
HAL Id: hal-00439876
https://hal.science/hal-00439876

Submitted on 8 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A first study of the complete enumeration of all
analogies contained in a text

Julien Gosme, Yves Lepage

To cite this version:
Julien Gosme, Yves Lepage. A first study of the complete enumeration of all analogies contained
in a text. 4th Language & Technology Conference, Nov 2009, Poznań, Poland. pp.401 à 405. �hal-
00439876�

https://hal.science/hal-00439876
https://hal.archives-ouvertes.fr

401

A first study of the complete enumeration of
all analogies contained in a text

Julien Gosme and Yves Lepage

GREYC, university of Caen Basse-Normandie
14032 Caen cedex, France

Abstract
This paper deals with the problem of the complete enumeration of analogies contained in a text. We propose a generic method for this
problem. Relatively to a baseline method we propose two improvements which allow us to save up to 95% of memory space and 70%
of processing time.

keywords: text algorithmics, complete enumeration of analogies, successors of an analogy, breadth-first search algorithm, first
non-trivial analogies

1. Introduction
Semantic analogies have been extensively used in SAT
tests for US College entrance exams to assess the knowl-
edge of students: given a pair of words with a clear se-
mantic relation, the students are asked to find that pair of
words among five candidate pairs of words, which shares
the same semantic relation. For instance, given “ma-
son : stone”, students are asked to choose among:

(a) “teacher : chalk”
(b) “carpenter : wood”
(c) “soldier : gun”
(d) “photograph : camera”
(e) “book : word”

(Turney, 2008) has shown how vectorial techniques com-
bined with the use of corpora can solve these semantic puz-
zles with a performance comparable to that of human be-
ings.

In linguistics, historically, analogy has been first
used in the grammatical tradition on the morpholog-
ical level for conjugation and derivation. Analogy
also explains derivational morphology as in “ectoskele-
ton : ectocardia :: exoskeleton : exocardia” where “ecto”
and “exo” are prefixes in composition with the stems
“skeleton” and “cardia”. (Langlais et al., 2008) show how
to exploit analogies between medical terms in order to coin
new words and propose missing translations.

Analogies in the lexicon are known to structure that
lexicon. For instance the analogy “connector : to con-
nect :: editor : to edit” reflect connections on the form and
meaning levels between the substantives “connector” and
“editor” and the verbs “to connect” and “to edit”. (Claveau
and L’Homme, 2005) show how lattices reflecting the
structure of the lexicon can be derived from the compu-
tation of analogies between words.

A study by (Lepage, 2004a) has shown that analogy
also structures sets of sentences. He experimentally proved
that almost all analogies between sentences are indeed
meaningful as is the case in: “Do you like music? : Do you

go to concerts often? :: I like classical music. : I go to clas-
sical concerts often.”.

All these previously quoted studies would benefit from
a generic method for analogy enumeration. Ideally the
method should be able to enumerate analogies between
sentences, words or even chunks, or more generally be-
tween any substrings contained in a text. This paper deals
with this general problem: the complete enumeration of all
analogies between substrings contained in a text, that con-
form to some precise definition of formal analogies. The
problem of the semantic validity of these analogies is out
of the scope of this paper.

The paper is divided as follows. The second sec-
tion details formalizations used and gives notations. The
third section details a method for the complete enumera-
tion of analogies contained in a text. The fourth section
presents the analogy search space and compares two pos-
sible traversal strategies. The fifth section presents two ini-
tialization strategies for the method and shows the best one.

2. Types of analogies and formalizations
2.1. Types of analogies
Given a corpus (see Figure 1), we want to enumerate all
non trivial analogies A : B :: C : D where the four terms A,
B, C and D are all different. An example is “I’d like some
instant coffee. : I’d like some instant coffee, please. :: May
I have the menu? : May I have the menu, please?”.

I’d like some instant coffee.\n
I’d like some instant coffee, please.\n
May I have the menu?\n
May I have the menu, please?\n
May I have tea instead of coffee?\n
Tea, with milk.\n

Figure 1: Excerpt from part of the BTEC released during
IWSLT 2008 campaign (Paul, 2008)

Trivial analogies are those analogies of the form
A : A :: B : B like “I’d like some instant coffee. : I’d like
some instant coffee. :: May I have the menu? : May I have
the menu?”. Obviously, they do not give any information.

 {Julien.gosme,Yves.Lepage}@info.unicaen.fr

402

An extreme case of trivial analogies is the degenerated
case: ε : ε :: ε : ε where ε stands for the empty string.

To summarize, we are not interested in analogies of the
form A : A :: B : B with A �= B or A = B �= ε or A =
B = ε.

2.2. Formalizations of analogy between strings
Two formalizations of analogy have been proposed re-
cently. The formalization of (Lepage, 2004b):1

A : B :: C : D ⇒

d(A, B) = d(C, D)
∀a, |A|a + |D|a = |B|a + |C|a

and that of (Stroppa and Yvon, 2005):2

A : B :: C : D ⇒ A • D ∩ B • C �= ∅

We will use the characterization that can be derived
from both formalizations in order to enumerate all analogy
candidates:

A : B :: C : D ⇒ ∀a, |A|a + |D|a = |B|a + |C|a

One can easily add a filter to adapt our generic method
to any of the two specific previous formalizations.

It can be shown that the four idempotent (p ◦ p = id)
permutations on terms listed below:

A : B :: C : D
pAB←→ A : B :: C : D

A : B :: C : D
pAC←→ A : C :: B : D

A : B :: C : D
pCD←→ C : D :: A : B

A : B :: C : D
pDB←→ D : B :: C : A

can produce the eight equivalent forms of an analogy (Lep-
age, 2004b):

A : B :: C : D = pAB(I)
A : C :: B : D = pAC(I)
B : A :: D : C = pAC ◦ pCD ◦ pAC(I)
B : D :: A : C = pCD ◦ pAC(I)
C : A :: D : B = pCD ◦ pDB(I)
C : D :: A : B = pCD(I)
D : B :: C : A = pDB(I)
D : C :: B : A = pAC ◦ pDB(I)

with I = A : B :: C : D

2.3. Notations and naming conventions
We note by T the text from which we enumerate all analo-
gies. The symbol at the position i in the text T is written
T [i]. The substring of T starting at position i inclusive and
ending at the position j exclusive is written T [i, j[.

In addition, any string in a text T can be represented
by a pair (length, positions). For example, in the text May
I have tea instead of coffee?, the string tea can be repre-
sented by (3, {11, 18}) because the length of tea is 3 and

1d stands for the Levenshtein distance and |A|a stands for the
number of character a present in the string A. In this definition
C can be exchange for B.

2The symbol • denotes the shuffle string operation.

it is found at positions 11 and 18 in the text and nowhere
else.

Given a substring in a text, the substring stands unam-
biguously for the pair (length, positions). In the sequel
of this paper we shall not be concerned with the recipro-
cal problem of finding a substring in a text T for a given
(length, positions).

3. An iterative method for complete
enumeration of analogies contained in a

text
3.1. Subsequent analogies
We propose a method for the complete enumeration of
analogies contained in a text based on the iterative con-
struction of analogies starting with seed analogies. Given
a seed analogy A : B :: C : D, we want to construct itera-
tively all subsequent analogies AA′ : BB′ :: CC ′ : DD′.

All subsequent analogies of a seed analogy
“A : B :: C : D” can be derived by iterative application
of a successor operation that is based on a successor
operation on substrings in a given text.

3.2. Successors of analogies
A string A = (m, {i1, i2, . . . , ip}) in a text T stands for all
T [ij , ij + m[. The set of all successors of these strings is
the set T [ij , ij + m + 1] = a1, a2, . . . , aq where the last
symbol aq may be the same character for different values
j in ij . The set of successors of A is defined as follows:

SuccStr(A) = {A · ak, ak ∈ {a1, a2, . . . , aq}}
For example, the successors of inst =

(4, {14, 44, 133}) in the text of Figure 1 is :

SuccStr(inst) = {insta, inste}
= {(5, {14, 44}), (5, {133})}

In a first step, we define a left successor of a seed anal-
ogy A : B :: C : D as an analogy A′ : B′ :: C : D such that
A′ and B′ are successors of A and B with the same last
symbol. Formally:

LeftSucc(A : B :: C : D) =
{A · a : B · a :: C : D/A · a and B · a substrings of T}

For example the left successors of the analogy
inst : inst :: lik : lik in the text in Figure 1 are:

LeftSucc(inst : inst :: lik : lik) =
{insta : insta :: lik : lik, inste : inste :: lik : lik}
Left successors do not cover all possible successors of

an analogy. Those can be enumerated using the 4 permu-
tations introduced in Section 2.2.:

AllSucc(A : B :: C : D) =
{ pxy ◦ LeftSucc(A : B :: C : D) ◦ pxy,

∀xy ∈ {AB, AC,CD,DB} }
For example, the set of all the successors of

inst : inst :: lik : lik are:

{ insta : insta :: lik : lik, inste : inste :: lik : lik,
inst : inst :: like : like, inst : inste :: lik : like,
inste : inst :: like : lik }

403

3.3. Causes of redundancy
Enumerating analogies through successors can lead to the
output of the same analogy in two different cases.

In the first case, the application of AllSucc to the same
seed analogy results in two equivalent forms of the same
analogy. We address this problem in Section 3.4..

In the second case, the application of AllSucc to two
different analogies results in two equivalent forms of the
same analogy. We address this problem in Section 3.5..

3.4. Redefining AllSucc

The first case of redundancy arises from the defini-
tion of successors given in Section 3.2.. For in-
stance, in the previous example, inst : inste :: lik : like
and inste : inst :: like : lik are two forms of the same anal-
ogy. A mechanical procedure should discard one of them
to save processing time.

To identify equivalent analogies, one form among the
height equivalent forms, called canonical form, can be dis-
tinguished.

Given a total order on strings and given the four per-
mutations listed in Section 2.2., it is easy to show that the
constraint A ≤ B, B ≤ C and A ≤ D distinguish a
unique analogy among the height equivalent ones. The to-
tal order on substrings in a text T is defined as follows.
With A = (LA, PA) and B = (LB , PB):

A ≤ B ⇔ LA < LB or LA = LB and PA ≤ PB

We call Can the function that delivers the canonical
form of an analogy. For example Can(inste : inst ::
like : lik) = lik : like :: inst : inste in the text given
Figure 1.

With the previous remarks, we can now redefine the
function AllSucc using Can:

CanAllSucc(A : B :: C : D) =
{ Can(x), ∀x ∈ AllSucc(A : B :: C : D) }

With this, the set of successors for our previous ex-
ample inst : inst :: lik : lik reduces from 5 analogies to 4
canonical analogies:

{ lik : lik :: insta : insta, lik : lik :: inste : inste,
like : like :: inst : inst, lik : like :: inst : inste }

3.5. Use of dynamic programming
As mentioned in Section 3.3., a second case of redun-
dancy occurs when two different analogies can lead to the
same canonical analogy by application of CanAllSucc.
For example ε : ε :: ab : ab and a : a :: a : a both lead to
a : a :: ab : ab (see thick arrows in the search space in Fig-
ure 2). Memoizing analogies during transitive closure, i.e.,
dynamic programming is the standard answer to this prob-
lem. Our program makes use of this technique.

4. Search space and traversal strategies
The complete enumeration of all analogies contained in a
text can be performed by a step by step application of the
function AllSucc from some seed analogies. The set of all
analogies obtained constitutes the search space.

4.1. Analogy search space representation
By definition of CanAllSucc, for each step Ai : Bi ::
Ci : Di −→ Ai+1 : Bi+1 :: Ci+1 : Di+1, the total length
of strings always grows according to the relation |Ai+1|+
|Bi+1|+ |Ci+1|+ |Di+1| = |Ai|+ |Bi|+ |Ci|+ |Di|+2.
The search space may thus be represented as a directed
acyclic graph where the depth of an analogy is the sum of
the string lengths (see Figure 2).

In general, the depth of an analogy A : B :: C : D in the
search space is:

d(A : B :: C : D) =
|A|+ |B|+ |C|+ |D|

2

and it is also the length of the path from the root analogy
ε : ε :: ε : ε.

For instance, in the text T = ab\nc\n of Figure 2, the
depth of the analogy a : a :: ab : ab is:

d(a : a :: ab : ab) = 3

Indeed, All paths between the root analogy and a:a::ab:ab
consist in three successor transitions, as highlighted by
thick arrows in Figure 2.

4.2. Traversal strategies
In order to traverse the search space, two strategies may be
adopted: a depth-first one and a breadth-first one.

The depth-first search algorithm is implemented with
a stack of analogies. In addition, some data structure will
memoize all past analogies.

Since analogies of depth di+1 in the search space are
successors of analogies of depth di, it suffices to memoize
the analogies on two levels of depth in order to explore the
entire space search.

Technically, this can be implemented by a breadth-first
search with two queues. The first queue consists of analo-
gies of depth di+1 being dequeued when processed. The
second one consists of analogies of depth di being en-
queued for later processing. When the first queue is empty,
depth i is incremented and the first and the second queues
are exchanged.

4.3. Assessment of traversal strategies
We have implemented the breadth-first and the depth-first
search traversal strategies.

Our test is the following text:

Please input your pin number.\n
This is my first time diving.\n
I want to have a tight permanent.\n

We start the traversal of the search space with the seed
analogy ε : ε :: ε : ε (referred to as empty string analogy
initialization in subsequent sections). During processing
a maximum of 1,607,436 analogies were simultaneously
stored by the depth-first search algorithm. In contrast the
breadth-first search algorithm stored up to 74,547 analo-
gies simultaneously. The experimental conclusion is that
breadth-first algorithm search saves 95% of memory com-
pared to the depth-first search algorithm. Tests on a range
of longer texts have shown even better figures.

404

ε : ε :: ε : ε

ε : ε :: b : bε : ε :: a : a ε : ε :: c : c

a : a :: c : ca : a :: b : ba : a :: a : aε : a :: b : abε : ε :: ab : ab b : b :: b : b b : b :: c : c c : c :: c : c

ab : ab :: b : ba : a :: ab : ab ab : ab :: c : c

ab : ab :: ab : ab

d = 2

d = 1

d = 0

d = 3

d = 4

T = ab\nc\n

ε = (0, {0, 1, 2, 3, 4})
a = (1, {0})
b = (1, {1})
c = (1, {3})

ab = (2, {0})

Figure 2: Analogy search space as a directed acyclic graph. This figure shows the search space for the complete enumeration
of analogies contained in the text ab\nc\n (\n is end-of-line). Nodes are analogies (canonical form) and edges connecting
analogies are successor relationships. In this example, there is only one non-trivial analogy ε : a :: b : ab. The two paths
connecting the seed analogy ε : ε :: ε : ε to the analogy a : a :: ab : ab are highlighted by thick arrows.

5. Initialization strategies

5.1. Empty string analogy initialization

In the previous tests ε : ε :: ε : ε was the empty string anal-
ogy seed for the traversal because it is the only analogy be-
ing the successor of no other analogy, as the empty string
is the only string with no proper prefix.

5.2. First non-trivial analogies initialization

The empty string initialization is an obvious choice and
works fine. However, this initialization strategy leads to
the enumeration of many trivial analogies before finding
the first non-trivial ones. By definition, those first non-
trivial analogies have the form A : A · a :: B : B · a with
A �= B, A �= ε and B �= ε. All such pairs (A, B) ver-
ifying these conditions can be efficiently listed using suf-
fix arrays (Manber and Myers, 1990) and they become the
seed analogies in the first non-trivial analogies initializa-
tion strategy. The framed analogies in Figure 2 are the
only ones enumerated with this strategy. They represent
one third of the entire search space.

5.3. Improvement due to first non-trivial analogies
initialization

We assess the benefit of first non-trivial analogies initial-
ization on four sets of sentences extracted from the English
IWSLT 2008 corpus (Paul, 2008) consisting in 19,972 sen-
tences. Each set contains 10 sentences similar in lengths:
10, 20, 30 and 40 characters (±10%). For this experi-
ment we added the constraint that substrings cannot over-
lap end of lines. Any analogy involving an end-of-line was
discarded. The corpus of 30-characters long sentences is
shown below.

Please input your pin number.\n
This is my first time diving.\n
I want to have a tight permanent.\n
Let me look at the receipt, then.\n
Please open your mouth wide.\n
Where’s the nearest perfumery?\n
Can you sew on this button?\n
Go left at the third corner.\n
Would you clean these clothes?\n
You break it, you bought it.\n

For each corpus and both initialization strategies, we
timed the complete enumeration of analogies. The traver-
sal strategy used is the breadth-search algorithm.

Reductions in times obtained by first non-trivial analo-
gies initialization over the empty string analogy initializa-
tion are shown in the following table.

Line lengths 10 20 30 40
Reduction in time 69.1% 60.7% 61.9% 73.2%

The first non-trivial analogies initialization strategy
saves two thirds of processing time. The graph in Figure 3
shows that even more reduction in processing time can be
expected for longer texts.

6. Related research and application
(Lepage, 2004a) shows that the complete enumeration
of analogies between sentences from a corpus of around
100 000 sentences is very expensive in time: ten days.
(Lepage et al., 2007) show that there is thousand times
more analogies between chunks than analogies between
the sentences from wich those chunks have been extracted.
The ultimate goal of the present work is to enumerate all
analogies between chunks in two languages for their use in
a machine translation system, so as to leverage on the ease
of translating chunks. (Langlais and Yvon, 2008) report
a fast method for the enumeration of analogies between

405

