe content regulation. Mn exposure revealed influential

on transcriptional regulation of the three smf genes, but only

affected the post-translational regulation of SMF-3. Our results

Figure 7. Subcellular localization of SMF::GFP reporters. SMF-1::GFP mostly localizes to the apical plasma membrane of the intestine and sub-
apical compartments (A, D, dotted line in A underlines the basolateral membrane of the intestine, dotted lines in D delimit its apical plasma
membrane). SMF-2::GFP is seen in cytoplasmic organelles in mc and vpi cells (E, cell plasma membranes are marked by a dotted line, N indicate the
position of the nuclei). SMF-3::GFP is mainly restricted to the apical plasma membrane of the intestine and apical vesicular organelles (C, F, dotted line
in C underlines the basolateral membrane of the intestine, dotted lines in D delimit its apical plasma membrane). Scale bars are 5 mm.
doi:10.1371/journal.pone.0007792.g007

Figure 8. SMF-3::GFP is down-regulated upon Mn exposure. SMF-3::GFP signal is strongly detected at the apical plasma membrane prior Mn
treatment (A). After 1 hour of exposure to 35 mM MnCl2, SMF-3-GFP localizes to sub-apical vesicular compartments (B). C, SMF-3::GFP signal is
strongly decreased at 5 hours post-treatment. After a day of recovery, SMF-3::GFP expression returns to control levels and SMF-3::GFP relocates to the
apical plasma membrane (D). Scale bars are 5 mm. (E) quantification of apical plasma-membrane SMF-3::GFP in the whole intestine after 5 and 30 h of
exposure in control and treated animals. While # designate significant differences between genetic backgrounds exposed to the same manganese
dose, * indicate significant differences between exposure doses within the same C. elegans strain: #/* p,0.05. ##/** p,0.01, ###/p,0.001.
doi:10.1371/journal.pone.0007792.g008
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Figure 9. Genotype and Mn exposure influence on smf gene expression. Both independent primer sets corresponding to the 39 end of the
cDNA and used to assess smf gene expression (set A bright colors, and set B faded colors) give consistent results (A, B, C). smf-1 and smf-3 mRNA
levels display similar variations, increasing at low Mn exposure (0.1 mM) and decreasing upon high Mn concentrations (10 mM and 100 mM) in WT,
smf-1 and smf-3 mutants (A, C, black, blue, orange). smf-2 mRNA levels follow the same tendency in smf-1 and smf-3 mutants but are not affected by
Mn exposure in WT (B). Independent of Mn exposure, smf-1(eh5) mutant is characterized by a strong up-regulation of smf-2 expression (B, blue).
Compared to other genotypes, smf expression in smf-2(gk133) does not appear to correlate with Mn exposure (A, B, C, green). The smf-3(ok1035)
mutant exhibits higher smf gene expression levels regardless of Mn exposure dose (A, B, C, orange). While # designate significant differences
between genetic backgrounds exposed to the same manganese dose, * indicate significant differences between exposure doses within the same C.
elegans strain: #/* p,0.05. ##/** p,0.01, ###/p,0.001. Displayed significance levels between treatments reflect the weakest significance score
obtained between both primer sets.
doi:10.1371/journal.pone.0007792.g009
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unravel a complex metal-regulation system involving 3 distinct

DMTs coordinately regulated by metal levels, and bear interesting

implications on the modulation of the vertebrate DMT activities

carried out by NRAMP1 and DMT1 isoforms.

SMF-3 regulates and is specifically regulated by Mn. In addition to

expression and localization data, Mn content measurement and

dose-response lethality curves in smf mutants clearly indicate that

SMF-3 is a major Mn transporter in the worm, which is required

for Mn-induced toxicity. smf-3(ok1035) is the mutant most resistant

to acute Mn exposure (Fig. 4). SMF-3 is expressed in the epidermis

and located all along the intestine, where most Mn absorption

likely occurs (Fig. 6). SMF-3 sub-cellular localization is apical,

consistent with a role in Mn uptake (Fig. 7). smf-3(ok1035) is the

only mutant that displays a significant decrease in Mn content

upon MnCl2 treatment (Fig. 5), implying that SMF-1 or SMF-2

cannot compensate for SMF-3 depletion. Moreover, SMF-3 levels

and apical localization are strongly decreased 5 hours after toxic

Mn exposure and are restored after a 24 hour recovery period

(Fig. 8). Finally, QRT-PCR revealed a decrease in smf-3 mRNA

levels upon Mn exposure at 10 and 100 mM (Fig. 9). These

observations support the notion that smf-3 is down-regulated both

transcriptionally and post-translationally upon Mn exposure,

which limits toxic accumulation of Mn in the worm. After a day

of recovery allowing for the excretion of Mn accumulated upon

previous exposure, SMF-3 levels return back to normal levels,

permitting nutritional divalent cation uptake. Our experiments

support a regulation of SMF-3 levels at the post-translational level,

by relocating and degrading SMF-3. The translocation of SMF-3

likely to endosomal compartments in response to excessive Mn

exposure can be related to the vacuolar targeting of Smf1p and

Smf2p in Mn-replete conditions in yeast [56,73,74]. In porcine

kidney cells, (-IRE)-DMT1 isoforms have been shown to be more

rapidly and efficiently internalized upon metal exposure when

compared to (+IRE)-DMT1 isoforms [39]. Although we did not

find any typical IRE sequence in any of the three smf 39UTR

sequences (data not shown), we observed a drastic internalization

of SMF-3 upon Mn treatment, but not of SMF-1 or SMF-2.

Additionally, DMT1 has the highest affinity for Mn2+ [67] and

SMF-3 is the C. elegans orthologue that is responsible for most Mn

uptake. Hence, in C. elegans, SMF-3 may be the functional

counterpart of the vertebrate -IRE forms of DMT1.

An atypical role for SMF-2 in Mn homeostasis. smf-2 is located

downstream of smf-1 on the X chromosome. Due to the absence of

any splice acceptor site in the smf-2 sequence and based on our

GFP-reporter analysis, it is unlikely that smf-1 and smf-2 belong to

the same operon. Indeed, both exhibited very distinct expression

patterns (Fig. 6) and mutations in smf-1 or smf-2 have opposite

effects on Mn sensitivity (Fig. 2). The high degree of conservation

between both genes suggests that they result from a duplication

that happened early in the Caenorhabditis lineage, since it is also

found on the C. briggsae and C. remanei X chromosomes (http://dev.

wormbase.org/db/seq/gbrowse_syn/pecan/?search_src = elegans;

name = chrX%3A6716267..6721098). smf-2(gk133) mutants exhib-

ited hypersensitivity to Mn exposure and a higher Mn content than

wild type worms (Fig. 2, 5), indicating that SMF-2 partially protects

against Mn exposure, which may not be solely explained by a role in

Mn uptake. The intestinal expression of SMF-1 and SMF-3 from

late embryogenesis to adulthood strongly supports their involvement

in metal uptake, while SMF-2 expression and subcellular localization

in the pharyngeal epithelial cells is intriguing, since these cells are not

known to be involved in nutrient or toxicant uptake (http://www.

wormatlas.org/handbook/alimentary/alimentary1.htm).

SMF-2 may rather be involved in the regulation of Mn toxicity,

either by allowing its excretion, its sequestration, or the

modulation of Mn uptake via the other DMT1-like isoforms, or

a combination of the above. Because of the structural and

functional similarities between SMF-3, SMF-1 and SMF-2, we

favor the idea that pharyngeal SMF-2 takes up metallic cations,

allowing for the overall regulation of Mn content. Several

hypotheses can be formulated. First, SMF-2 could work as a

sensor of environmental Mn levels, and a downstream signaling

pathway would either impact Mn uptake via SMF-3 and SMF-1 or

Mn excretion via as of yet uncharacterized transporters. The

anterior-posterior gradient of SMF-2 expression in the pharynx

would provide a differential mechanism to accurately estimate

metal concentrations. Second, SMF-2-driven inhibition of Mn

uptake could involve modulation of the pharyngeal pumping. The

marginal cells of the pharynx, which express SMF-2, are

electrically coupled to the pharyngeal muscles by gap-junctions

[75]. In mammalian cells, high Mn concentrations have been

shown to impact cardiomyocyte contractility by inhibiting the

Ca2+-ATPase [76,77]. Considering the structural and functional

similarities between the C. elegans pharynx and the vertebrate heart

[78], Mn uptake via SMF-2 in marginal cells might impact

pharyngeal muscle activity. Decrease in pharyngeal pumping

would result in reduced nutrient and Mn intake. This could also

account for the slow growth of Mn-treated animals. Third, our Fe

content analysis suggests that SMF-2 is an important Fe

transporter. The lack of SMF-2 leads to lower Fe levels in the

smf-2(gk133) worms (Fig. 5B), which would allow for increased Mn

uptake by SMF-3 or SMF-1 (Fig. 5A). Moreover, Fe content is

high at low Mn exposure, and drops at high Mn exposure in smf-

1(eh5) and smf-3(ok1035) mutants, while it is constant in smf-

2(gk133) mutants (Fig. 5B). The smf gene expression also follows

this trend. It suggests that SMF-2 is required for Mn-dependent

variations in Fe content and smf gene expression. SMF-2 is active

in a different cell type as SMF-1 and SMF-3 (Fig. 4), and those

cells are connected through gap-junctions. To reconcile these data,

we propose that SMF-2-dependent Fe-uptake is inhibited at high

Mn doses, leading to a Fe-depletion in the pharynx and a reversed

Fe gradient across the animal. In turn this Fe imbalance, together

with increased Mn content would lead to the down-regulation of

smf genes in a SMF-2-dependent manner (Fig. 10B).

Based on SMF-2::GFP subcellular localization (Fig. 7), which

appears to be in puncta in the cytoplasm, but not in the nucleus,

SMF-2 could be present in most membranous intracellular

organelles of the endo-lysosomal pathway. Its activity could be

increased by the V-ATPase-driven acidification of those compart-

ments, similarly to DMT1 in endosomes and NRAMP1 in

phagosomes [33], leading to metal transport to the cytosol. On the

one hand, generation of double-transgenic C. elegans strains to

conduct colocalization studies with lyzosomal (LAMP-1 and

LAMP-2) and endosomal (RAB-5, RAB-7) markers would be

beneficial in determining if the puncta seen in Fig. 7 correspond to

endo-lyzosomal compartments. On the other hand, colocalization

with an essential V-ATPase subunit, such as VHA-8 [89], and

observation of orange acridine (pH-sensitive vital dye) staining in

SMF-2-positive puncta and measurement of C. elegans Fe content

upon variation in environmental pH, could be used to study the

pH-dependency of SMF-2 function.

SMF-1: minor in Mn physiology, major in Fe homeostasis? Though

expression pattern, sub-cellular localization and mutant analysis

might suggest an important role for SMF-1 in Mn2+ uptake, Mn

content measurements failed to show a significant difference

between wild type and smf-1(eh5) mutant worms. Thus, a

difference in Mn uptake may not account for their resistance to

Mn exposure. Several hypotheses may be advanced to explain this

apparent discrepancy. First, SMF-1 may mediate Mn toxicity

NRAMP and Mn in C. elegans
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Figure 10. Working model for Mn and Fe uptake by SMF transporters in C. elegans. A: Regulation of Mn, Fe contents and SMF transporters
upon low Mn exposure (0.001 mM to 3 mM), which is believed to be beneficial for the worm physiology [92]. B: Regulation of Mn, Fe contents and
SMF transporters upon high Mn exposure (50 mM to 150 mM), which was shown to be toxic (Fig. 3, 4). We propose that SMF-3* is the main
transporter responsible for Mn uptake (A), and that it is degraded upon exposure to high Mn concentrations (B). Since high Fe content limit Mn
uptake, SMF-3 may be inhibited by intracellular Fe (A). SMF-1 would be involved in Mn uptake to a lesser extent, and together with SMF-2*, would be
responsible for Fe uptake. Upon Low Mn exposure SMF-2 would be mostly required for Fe uptake (A), whereas upon high Mn exposure, SMF-2 would
be inhibited and SMF-1 would partially compensate for Fe uptake (B). In the case of SMF-2 and SMF-1, metal uptake could essentially take place in
acidified endosomal compartments, as SMF-2 is mainly cytoplasmic and SMF-1 is detected in sub-apical compartments. Gap-junction
communications between pharyngeal epithelia, vpi cells and intestinal cells permit Mn2+ and Fe2+ to diffuse distant from their site of uptake,
allowing metal-dependent regulation of smf mRNA stability or transcription. A prediction of our model is that the Fe gradient established by SMF-2
activity would be reversed upon high Mn exposure (B), and could constitute the signal for smf expression regulation. Since basal smf mRNA levels
depend on the integrity of each smf genomic sequence (Fig. 9), transcriptions of smf genes are assumed to be interdependent, maybe because they
require a common transcription factor. * SMF-2 might transport Mn and SMF-3 might transport Fe, but these possibilities are not explored in this
model. The size of the text reflects the concentration of the species.
doi:10.1371/journal.pone.0007792.g010
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subsequent to Mn uptake at the apical membrane of the intestine,

transporting Mn from endocytic compartments to the cytosol. In

absence of SMF-1, endocytic Mn content would remain the same,

but Mn would not be transported across the membrane to reach

the cytosol and trigger toxicity (Fig. 10). The presence of SMF-1 in

intracellular vesicular organelles supports this idea (Fig. 7). When

located at the apical plasma membrane, SMF-1 would then be

largely inactive; being activated upon acidification of the endocytic

vesicles by the vacuolar-ATPase [33,48,79]. Second, SMF-19s

contribution to Mn uptake may be minor compared to SMF-3 and

Mn content measurements would not be able to reflect the

relatively limited, yet physiologically significant variations in Mn

content. This alternative explanation is logical within the context

of the DMT family, in which different isoforms have been shown

to transport distinct cations with variable efficiencies. Hence, the

vertebrate NRAMP1 is a critical Fe transporter in macrophages

[80,81,82], and has a poor affinity for Mn compared to DMT1

[67]. SMF-1 may thus be the counterpart of NRAMP1 in the

worm, being predominantly required for Fe uptake. Additionally,

smf-1(eh5) is the only mutant which showed a significant Mn-

dependent depletion of Fe content, despite the overexpression of

smf-2 in this context. It indicates that SMF-1 is required to take up

or conserve Fe at high Mn concentrations, and may be responsible

for Fe homeostasis (Fig. 10). Third, the QRT-PCR experiments

revealed that the smf-1(eh5) mutant exhibits a higher smf-2

expression level than wildtype, smf-2(gk133) and smf-3(ok1035)

worms. If as mentioned previously SMF-2 is protective against Mn

toxicity, the resistant phenotype of the smf-1(eh5) mutant may

reflect the overexpression of SMF-2. In this case, SMF-1 would

not necessarily be involved in Mn transport. Fourth, the previous

hypotheses are not mutually exclusive. Lastly, SMF-1 is able to

rescue EGTA sensitivity in yeast beyond WT level (Fig. 2). This

better rescue could be due to a higher transgene copy number or a

better stability of the SMF-1 product in the yeast, resulting in

higher SMF-1 levels and a hypermorphic phenotype. However, it

could also indicate that this transporter has a broader range of

substrates than SMF-2 and SMF-3 and may be functionally closer

to a canonical DMT.

New insights for the study of the eukaryotic family of DMT1-related

transporters. Our analysis of the C. elegans DMTs reveals that they

are closely related structurally and functionally to their vertebrate

orthologues. SMF-1 and SMF-3 are apically localized in epidermal

and intestinal cells, consistent with observations about DMT1

distribution and sub-cellular localization in vertebrates [47,85,86].

Moreover, DMT1 proteins transport divalent metallic cations via

coupling with the proton gradient [47] in part generated by the

vacuolar-ATPase apically localized both in vertebrates and in C.

elegans epithelia [66,89,90]. Interestingly, the three C. elegans

isoforms display distinct expression levels and contribute differen-

tially to Mn and Fe physiology, similarly to the +IRE, -IRE forms

of DMT1 and NRAMP1 in vertebrates. The fact that SMF-2

antagonizes SMF-3 could be connected to the suspected antiporter

activity of NRAMP1 relatively to the symporter activity of DMT1.

NRAMP1 was proposed to be extruding metals against the proton

gradient [91]. This activity would rely on specific residues located

before the transmembrane domains (TMD) 9 and 12, which differ

between NRAMP1 and DMT1. In particular, in mammals,

NRAMP1 exhibits a basic residue K389 instead of a polar residue

N403 for DMT1, at the end of the CTS. Interestingly, our

multiple-alignment reveals that all other DMT1 orthologues

including Malvolio, SMF-3 as well as yeast Smf1p, Smf2p and

Smf3p display a polar residue (N or Q) at this position, while SMF-

1 and SMF-2 show a basic residue (R or K) similarly to NRAMP1

(Fig. 1). SMF-2 also seemed to limit Mn accumulation. However,

unlike NRAMP1, SMF-1 and SMF-2 efficiently rescue the yeast

DSMF1+2 EGTA sensitivity. Moreover, their expression in the

proximal digestive system argues against an antiporter activity that

would result in metal extrusion. Therefore, it would be very

interesting to test the ability of SMF-1 and SMF-2 to rescue the

heavy metal ion stress in DBSD2/DRER1 yeast mutants.

Ultimately the symporter or antiporter activity of DMTs may

depend on the metal ions and their concentrations on both sides of

the membrane. Environmental, cytosolic and organelle metal

concentrations in yeast, oocytes, macrophages or distinct C. elegans

cell types may vary enough for DMTs to function differently

depending on the context. Another point is that the specific

expression patterns of SMF-1, SMF-2 and SMF-3 remained the

same through the worm’s post-embryonic life, implying that the

cell-specific expression levels of smf genes are embryonically

determined, further variations resulting from changes in metal

exposure and physiology.

Analysis of our results allows us to propose a working model for

Mn and Fe uptake regulation in C. elegans (Fig. 10). We favor the

notion that metal ion gradients play the key role in the regulation

of expression, sub-cellular localization and activity of DMTs in C.

elegans. To further test this idea, fluorescent ferrochromes could be

used to visualize in vivo the Fe gradient upon various Mn

exposures. To yield further information on the metal-transport

abilities of the various DMTs from worm to human, one could

perform a systematical comparative analysis of DMT family

member biochemical properties in yeast using complementation

rescue of DBSD2/DRER1 and DSMF1+2 mutants, coupled to an in

vivo study using metal-exposed transgenic C. elegans expressing

tissue-specific chimerical DMT transgenes. Such a dual approach

should help solve the paradox concerning the antiporter activity of

NRAMP1 orthologues, and the effect of metal gradients on DMT

activity.

To dissect out the relative contributions of each smf gene in

metal physiology in C. elegans, the generation of double or triple smf

mutants would also be of great interest. However generation of the

smf-1;smf-2 double mutant and the triple mutant smf-1;smf-2;smf-3

would require a new deletion mutant in which both smf-1 and smf-

2 expressions are lost, since the short genetic distance between

both genes would make recombination events between smf-1(eh5)

and smf-2(gk133) very unlikely. In addition, considering that smf-2

is strongly up-regulated in smf-1(eh5) (Fig. 9), it is possible that the

eh5 deletion, by bringing smf-1 promoting or enhancing sequences

closer to the smf-2 gene, affects its natural expression. This

potential issue should be carefully considered before further usage

of smf-1(eh5) to generate double-mutants. Combining RNAi and

single mutants could be another way to address the redundancy

issue, with the limitation that RNAi may not be fully penetrant or

specific enough to affect single isoforms.

Relevance of our C. elegans model to study Mn toxicity and related diseases.

Mn exposure has long been suspected to be responsible for IPD

cases. The commonalities between manganism and PD suggest that

both pathologies, at least in part, rely on shared genetic networks

and molecular mechanisms. Due to the increasing incidence of PD,

notably in most populous countries [23], there is growing interest in

identifying contributing genetic and environmental factors. In this

context, development of amenable genetic models to study gene-

environment interactions is essential. Our work corroborates the

utility of C. elegans as an appropriate complementary whole-animal

model to decipher molecular mechanisms and genetic predisposi-

tion to metal induced toxicity. First, we showed that C. elegans takes

up Mn readily and is sensitive to Mn exposure, exhibiting

developmental delay, excretory cell and osmoregulatory defects

which can be related to kidney and bladder defects observed in
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rodents [83,84] and man [44]. The high Mn concentrations used in

our study (when compared to cell-culture studies in which the LD50

approximates 1 mM for 24 h exposures) likely reflect three

characteristics of the model. C. elegans is sheathed with a cuticle

impermeable to ions and only few orifices would physically allow

metal ion uptake, namely the mouth, the rectum, the pore cell of the

excretory system and the chemosensory organs. In support of this,

the Mn content measured by atomic absorption spetrophotometry

(AAS) in wild-type worms treated at the LD50 (47 mM) corre-

sponded to an effective dose of 12.5 mM. Another point to consider

is that the worms in the present study were acutely treated (30 min)

in contrast to most cell culture studies that involve more protracted

exposures (.24 h). It is also likely that the worm, naturally living in

soil, where ion concentrations fluctuate greatly and rapidly, may be

physiologically more robust than mammalian cells. Second, our

functional analysis of the SMF transporters in the yeast (Fig. 2)

together with the metal content measurements in wild type and smf

mutant worms (Fig. 5A), show that the three C. elegans DMTs are

involved in metal uptake regulation. Third, two of these

transporters, SMF-1 and SMF-3 are mostly expressed in the

intestine, a portal for Mn and Fe uptake both in worms and

vertebrates. SMF-1 and SMF-3 are also apically localized in

epidermal and intestinal cells, consistent with observations about

DMT1 distribution and sub-cellular localization in vertebrates

[47,85,86]. Fourth, several facts inherent to the regulation of DMTs

by Mn or Fe and vice-versa previously described in mammalian

models also hold true in C. elegans. For example, we showed that low

Mn exposures (0.1 mM) tend to increase and high concentrations

(100 mM) to decrease smf gene expression (Fig. 9). SMF-2 was

required in this regulation process as Mn concentration-dependent

effects are not observed in the smf-2(gk133) mutant (Fig. 5, 9). Fifth,

Fe and Mn tissue levels are interdependent and depend on

environmental concentrations. In the smf-2(gk133) mutant, low Fe

content is associated with an increased ability to take up Mn. In smf-

1(eh5), Fe content decreases with increasing Mn exposure (Fig. 5).

Last, we found that SMF-3 N-terminal sequence contains a putative

Mitochondrial Targeting Sequence (MTS, probability 93.66%

given by MitoProt, http://ihg2.helmholtz-muenchen.de/ihg/

mitoprot.html): MPRVHRQSRWNSVSFSGFFLQISGIKPRF.

Our analysis of SMF-3::GFP sub-cellular localization did not

reveal any epithelial mitochondrial targeting in vivo. However, it

could happen in tissues that were not investigated in this study

such as neurons, or in situations that were not covered by our

experimental conditions. If it was confirmed, a mitochondrial

targeting of DMT1 orthologues would mean that their activity

could directly impact mitochondrial function and potentially

apoptosis, in particular in neurodegenerative processes [87,88].

Taken together, our data suggest that Mn uptake and toxicity

mechanisms involving DMTs are conserved from nematodes to

man. Because other genetically amenable invertebrates such as D.

melanogatser only express one DMT (Malvolio, Mvl), and given the

large panel of currently available techniques on the nematode

(toxicology, molecular biology, forward and reverse genetics,

confocal and electron-microscopy, biochemistry), C. elegans pro-

vides a convenient in vivo platform to further investigate metal

toxicity and related neurodegenerative disorders in which DMT1-

related transporters are suspected to play an important role

[87,88].
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