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SYNOPSIS

This paper reports the first predictions of theldjistress of suspensions of non-Brownian
magnetic fibers in the presence of uniform magniéidds. The quasi-static regime of the
shear deformation (before the flow onset) of thepsamsion is studied. Four different
structures of the magnetic fiber suspensions ansidered — column, zigzag, 3D stochastic
and near-planar stochastic structures — and thé gteess is attributed to the failure of the
given structure at a critical strain. The main cditions to the yield stress are found to come
from the restoring magnetic torque acting on edaoérfand from the solid friction between
fibers. The enhanced magnetorheological effect afgmetic fiber suspensions observed
experimentally (companion paper) is explained anmadntjfied in terms of interfiber friction.
Surprisingly, the dipolar magnetic interactionswesn fibers do not affect significantly the
yield stress. The lowest yield stress is obtairedHe zigzag structure and the highest one for

the column structure. A reasonable agreement \waghekperiments is obtained for 5 and 7 %



fiber volume fractions in the frame of the morelist model of near-planar stochastic

structures.

INTRODUCTION

The theoretical study of nonmagnetic fiber susmerssistarted with the work of
Jeffery (1922) who calculated the rotation of agknelongated particle in shear flow.
Jeffery’s results were subsequently used for thautation of the stress tensor of diluted fiber
suspensions [Batchelor (1970); Brenner (1974); Kiacd Leal (1973)], as well as of semi-
diluted and concentrated suspensions with eitheg-tange or short-range hydrodynamic
interactions [Batchelor (1971); Shagfeh and Frédoa (1990); Doi and Edwards (1986);
Folgar and Tucker (1984); Joung et al. (2001); Rlo@®90); Qi (2006); Rahnama et al.
(1995); Yamamoto and Matsuoka (1995)]. Useful negieare given by Ganani and Powell
(1985), Larson (1999), Petrie (1999) and Zirnsadd.ef1994).

Unfortunately, the predictions of the theories thike into account only
hydrodynamic interactions, fail for rather concatdd fiber suspensions. In this case, the
contact forces between fibers give a significamtgbution to the stress. In concentrated
suspensions, the fibers create an entangled etetticork and experience solid friction when
sliding over each other [Petrich and Koch (1998)ich suspensions possess a yield stress
attributed to the interfiber failure of the netwoBennington et al. (1990) reported the first
attempt to include the interparticle friction inder to calculate the yield stress in fiber
suspensions. A more rigorous model that takesantmunt stochastic fiber orientations was
reported by Toll and Manson (1994) for planar fiterspensions. This theory gives a
reasonably good prediction of the yield stresslahar fiber suspensions measured in shear
and squeeze flow [Servais et al. (1999); (2002)]mAre general theory for real 3D fiber

suspensions has recently been reported [Djalilidhaiglam and Toll (2005)]. This theory



incorporates both long-range hydrodynamic inteoastiand short-range interactions (near the
contact point between two fibers) and gives a measly good correspondence with
experimental results for the viscosity of fiber@eissions.

Particle level dynamic simulations of sheared fxifiber suspensions have also been
performed and have shown the extreme importanteeointerfiber friction coefficient in the
flocculation and rheology of the suspensions [Schetial. (2000); Schmid and Klingenberg
(2000); Switzer and Klingenberg (2004); LindstronddJesaka (2007)].

Note that colloidal forces between particles caso aive rise to a significant yield
stress in fiber suspensions [Philipse and Wierdd§88); Wierenga et al. (1998); Hovarth
and Lindstrom (2007)]. However, colloidal interacts are significant for submicron particles
and are expected to play a minor role for the ingdbt large fibers used in our experiments.
The other interaction that could provoke a gelatidra fiber suspension is the magnetic
interaction. In suspensions of spherical magneitiges, the application of a magnetic field
causes the formation of a network of particlesggregates throughout the suspension, which
gives rise to the appearance of large yield stsessg to 100 kPa [Bossis et al. (2002);
Ginder (1998)]. This phenomenon is known as maghetdogical effect and these
suspensions are called magnetorheological (MR)enisspns. The rheology of conventional
MR suspensions (suspensions of spherical magnaticcles) has been widely investigated
since the first study reported by Winslow (1949td@lled reviews can be found in Bossis et
al. (2002), Ginder (1998), Larson (1999), Shulm&f96) and Shulman and Kordonsky
(1982).

Whereas the rheology of suspensions of either ngnete fibers or magnetic
spherical particles has been the subject of thalssah papers and a few monographs, too
little attention has been paid to the rheologyuspensions of magnetic fibers, especially non-

Brownian ones. Nevertheless, due to the shapetespsoof fibers and the possible existence



of friction between them, their use in MR suspensicould enhance significantly the MR
effect [Lépez-Lépez et al. (2007)]. Furthermore, iateresting rheological behavior is
expected for such magnetic fiber suspensions, aumpithe behaviors observed in
nonmagnetic fiber suspensions and in conventionBl $4ispensions. Some experimental
rheological data on the rheology of elongated plarsuspensions that support this statement
are reported in the papers by Lopez-Lopez et @D{R Kuzhir et al. (2007), Bell et al. (2008)
and Ngatu et al. (2008). A detailed experimentalestigation on the shear rheology of
magnetic fiber suspensions, including the concaatradependence of the yield stress and
observations of the suspension structures unddredpmagnetic field, is presented in the
companion paper. A two- to three-time increase he yield stress of magnetic fiber
suspensions compared to suspensions of sphericglatia particles was found. However, no
theoretical model explaining this increase has besported. In the present paper, we
introduce the first microstructural models for metyn fiber suspensions and explain the
enhanced magnetorheological response of these rgispe in terms of interfiber solid
friction. Our theory covers the quasi-static regiofighe shear deformation (before the flow
onset) and combines the features of the point-witsgaction theory developed by Toll and
Manson (1994) for classical fiber suspensions dwedféatures of the column structure and
zigzag structure models for classical MR suspessiBossis et al. (1997); Volkova (1998)].

In contrast to suspensions of non-Brownian magrdiers, colloidal dispersions of
nano-sized elongated magnetic particles have bégied theoretically in some detail
[Aoshima and Satoh (2008); Rubi et al. (1993); &a@duet al. (1994); Satoh (2001, 2003,
2005),Tsebers (1984)]. These authors predicted for theg®ersions an increase in viscosity
and a shear thinning behavior upon magnetic figiglieation, but no field-induced yield
stress due to the intense Brownian motion. Thisabehn was confirmed experimentally

[Maiorov (1980)].



The present paper is outlined as follows. In théodang section we consider the
different interactions in magnetic fiber suspensi@nd we compare their energies. This
allows us to determine the dominating interactiansl, subsequently, to exclude the less
important ones from our theory. In section Ill, aenstruct a micromechanical model for four
particular structures of the magnetic fiber susass (i) column structures; (ii) zigzag
structures; and more realistic (iii) 3D stochasttcuctures and (iv) near-planar stochastic
structures. Finally, in section IV all these modats tested by comparing their predictions

with the experimental results reported in the comquapaper.

Il. INTERACTIONS IN FIBER SUSPENSION

When a suspension of non-Brownian magnetic ficesubjected to a magnetic field,
the fibers get magnetized, are attracted to eabhrand form an entangled network, as
described in the companion paper. The suspensild gtress is directly affected by the
mechanical strength of the fiber network, which, turn, depends on the interfiber
interactions. In our analysis, we shall considdy aery long (or very thin) magnetic fibers,
with aspect ratid /d = 10. In the presence of magnetic field, we expeceast the following
interactions in suspensions of long fibers:

a) Interaction between the fibers and the fielde Thagnetic field exerts a magnetic

torque on a fiber, which tends to align it with fredd. The energy of this interaction scales as

U,OmH =4,MV,H, (1)
where m=y,MV;, is the magnetic moment of the fibétrthe magnetic field intensity in A/m,

M the magnetization of the fiber material in AM,= Tol/4 the volume of the fibed andl



the fiber diameter and length respectively, amgd = 4 10° Henry/m the magnetic
permeability of vacuum.

b) Magnetic interaction between fibers. Let us assuhat fibers are dipoles with the
north and the south poles situated on the fiberemities. The total interaction is therefore
the sum of the pair interactions between the pofebe fibers. The characteristic energy of
such interaction is

d2
l—r.

2
u, D#D%MM @)

0
In this formulap = nVl is the intensity of the “magnetic poles” ands the distance between
the poles of neighboring fibers.
C) Mechanical contacts between fibers. They areifested through a normal reaction

force, f,, and a tangential friction force, which is assurtedbe Columbic:f, =&, with

being the friction coefficient. Under shear defotima, the fibers slip along each other and
the energy dissipated per fiber is equal to thekvadrthe friction forces acting on a given

fiber: W,, O &f Ax, with Ax ~1 being the displacement of one fiber relative tothar one.

When the fibers are misaligned with the magnettdfithe normal contact forces equilibrate

_ . : T, _ 4MVH
the magnetic torqueT O mH , acting on the fiber, and thereforg, Dl—m—l—.
Finally, the expression for the woll,, takes the form
W,, O &MV H. &)

Let us now compare the interaction energies. Digdequation (2) by equation (1),
we get the ratio between the dipolar interactiorrgy and the “fiber-field” interaction

energy:
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(4)

According to the experimental observations, therhin the suspension can touch each other

either by their extremities or by their lateral ingrical surfaces (see Figure 8 of the

companion paper). In the former case, the distart@een the poles of neighboring fibers,

is of the order of the fiber diametef, and the energy ratio (4) scales%% O

m

M—d. In the
HI

latter case, the contact point is located somewbetween the fiber extremities, and for long

fibers the distance is of the order of the fiber length, and the energy ratio (4) becomes

Ys
U, HLUI

2
DM(EJ . We estimated the energy ratio (4) for both cage&w and high magnetic

field and for a fiber aspect ratit/d ~10. These estimations are summarized in Table 1.

From data in Table 1, the dipolar magnetic inteocseems to be weaker than the “fiber-

field” interaction, except for end-by-end alignmeinfibers at low magnetic field.

Table 1. Comparison between dipolar “fiber-fibentdfiber-field” interactions.

End-by-end contact Side-by-side contact
Low field High field Low field High field
0 <H <50 kA/m H = 200 kKA/m 0 <H <50 kA/m H = 200 kA/m
Fiber M =xH ~ (10+ 109)H M~H M =xH ~ (10+ 109H M~H
magnetization

Energy ratio U, - Md d| U, .d |uU M (d ) dV | u d)?

cavmton®) |57 017 | 001 | o] o) | g(f)

Energy ratio U, _ Uy U _ U,
(numerical value)  j Hi-10 U, ol U_d Hol+1 U, 5 ool

Dividing equation (3) by equation (1), we get tladia between the energy dissipated

by solid friction and the “fiber-field” magnetic teraction energyW,, /U, 0O ¢. Petrich and

Koch (1998) reported a valug~ 0.4 for the friction coefficient of polymericbiers. We do



not have the value of the friction coefficient taur cobalt fibers, but it should be much larger
than the value for polymeric fibers due to the highghness of the fiber surface [Lopez-
Lopez et al. (2007)]. Thus, the work of the frictitorce should be at least of the same order
of magnitude than the magnetic energy, Therefore, we expect an important contribution

of the friction forces to the yield stress.

Finally, note that colloidal forces and Browniantron are not considered because the

corresponding characteristic energies are much rlavan the energy of the magnetic
interaction: U, /U, OA, /(44,MH [hdl) 110° and U, /U OKT /(4,MH [@*)010™",

Uvaw and Ug, being respectively the characteristic energiethefvan der Waals interaction
and the Brownian motion. Hetg~10"? is the Hamaker constartit-4 nm is twice the typical

thickness of the layer of surfactant grafted onpbdicles [Lopez-Lopez et al. (2008)]. The
fiber diameter and length were taker5 pm andl~50 pm, respectively. Note that the
hydrodynamic interactions are also neglected becdls quasi-static deformation of the

suspensions without any flow is considered.

The three above considered interactions —“fibddfjedipolar “fiber-fiber” and solid
friction between fibers— will now be incorporateda the theoretical model in order to predict
the yield stress of a fiber suspension in the pras®f magnetic field. The shear stress of the
structured suspension will be calculated for thesgstatic deformation of its structure
(before the flow onset) as the sum of the parstiesses. Consequently, we need to know the
arrangement of fibers in the suspension structuwar different structures will be considered
in this paper. We shall start with the simplest elaaf the column structure, which possesses
the highest possible anisotropy, and is usuallyeotesl in conventional MR suspensions,

composed of spherical magnetic particles [Boss.€1997); Zubarev and Iskakova (2006)].

. MICROSTRUCTURAL MODELS



[11.1. COLUMN STRUCTURE

Let us consider a suspension of identical magnibers confined between two
infinite plates. The distance between these platespposed to be much larger than the fiber
length. When the magnetic field is applied normdblythe plates, the fibers gather into
straight columns aligned with the field directiaomdaspanning the gap between the plates, like
shown in Figure la. The suspension is sheareddigpgacement of the upper plate, and the
strain angle i©. In this model, we consider that in each colunefthers overlap each other
at the same overlap lengthy (Figure 2a). When the suspension is strainedfibees slip
along each other and the columns extend andftillhel fibers in the columns do not slip on
the plates, each column is tilted at the ar@lender shear (Figure 1b). Such regular network
resists the shear deformation. There are at ldase tmechanisms of fiber suspension
response to the applied strain. First, each fiperences a restoring magnetic torque that
tends to turn it back to the vertical position. @&t the solid friction between fibers hinders
the extension of the columns and, consequently, aberall strain deformation of the
suspension. Finally, the magnetic dipolar attraxcbetween fibers must be overcome in order
to break the structure and to make the MR fluiavflé-irstly, we shall incorporate into our
model the two first mechanisms.

The fibers touch each other by their lateral cyilical surface and, therefore, their
contact area is reduced to a line of lengilfrigure 2c). The contact forces are assumed to be
distributed homogeneously along the contact lind #merefore, they can be considered to be
concentrated in a single point of the contact Hna the center of the overlapping section
Two forces are exerted at each contact point: tdrenal force f,, and the tangential friction

force,f=&,. The torque balance on each fiber gives:

T =f2s+1fd, (5)



s being the distance between the central crossesedi the fiber and the contact point
(Figure 1Db). If the contact point is located faorfr the center of the long fibes > d), we

neglect the second term in equation (5) and themabforce is therefore:
f,=—". (6)

The mechanical stresses arising in fiber suspessawa due to the contact forces
exerted on the fibers. Since the carrier liquidas elastic but Newtonian and there is not any
significant flow in the quasi-static deformatiomyime, the only contribution to the suspension
stress tensor is the particle stress. This is amwelaverage of the stresses contributed by each
fiber. In our particular case, since the forcesngcon the fibers are concentrated in single
points (point-wise interactions), the expression tfte suspension shear stress is given by

[Larson (1999); Toll and Manson (1994)].

1
r= V Zfibersz contactsrz fy ' (7)

HereV is the total volume of the suspensioris the distance between the fiber center and the
contact point and the sum is taken over all thetaminpoints on every particle of the

suspension. Since we have two contact points per,fihe expression (7) takes the form:

_ Ny _P
T—V(Zrzfy)—V—(Zrzfy). 8)

f
HereNs is the total number of fibers in the suspensiollwe, V; V; is the fiber volume and
is the volume fraction of fibers. The z-component ofie distance, r, is
r, = scosO +(d/2)sin® = scos®, and the y-component of the contact foficés the sum of
the corresponding components of the normal and tidnc forces:
f, = f,cos0 + f, sin®@ = fn(cose+fsin®). Substituting these expressions into equation (8)

and replacind, by the appropriate formula (6), we get:

10



r:\;iTm(co§O+%f sin B) (9)

f
The magnetic torque exerted on a fiber is givethiyexpression:

T, =mH sing = 4,MV,H siny . (10)
Here ¢ is the angle between the vectors of the magnetimemt of the fiberm, and the
magnetic field intensityd. The magnetization of the fiberd, is a function of the magnetic

field intensity Hy inside the fibers:M = y; (Hf)Hf with x; being the fiber magnetic

susceptibility. The fieldH; (cf. equation A.5) and the angieare defined in the same way as
for an infinitely prolate ellipsoid subjected to aniform magnetic fieldH, applied at an
angle © with respect to the major axis of the ellipsoidafidau and Lifshitz (1960)].
Substituting the expressions fldrand sing/ into equation (10), we get the following formul

for the magnetic torque:

2
Tmzl/,zo)(—fvf H2sin20. (11)
272+ ),

And the final expression for the shear stress reads

2
T=1,+T,, :%(DZT)(
f

1o H Z(Sin(Ze) cos©® +%Esin2 2@). (12)

The first termr, is the contribution of the “fiber-field” interacin and the second term, is

the contribution of the friction forces. The magasdteld, H, is in fact the mean magnetic
field inside the MR suspension. It is related te #xternal magnetic fieldo, through the
relative magnetic permeability of the fiber suspemslits calculation is summarized in the
Appendix.

The stress-strain curves calculated by equatioh 4fe? presented in Figure 3 for two
values of the friction coefficien = 0 and 1, for a magnetic field, = 100 kA/m, and for a

volume fractiond® = 0.05. As expected, these curves have a maxintigonae critical strain

11



angle,®.. Above this critical strain the static column stire becomes unstable (Figure 1c),
breaks and the flow starts (Figure 1d). In casenadll initial overlap of fibers, they can be
aligned end-by-end at subcritical angles (cf. Fegde). Such configuration will also be
unstable, and the fibers will turn towards the icaitposition under the action of the magnetic
torque (Figure 1g), they will detach from each othad the flow will start (Figure 1h).
Consequently, the column structure breaks eithethatcritical angle®. or at the angle
0, = acos(l—,Bo), corresponding to the end-by-end alignmen, =b,/| being the
dimensionless overlap. The yield stress of ther fluspension is the shear stress at which the
column structure breaks; it is given by equatid?)(in which we must replace the angldy
the yield angle,®, =min[O, , acosl— £, )] being the minimum strain angle corresponding
to the structure failure.

At sufficiently large overlapg3, = 0.15, the yield stress corresponds to the maximum

of the stress-strain curve. This maximum is shiftediards larger values & when the
friction coefficient is increased (Figure 3), andsi determined by the conditiogﬂg =0.To

get an approximate value of the an@lg we assume botj andH to be independent of the
strain angle®, and in this way we obtain the following equatfon©c:

C0S20, +C0os40, +£sin40, =0 (13)
Such approximation gives only a 5% error on thédystress. For a friction coefficier§,= 1,

we get a critical angle®. = 37°. In the absence of frictiof,= 0, equation (13) give®. =

30°, which corresponds to a yield stress:

2
rY=£q> X LoH? (14)
16 2+,

We shall compare these calculations with the erpamtal results in the last section of the

present paper. Note that, in the extreme casesrgflow or very high magnetic field, we can

12



)(f2

replace the term U,H? in equations (13) and (14) by, uH? or %,UOMSZ,

f
respectively.
We shall now include the dipolar magnetic interatsi between fibers in our model.
We suppose our fibers to be long sphero-cylindeth worth (=) and south (+) magnetic
poles, of intensity, located in the center of the end hemisphereshaan in Figure 2c. The
(-)-pole of the lower fiber is attracted to the-pole and repulsed by the (-)-pole of the upper

fiber (forcesf. and f-, respectively). On the other hand, the (+)-polehaf lower fiber is
attracted to the (—)-pole and repulsed by the @t¢-pf the upper fiber (force$. and f.,

respectively). The total interaction is the vectom of these four forces. Each of these forces
is equivalent to the electrostatic force actinguaen two electric charges: it is oriented along

the line joining the centers of the interactinggsoand follows Coulomb’s law:

p2
fy = A r? (15)
ofij

Herei =+~ j=+~-andp :Im is the intensity of the magnetic pole of a fiber.

Since f; D]/r,2 the strongest dipolar interaction is reached wihenextremities of

ij !
the neighboring fibers are in contact. Thereforés ittasonable to take into account only the
interaction between the two closest poles of neaghly fibers. Then, including these forces

in the torque balance (5) and in the stress equatfd, and performing the necessary

calculations, we arrive to the final expressiontfag shear stress:

_ _ex wH? 1, ..~ G(dY_ 4 16
[=T +I, +I, ) st@)co§@+§ES|nzZ@ 16(I] sin (2+,Yf)co§@+2+)(f Shige] (16)

13



co<O

Here, G = ﬂ_é(d/lz/z Jwith B=1-22%  The three contributions to the shear stress are
[+(a1Y]

the “fiber-field” interaction ¢,), friction (7, ) and fiber-fiber dipolar interactiorry).

In order to check the effect of the dipolar intéi@ts, we show in Figure 3 the stress-
strain curves for magnetic fiber suspensions withdipolar interactions (equation 12) and
with dipolar interactions (equation 16). Almost the whole range of strain angles, the
magnetic interaction between fibers lowers slighitly shear stress. This is because the fibers
tend to be aligned end-by-end and, therefore, tanmns tend to extend. The inclined
columns, confined between two plates, push thezetoe upper plate and facilitate the shear
deformation of the suspension. At high strain asgl®hen the fiber extremities become
closer, the magnetic attraction between the filmegpincreases. The normal componégt,
of the magnetic force becomes comparable with #mgential onef.,, The friction force
increases too, being proportional to the normaidoil herefore, we observe a rapid growth of
the shear stress close to end-by-end alignmentr@ig). The yield stress corresponds to the
global maximum of the stress-strain curve. It iacteed either at the critical strain angle

6. =30 for {<0.7, or at end-by-end alignment for higher frictionetfccients, { = 0.7

(Figure 3).

I11.2. ZIGZAG STRUCTURE

In reality, the fibers are not perfectly aligned borm a complicated network. One of
the model structures with lower anisotropy is tine avhere the fibers are connected by their
extremities, forming zigzag-like chains that spae gap between two parallel plates (Figure
4). Let the angle between the fibers and the magfietd be & at zero strain (Figure 4a).
When the suspension is sheared at a strain aBglbe zigzag structures are supposed to be

inclined in such a way that the axis of symmetryeath zigzag chain (the line joining fiber

14



centers) makes the angBewith the magnetic field (Figure 4b). We also sugpthat all the
fibers in the chain make the same anglewith the axis of symmetry. This angle is found

C0S9,

from geometrical considerationsoso = 5"
cos

Each fiber is subjected to the magnetic torque tanthe action of the contact and
magnetic dipolar forces. If we assume the fiberd¢osphero-cylinders, the fiber contact
points will be located on the lines joining the s of the end hemispheres of the
neighboring fibers. Each of these lines is paratidhe chain axis of symmetry and, therefore,
the normal contact forcé,, and the magnetic forcé;,, are also parallel to this axis. In each
zigzag chain, one half of the fibers make the a®@le o with the magnetic field, and the
other half the angl® — d Neglecting the terms of the order @fl , the balance of torques for
these two kinds of fibers reads:

T, =(f,~f,)Isind+f.| cod (17)

T,=—(f,—f,)Isind+ f.| cosd (18)
Since both fibers make different angles with thegnadic field, they are subjected to different
magnetic torques]; and T,. We have assigned the counter-clockwise dirediiopositive
magnetic torques. Thus, in Figure 5, the tordyeis positive andT, is negative. It is
important to note that, in the absence of fricti@iween fibers, the torque balance (17), (18)
can only be satisfied at zero strain, whgr —T,. The friction between fibers prevents their
extremities from sliding over each other, so that zigzag structure is not destroyed by the
shear deformation. Furthermore, when the fiberesnities do not slide, the friction forch,

is independent of the normal forf;e It can take any value not exceeding the maximé,
When the friction force become§ =¢f, the fiber extremities slide over each other until

they detach and the structure breaks —this coul@gond to the flow onset.

15



The magnetic torquet, andT, are defined by equation (11), in the same wayoas f
the fibers in the column structure. We only havedplace in equation (11) the angeby
appropriate angles + 6 ando — 5 and the magnetic susceptibility by the susceptibilities

X¢, and y,, of the first and the second type of fibers. Baqth and y,, are functions of the

magnetic field and are defined in the Appendix. Bhear stress is given by the general
expression (7) and, for the zigzag structure (abaragglecting the terms of the orderd ),

this expression takes the form:

r= \;2[— (f,—f,)cosO+ frsinO]cosG)cosJ (19
f

Working out the forces(f, - f, )and f., as functions of the torque$; and T,, using

equations (17), (18), and replacing the torqueshbyappropriate relation (11), we arrive to

the final expression for the shear stress:

2
X1
0s@-90)————cosP +09) (20)
2+ X, 2+ Xy

2
=%¢/,10stin(®+5)sin(®—5) COS@( Xiz

sind

Note that the friction coefficient does not intemean the expression for the shear stress. This
is because the fibers do not slide over each oftex friction force adapts its value to satisfy
the mechanical equilibrium of the structure, whighotally defined by the magnetic torques
acting on the fibers.

The stress-strain curves for fiber suspensions wiijzag structure are presented in
Figure 6 for a magnetic field intensitp = 100 kA/m and for three different initial zigzag
angles,a = 20°, 36° and 45°. We see that the shear sgegste sensitive to the initial angle
&, but the shape of the stress-strain curves isstme for anyd. At low strain, the
suspension develops a negative shear stress.sThecause the fibers tend to align with the
magnetic field, and they push each other in suetag that the zigzag chains tend to be

straightened up. These chains act as compressegispand when they are inclined under

16



shear, they push the upper plate both upward atfteidirection of the shear. This favors the
shear deformation of the suspension. At the same, tthe restoring magnetic torque acting
on each chain hinders the structure deformatiora Atrain angle large enough, the restoring
effect of the magnetic torque becomes dominantthadshear stress positive, undergoing a
rapid growth with the strain (Figure 6). Once itpssitive, the shear stress for the zigzag
structure grows monotonically with the strain angil the zigzag chains extend completely
and become straight chains (Figure 4d). At thiswpaorresponding to a strain an@e= &,

the zigzag structure becomes unstable and the $ibgpension begins to flow (Figure 4e).
Alternatively, if the friction force between fibextremitiesf; reaches its maximundf,, the
structure loses its stability at lower strains (FF@4c). In this case, as mentioned above, the
fiber extremities slide over each other and thecstire breaks at a critical ang®,, defined

by the conditiorf; = &,. Therefore, the yield angle is the minimum angleneen®. and &:

Oy = min[®. , &]. In order to determine the critical angl®,, the following formulas are

used:
HA/ ’ ’
fn:,uo i A sin2(@ + ) - Atz sin2(®@-9) [+ f,, (21)
4sind | 2+ x,, 2+ X,
HA/ 2 ’
T=/Jo f X1 Sin2(9+5)+XLSin2(@—5) ) (22)
4lcosd | 2+ xy,y 2+ X¢,

2 ¥
1+XD 1+XD
L L . 1 Cal 3 YN R TN " cod(©-d)+sif(©-0) 7
4y, o 16l 1+)(% 1+X%
(23)
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The magnetic susceptibilitiesy,, X;,, and x,, as well as the internal magnetic field, are

calculated in the Appendix. The yield stress foe #igzag structure is calculated using

equation (20) by replacing the strain an@eby the yield angl®y.

[11.3. 3D FIBER NETWORK

Both models studied above (column and the zigzagtsires) are, of course, ideal
representations of the real fiber structure. In pinesent section, we will consider a 3D
network of the fiber suspension with a stochasstritbution of fiber orientations (Figure 7a),
like the one observed in experiments (cf. Figuaé 8he companion paper). As in the previous
models, the fiber suspension is sandwiched betwesn horizontal infinite planes and
subjected to a magnetic field normal to the plahesus consider a shear deformation of the
suspension by a strain angde in the yz-plane. The fiber network deforms unskeain, and
the fibers displace and pivot relatively to eadhmeot their orientations being described by the
polar angledand the azimuthal angle We make the following assumptions:

1. The fibers are long cylinderkid >>1.

2. The effect of the magnetic field created by hbaying fibers on the magnetization of a
given fiber is taken into account by consideringttieach fiber is placed in an effective
medium with the mean magnetic fielth, calculated by the mean field theory (see the

Appendix).

3. As in the case of the column and zigzag strestuboth mechanical contact and dipolar

magnetic interactions are considered to be poisewi

In equilibrium, all forces applied to each fiber shgatisfy the force and the torque balance:

>.fi=0, (24)
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T, +> rxf,=0. (25)
Herer; is the vector connecting the fiber center with ploent of application of the force. If
the fibers are considered to be infinitely thine thectorr; is parallel to the fiber. We can

decompose the forces acting on the fibers intocttreponentsf,, f,, f, = f,, along the

y’ H
axes of the coordinate frame Ox'y'’z’ attached tgieen fiber (Figure 7b). The magnetic
torque vector,T,, =mxH , is perpendicular to the plane Ozz’ formed by fiher and the

magnetic field vectoH, and is parallel to the Oy’ axis of the fiber refece frame (Figure
7b). Projections of the torques onto the axes @&’ @y’ give:
-2.8%:=0, (26)
—Tm+zi§ f., =0, (27)
where the scalar, is defined by equation (113, is the distance between the fiber center and
the point of application of the fordg s > O if the point of application of the correspamgli
force is located above the fiber center, and otlsersy< O.
The shear stress of the fiber suspension is debgedbe general expression (7), where
the y-component of the force intervenes. Sincdaheef; is decomposed into the components
f., f, andf, along the axes of the fiber reference frame, teergponent of this force is

the sum of the y-components of each individual term

fo= (), + (8, +(6), (28)
From geometrical considerations (Figures 7b, c) wolatain: (fx,)w. = f,, cosfdsing;
(fy,)yi = f,, cosg, (fH)yi = f,,sindsing andr, =5 cosf. Thus, using these expressions and

replacing the forc§ by equation (28), the expression (7) for the sk&ass takes the form:

1 1 .
r zvzfibersZi rZi fyi ZVZfiberSZi (s fx'i COSZ 6 S|r¢ * S fy'i Cog COﬂ"‘S fl“ C& 391 ¢)
(29)
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Finally, taking into account the torque balanceugtpns 26, 27) and formula (11) for the

torqueTy, the expression for the shear stress is written as

2
1 1 X . . 1 . . _
r= VZfibers(EﬂOZ"'—)(fo H'sin26 cos'6 Sln¢j * EZfibers(Slnzg S|n¢2i S f\ li ) -
(30)

2
1 2 Xi . . 1 . .
E(D/JOH <2+)(f sin28 co§95|n¢> + Y Z“ﬁbers(smzeS|n¢zi S in)

The symbol {) denotes the averaging over a stochastic fiber n@ien:

{) :J'Oznd¢ J'OHF(¢,€) sind (...)d&, with F(¢,8) being the orientation distribution function

of fibers.
Formula (30) is pertinent to the calculation of #iear stress via direct particle-level
simulations, planned for future work. For analyiicalculations, it is required the knowledge

of the distribution of the longitudinal forces etezt on the fibersf,,, as well as the angular

distribution function of fiber orientationd; (¢,6 . At this moment, we do not know how to
predict them rigorously with statistical or energgalyses. Nevertheless, we can perform
analytical predictions of our theory for the netarar stochastic structure by introducing

some simplifications in the model.
[11.4. NEAR-PLANAR STOCHASTIC STRUCTURE

Let us now suppose that all the fibers lie mordess in planes parallel to the shear
plane. Thus, the fiber suspension can be reprasasta series of sheets, each one parallel to
the shear plane, and containing stochasticallynteck fibers, as depicted in Figure 8a. We
shall calculate the yield stress of such fiber mekwnder the following considerations:

1. Analogously to the column structure, the magneipolar forces are negligible and the

only forces exerted on the fibers are the contarces.
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2. Most of the contact points are located on therdh fiber surface rather than at the fiber

extremities.

3.  When the suspension is sheared, all the fidels sver each other, with the Coulomb’s
friction force,f; = &,. The two last assumptions were introduced by @od Manson (1994)

for suspensions of very long nonmagnetic fibers.

4. Fibers contained in the same sheet touch edwr ot a few points and their contact
forces are supposed to be parallel to the shepltayre. According to the second assumption,
the friction force between fibers contained in slagne sheet is parallel to the fiber major axis

Oz'. Therefore, the longitudinal contact force beéw fibers of the same sheet is

in* = fri* = gfni *.

5. Fibers contained in neighboring sheets have al§ew mechanical contacts between
them. Their normal contact forceino, are supposed to be perpendicular to the shear yz-
plane. Since the magnetic torque exerted on therdilis in the shear plane, there is no
magnetic torque in the xz-plane, and the normatamriorces,fno, are compensated only by
the magnetic dipolar forces between contactingrdilf€igure 8b). Tangential friction forces
between fibers contained in different sheets liethe shear yz-plane, and are equal to

f 2=¢&f°~&f . According to the first assumption, these frictitorces are negligible

Tl

compared to the friction forces between fibershef same sheet, ° << f_, .*Consequently,

Ti

the longitudinal contact force acting on fiberslvaihly include the friction forces between

fibers contained in the same shegt: = f > =¢{f *

ni

By analogy with formula (27), the balance of taglacting on a given fiber in the shear

yz-plane, reads:
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_Tm+Ziani* :O’ (31)
Taking into account this expression, replacing thagnetic torque by formula (11) and
setting ¢ = 77/2, we arrive to the following expression for the ahstress of our near-planar

structure:

rzgdb,%H2 X sin29 co$6 +—12 (€T, sinQ):—ldb,%H2 X sinﬁ( coa+ Siﬁ}
2 2y, oy “ers\® 2 2, 2

(32)

6. The angular mean in Equation (32) is calculatedtive angular distribution function

of the near-planar structure..) :J._"I/T/ZZF(H) (..)d@. The fiber orientation is supposed to be

strongly influenced by the shear deformation, deangular distribution function is assumed

to be Gaussian and centered at the strain a@gle,
F(6) = a,exp[-a,(6 - )] (33)

Heara; anda, are the parameters of the distribution functiamtfrermore, in the absence of
shear the fiber distribution is considered to h#rapic in the yz-plane. When the strain is
progressively increased, the fibers incline wita $itrain and get more aligned. At a threshold
strain angle®,, the structure is supposed to be completely $teetcthe straight fiber chains
making the angle®, with the magnetic field (Figure 1e). Under thesmnditions, the
coefficient a» of the distribution function (equation 33) must bero at zero shear, and

infinite at the strain angl®,. Then, this coefficient is supposed to be theofeihg function

. The first coefficient,a;, is found from the normalization

of the strain: a, =

a

iy 712 : /2 R
condition: j_ /ZF(H) dé=1, i.e. al=U_ /Zexd—az(e—e)z]dé’j . Finally, the threshold
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strain angle is set &, = 60° which corresponds to the complete alignnoérthe column
structure with the interfiber overldy = 0.9 (or overlap parametgt, = 0.5).

The stress-strain curve obtained by this modellogtqn in Figure 9 and compared
with the corresponding curves obtained for the mwland zigzag structures. In the same way
as for the column structure, the stress-strairtioglefor the near-planar structure presents a
local maximum, which corresponds to the yield strdhis maximum is observed at a strain
angle close to the ang®, of complete alignment of the structure. Note that stress-strain
curve departs from non-zero shear stress at zexio .sThis is not surprising because we have
assumed that, at any strain, all fibers slide @amh other and experience the friction force,
f, =¢&f,. At zero strain, the normal forces between rangooniented fibers are not zero,
leading to non-zero friction forces and thus tooa-mero contribution to the shear stress. In
reality, when the fibers do not slide, the frictitorces between them can take any value
within the range-¢f < f, < £f,, —this is the case of the zigzag structure, whieeefriction
forces between fiber extremities adapt their valmemaintain the structure mechanically
stable. Consequently, at small strain angles outeincannot predict with confident the shear
stress of the near-planar structure. It is theaeaghy we have plotted the initial part of the
stress-strain curve as a dashed line (Figure 9th®pother hand, at higher strain angles, when
the random structure has been sufficiently strgimedst of the fibers are expected to slide

over each other, and the assumptibn=<¢f, seems to be reasonable, at least for the

estimation of the yield stress.

V. DISCUSSION. COMPARISON WITH EXPERIMENTS
In the present section we compare the theoreticalligtions of the models
constructed above with the experimental valueshef yield stress of fiber suspensions

reported in the companion paper. Figure 10 showgltboretical and experimental values of
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the yield stress of fiber suspensions, plotted &mation of the external magnetic field, for
four solid volume fractionsp = 0.01, 0.03, 0.05 and 0.07. The five curves ichegraph
correspond to the theoretical results using theetsodescribed in the present paper and the
solid circles correspond to the experimental resuv#ported in the companion paper. As
observed in Figure 10, the highest estimation efyileld stress is given by the model of the
column structure with friction (upper solid cungd, equation 12), and the lowest estimation
by the model of the zigzag structure (lower solitive, cf. equation 20). At magnetic fields
Ho = 100 kA/m, the experimental points lie between ¢hego curves. At lower magnetic
fields the experimental yield stress is higher tiia®m one given by the highest theoretical
estimation. This is possibly due to the underedtchavalue of the initial magnetic
susceptibility used in our calculationg,= 17.3. As mentioned in the companion paper, this
value has been obtained by a fit of the experimantgnetization curve in the range of
magnetic fields 45 — 4000 kA/m.

Comparing different theoretical predictions, we endbat the yield stress for the
column structure with the friction coefficiedt= 1, is roughly two times higher than the yield
stress for the same structure without frictiontie latter case, the yield stress is given by
formula (17), which is very similar to the formuiar the column structure of classical MR
suspensions composed of spherical particles [Betsa. (1997)]. The authors of this paper

calculated the stress as the derivative of the etagenergy with respect to the shear strain:

= a(;Jm . The correspondence between our model and thbéasexl on magnetic energy was
4

expected in the limit case of zero friction, and iest of the validity of our model.
As observed in Figure 10, the dipolar magneticradtons between fibers do not give
any significant contribution to the yield stresetfdd curve, cf. equation 16). In reality, the

magnetic interactions between contacting fiberdccbe much stronger than those predicted
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by the dipolar approximation. The multipolar apmio@Klingenberg et al. (1991); Clercx and
Bossis (1993)], direct numerical simulations [Bessi al. (2003); Lopez-Lépez et al. (2006)]
and other sophisticated models [Ginder et al. (J9®8bssis et al. (2002)] allowed to
determine with precision the magnetic forces betwseherical particles. Nevertheless, the
dipolar approximation remains valid at high magnéelds, when the magnetization of the
particles is of the same order that the saturatiagnetization. In our experiments we cover
such range of magnetic field$ld{ = 200 kA/m, cf. Figure 1 of the companion paper).
Therefore, our conclusions made in the frame ofdipelar approximation remain valid, at
least for this range of magnetic fields. At lowmids the magnetic attraction between fibers
is underestimated and that could be another refsotie discrepancy between theoretical
and experimental resultsldg < 100 KA/m.

By analyzing the zigzag model we can identify tin® treasons why this model
predicts the lowest yield stress. Firstly, theistd zigzag chains act as compressed springs
that push upward the rheometer plate (cf. Figuje 8bcondly, this structure has a relatively
low anisotropy compared to the column structuree ost realistic model —the model of the
near-planar stochastic structure (equation 32)egy& reasonable correspondence with the
experiments at fiber volume fractiods = 0.05 and 0.07 (Figures 10c-d). This model takes
into account the friction between fibers as wellts progressive alignment of the fiber
network with increasing strain.

Let us now analyze the effect of solid concentratan the yield stress of fiber
suspensions. As observed in Figure 10, at fibeumel fractions® = 0.01 and 0.03, the
experimental points are closer to the predictionhef zigzag model. For more concentrated
suspensionsd = 0.05 and 0.07), the experiment is better desdrifly the column structure
model. One of the possible reasons for this behagia higher anisotropy of the more

concentrated fiber suspensions. In fact, in moreentrated suspensions the fibers have less
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free space to pivot. Consequently, as the soliceatnation increases, the fiber network is
supposed to approach a column structure. Nevesthelhatever the fiber concentration, the
column structure with perfect alignment of fibemncbe realized only in the absence of
friction. Note that the three inspected models wewl structure, zigzag structure and near-
planar structure— give almost linear concentratiependence of the yield stress. A small
deviation from linearity is observed at low-to-maate magnetic field (up to 100 kA/m). This
is connected to the weak concentration dependeh¢keomagnetic permeability of fiber
suspensions, which intervenes in the expressiontHer internal magnetic fieldH (cf.

equation A.1). However, such magnetostatic effacinot explain a power-law concentration
dependence of the yield stress as high as thatnaasesxperimentally:z, 0 ®"° (cf.

companion paper). The linear concentration depeaselé@m the column and the near-planar
structure models comes mostly from the assumptian the friction force between fibers is

longitudinal and always equal #f, . In this case, in equation (30) the s@s f,; over all
the contact points on a given fiber is simply pmjooal to the magnetic torque acting on a
considered fiber:zi s f, =<T,, whatever the number of contact points. Consedyethe

theoretical yield stress is linear in the number fiblers per unit volume (i.e. in the
concentration) rather than in the total numberasftact points. However, in a real situation of

the 3D stochastic structure described in Sectibg, the second term of the stress equation
(30) iz (sin26?sin¢z f ) is not necessarily proportional to the magnetitjie
! N fibers iS [1i /1 y prop g 1Ty

and can hide a stronger concentration dependemhigislthe case of isotropic suspensions of
non-magnetic elastic fibers, for which the yielcess is proportional to the number of contact
points per unit volume, which varies as the squdréhe solid volume fraction [Toll and

Manson (1994); Servais et al. (1999)].
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Note finally that the fiber friction coefficieng, is the only unknown parameter in the
models of the column and the near-planar stochasticctures. We plan to measure this

coefficient in order to obtain a model free of ualm parameters.

V. CONCLUDING REMARKS

In this work, predictions of the yield stress of gnatic fiber suspensions in the
presence of magnetic field have been performedtHer first time, on the basis of new
microstructural models. Our theory describes realsign well the enhanced
magnetorheological effect observed experimentalljnagnetic fiber suspensions (companion
paper), in terms of the interfiber solid frictidDifferent structures of fiber suspensions have
been considered in this paper. The quasi-stationegf the shear deformation of each
structure (before the flow onset) has been studied, the suspension yield stress has been
attributed to the structure failure at a criticaas.

The simplest column structure is expected at Iderfiber friction and/or at high fiber
volume fraction. Because of its high anisotropyhsstructure gives the highest estimation of
the yield stress of magnetic fiber suspensions.ofenisotropic structure is obtained when the
fibers form zigzag chains, which can act as conga@ssprings, restoring their energy and
decreasing the stress. Such zigzag structure fieewest estimation of the yield stress. In
the more realistic near-planar stochastic strudtuedibers are supposed to lie more or less in
planes parallel to the shear plane and to be sttichHy oriented within these planes. We
have introduced a Gaussian distribution functiorfileér orientations centered at the strain
angle. The yield stress predicted by this modelaser to the one predicted by the column
structure model than to that predicted by the Zjgaucture model.

We have also developed an effective medium thearyhfe real 3D stochastic fiber

network. This theory does not give an analyticadution for the yield stress, but gives a
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general expression for the shear stress as a duncfithe mean magnetic torque exerted on
the fibers and the contact forces parallel to therfaxis. Particle level simulations will be
performed in the future to investigate the behagisuch 3D network under shear.

In all the models, we have found that the two nwaintributions to the yield stress of
magnetic fiber suspensions come from the magnetipie and from the friction force, while
the dipolar magnetic interaction between fibergygla minor role. Nevertheless, a numerical
simulation (by finite element methods) of the magnmmteractions will be conducted in the
future to verify the validity of the dipolar appidaused in the present work.

Finally, the three considered models predict alfinetr concentration dependence of
the yield stress of fiber suspensions in the preseh magnetic field, while a dependence on
®°° was observed in experiments (companion paper)s @hicrepancy comes from the

assumption that the friction force between fibergqual toé f,, which will be corrected in

our future work. Despite this discrepancy, our tijecovers a quite wide range of the
rheological phenomena observed in the new and pgiogimagnetorheological fiber

suspensions.
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APPENDIX: CALCULATION OF THE MAGNETIC FIELD INSIDE  THE FIBER

SUSPENSION
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The magnetic field intensity inside a thin layer fdfer suspension sandwiched

L H . .
between two plates is given bt =—2, whatever the structure of the suspension. Higris

the external magnetic field intensity apgd is thezz-component of the permeability tensor of

the fiber suspension. The magnetic permeabilitythef suspension depends on the fiber
magnetic properties, the fiber volume fraction lbé tsuspension and the geometry of the
suspension structure, i.e. the arrangement ofdilmethe suspension. Let us consider first the
column structure of fiber suspensions, for whighis related to the permeability components

along the major and minor fiber axesy, and 4, through the expression:

My, = 14,coS © + 11 sin” @ . Hence, the internal magnetic field is:

H = R (A1)
H4,€0S © + 1 Sin° ©
We determing/, and g, using Maxwell-Garnett mean field theory [Berth{@993)] in the

same way as it was done by Bossis et al. (1997)Hercolumn structure composed of

spherical particles:

U =1+ )y, =1+ dy, (A.2)
1+q>2ff
X
/JD=1+)(D=—Xf- (A.3)
1-p- 21
2+ X

In the general case, the fiber susceptibiljty,, is a function of the magnetic field inside the

fiber, H:. To get this function, we fitted the experimentagnetization curve (cf. Figure 1 of

the companion paper) to the Frohlich-Kennelly folemdiles (1991)]. The expressions for

X andH; read:

28



__xM
=—2 s A.4
Xt M+ xH, (A.4)

2
1+XV
H, =H |cof@ +sinf@ —£2 | . (A.5)
1+X/
2
Here x; = 17.3 andVs = 1366 kA/m are the initial magnetic susceptipibind the saturation
magnetization of fibers, respectively. The simutiauns resolution of equations (A.1)—(A.5)
gives us the values of, , Hr andH at given external magnetic fieldy, strain angle® and
concentratiorb.
Using Maxwell-Garnett theory, we also get the magn@ermeability of fiber
suspensions with zigzag structure. The internalmatg field is given by formula (A.1) with

4, and 4, being the components of the magnetic permealditgor along the main axes of

the zigzag chains, Oz’ and Oy’ (cf. Figure 5):

_ _1+0(1-N )3,
'UH _1+)(|\ - 1_¢N\|ﬁ\ ! (AG)
Mo =1+ X = L+ o= Ny)s, (A7)

1-®dN B,

with N, :%sinzd, N, :%co§5 and 3, B, being given by the following expressions:

1 X X X X
ﬁlz_ f1 f2 - fl' —+ f2. _, (A.8)
2|1+ N X, 1+Nyx;, 2+ x;,SiN°0 2+ x,,Sin“d
1 X1 Xtz X1 Xtz
= — + = + . A9
& 2[1+ Nox,, 1+ ND)(fJ 2+ x,,C08 30 2+ X,,C08 3 (A-9)

Here the subscripts “1” and “2” correspond respetyito the fibers making the ang@+ o

and © - 9J with the magnetic field. The fiber susceptibilitigg,, and x;,, are functions of

the magnetic fields inside the fibetd,;, andH,,, and are defined by equations (A.4)—(A.5),
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where the angl® must be replaced b®@+J for H,, and ®-9J for H,,. Resolving the
system of equations (A.1, A.4, A5, A.6, A.7) we tfee magnetic parametes,, X, H,,

H,, andH as functions of the applied magnetic fidid, and the angle® andd.

Finally, the magnetic field inside isotropic fibsuspensions is given by :ﬁ,

()
with the mean magnetic permeabilik&u}, defined by formula (A.10) for the 3D isotropic

structure [Kuzhir et al. (2003)] and (A.11) for thlanar (2D) isotropic structure:

1 2
<IU >: 1+ CD[B(].— N‘|),q| +§(1— ND):BD} _ 3(2+)(f)+ Dy, (4+)(f) (A.10)
) 1‘“’[; N4 +§Nuﬂu} 6+xi(3-20)
1+o| L-N +1(1— N.)B-
<’u2D>= [2( H)ﬁl 2 }=2(2+Xf)+cb)(f (3+)(f) (A.11)

1 1 2-0
1“"[2 N4 +2Nmﬂm} 4+ (2-0)

In these formulasN, =0 and N, =1/2 are the demagnetization factors of the figr= x,

X
141,

where we must repladd; by the mean magnetic field inside the fibe(rBI,f>. For the 3D

and g, =

. The fiber magnetic susceptibilityy, , is obtained from equation (A.4),

isotropic and planar structures this field is ckted by averaging the magnetic figid
(equation A.5) over random fiber orientations. Nfally that, due to the saturation effects,
the magnetic permeability of the fiber suspensienréases significantly when the external
magnetic field is increased. At fieldh > 200 kA/m, and for a fiber volume fractigh< 0.07,
the magnetic permeability of the suspension is faotfrom unity and, consequently, the

internal magnetic fieldH, is quite close to the external o,

31



REFERENCES

Aoshima, M. and A. Satoh, “Two-dimensional MonterlGasimulations of a colloidal
dispersion composed of rod-like ferromagnetic phas in an applied magnetic field,” Model.

Simul. Mater. Sci. Engl6, 015004 (2008).

Batchelor, G. K., “The stress system in a susjpensf force-free particles,” J. Fluid Mech.

41, 545-570 (1970).

Batchelor, G. K., “The stress generated in a ndutalisuspension of elongated particles by
pure straining motion,” J. Fluid Mecl6, 813-829 (1971).

Bell, R. C., J. O. Karli, A. N. Vavreck, D. T. Zimerman, G.T. Ngatu and N.M. Wereley,
“Magnetorheology of submicron diameter iron micrmsi dispersed silicon oil,” Smart.

Mater. Struct. 17, 015028 (2008).

Bennington, C. P. J., R. J. Kerekes and J. R. Gfdte yield stress of fiber suspensions,”

Can. J. Chem. Eng. 68, 748-757 (1990).

Berthier, S., Optique des milieux composites. Ralyhica, Paris, 1993.

Bossis, G., E. Lemaire, O. Volkova and H. ClercXi€ld stress in magnetorheological and

electrorheological fluids: A comparison between noscopic and macroscopic structural

models,” J. Rheokl, 687-704 (1997).

32



Bossis, G., O. Volkova, S. Lacis and A. Meunier;Rerrofluids,” Magnetorheology: Fluids,

Structures and Rheology. S. Odenbach, ed., SpriBgelin, 2002.

Bossis, G., P. Khuzir, S. Lacis and O. Volkova, €N behavior of magnetorheological

suspensions,” J. Magn. Magn. Mat2s8 456-458 (2003).

Brenner, H., “Rheology of a dilute suspension ofgxmetric Brownian particles,” Int. J.

Multiphase Flowl, 195-341 (1974).

Clercx, H. J. H. and G. Bossis, “Many-body eledstis interactions in electrorheological

fluids,” Phys. Rev. B8, 2721-2738 (1993).

Djalili-Moghaddam, M. and S. Toll, “A model for sheaange interactions in fibre

suspensions,” J. Non-Newton. Fluid MedB2 73-83 (2005).

Doi, M. and S. F. Edwards, The theory of Polymen&vyics. Oxford Press, New York, 1986.

Folgar, F. and C. L. Tucker, “Orientation BehawbiFibers in Concentrated Suspensions,” J.

Reinforced Plast. Composit8s98-119 (1984).

Ganani E., and R. L. Powell, “Suspensions of ralgarticles — literature-review and data

correlations,” J. Compos Mater9, 194-215 (1985).

Ginder, J. M., “Behavior of magnetorheological dsj’ MRS Bull(Aug) 26—29 (1998).

33



Ginder, J. M., L. C. Davis and L. D. Elie, “Rheojogf magnetorheological fluids: Models

and measurements,” Int. J. Mod. Phyd 3293-3303 (1996).

Hinch, E. J. and L. G. Leal, “Time-dependent sHemars of a suspension of particles with

weak Brownian rotations,” J. Fluid Mechi7, 753-767 (1973).

Hovarth, A. E. and T. Lindstrom, “The influence @flloidal interactions on fiber network

strength,” J. Colloid Interface SE09, 511-517 (2007).

Jeffery, G. B.;The motion of ellipsoidal particles immersed iniscous fluid,” Proc. R. Soc.

Lond. A102 161-179 (1922).

Jiles, D., Introduction to Magnetism and Magnetiatdtials. Chapman & Hill, London, 1991.

Joung, C. G., N. Phan-Thien and X. J. Fan, “Disantulation of flexible fibers,” J. Non-

Newton. Fluid Mech99, 1-36 (2001).

Klingenberg, D. J., F. van Swol and C. F. ZukosHihe small shear rate response of

electrorheological suspensions. 2. Extension beybadpoint-dipole limit,” J. Chem. Phys.

94, 6170-6178 (1991).

Kuzhir, P., G. Bossis, V. Bashtovoi and O. VolkoVelow of magnetorheological fluid

through porous media,” Eur. J. Mech. B-Flui#s 331-343 (2003).

34



Kuzhir, P., M. T. Lépez-Lopez, G. Vertelov, C. Pitledand G. Bossis, “Shear and squeeze
rheometry of suspensions of magnetic polymerizednsly’ Rheol. Acta (2007) in press. DOI

10.1007/s00397-007-0230-7

Landau, L. D. and E. M. Lifshitz, Electrodynamick @ontinuous Media. Pergamon, New

York, 1960.

Larson, R. G., The Structure and Rheology of Complaids. Oxford University Press, New

York, 1999.

Lindstrom, S. B. and T. Uesaka, “Simulation of thetion of flexible fibers in viscous fluid

flow,” Phys. Fluidsl9, 113307 (2007).

Lépez-Lépez, M. T., G. Vertelov, G. Bossis, P. Kwzhnd J. D. G. Duran, “New

magnetorheological fluids based on magnetic fibdrdylater. Chem17, 3839-3844 (2007).

Lépez-Lépez, M. T., P. Kuzhir, S. Lacis, G. BossisGonzalez-Caballero and J.D.G. Duran,
“Magnetorheology for suspensions of solid particiispersed in ferrofluids,” J. Phys.:

Condens. Mattet8, S2803-S2813 (2006).

Lépez-Lépez M.T., Kuzhir P., Bossis G. and Mingalev Preparation of well dispersed

magnetorheological fluids and effect of dispersam their magnetorheological properties.

Rheol. Actad7, 787-796 (2008).

35



Maiorov, M. M., “Measurement of the ferrofluid vizsity in magnetic field,”

Magnetohydrodynamick6, 339-344 (1980).

Ngatu G.T., N.M. Wereley, J. O. Karli and R. C. IB&Dimorphic magnetorheological fluids:
exploiting partial substitution of microspheres bgnowires,” Smart. Mater. Struct. 17,

040522 (2008).

Petrich M. P. and D. L. Koch, “Interactions betwesmtacting fibers,” Phys. Fluid$0,

2111-2113 (1998).

Petrie, C. J. S., “The rheology of fibre suspensjod. Non-Newton. Fluid Meclg7, 369-402

(1999).

Philipse, A. P. and A. M. Wierenga, “On the Denstyd Structure Formation in Gels and

Clusters of Colloidal Rods and Fibers,” Langmildy 49-54 (1998).

Powell, R. L., “Rheology of Suspensions of Rodlkarticles,” J. Stat. Phy§2, 1073-1094

(1990).

Qi, D., “Direct simulations of flexible cylindricdlber suspensions in finite Reynolds number

flows,” J. Chem. Phys. 125, 114901 (2006).

Rahnama, M., D. L. Koch and E. S. G. Shaqgfeh, “@tfiect of hydrodynamic interactions on

the orientation distribution in a fiber suspenssoiject to simple shear flow,” Phys. Fluids

487-506 (1995).

36



Rubi, J. M., C. Saluefia and A. Pérez-Madrid, “Tiszasity of a suspension of elongated

magnetic dipoles,” J. Magn. Magn. Mat&22, 193-195 (1993).

Saluefia, C., A. Pérez-Madrid and J. M. Rubi, “Tiseasity of a suspension of ferromagnetic

rod-like particles,” J. Colloid Interface S@i64, 269-279 (1994).

Satoh, A., “Rheological properties and orientatlodsstributions of dilute ferromagnetic
spherocylinder particle dispersions - Approximaikisons by means of Galerkin’s method,”

J. Colloid Interface ScR34, 425-433 (2001).

Satoh, A., “Rheological properties and particle @abrs of a nondilute colloidal dispersion
composed of ferromagnetic spherocylinder partisldgected to a simple shear flow (analysis

by means of mean-field approximation),” J. Collbiterface Sci262, 263-273 (2003).

Satoh, A., “Influence of magnetic interactions bedw clusters on particle orientational
characteristics and viscosity of a colloidal dispem composed of ferromagnetic
spherocylinder particles: Analysis by means of mieald approximation for a simple shear

flow,” J. Colloid Interface Sci289, 276-285 (2005).

Schmid, C. F. and D. J. Klingenberg, “Mechanicalbdeulation in Flowing Fiber

Suspensions,” Phys. Rev. L&#, 290-293 (2000).

Schmid, C. F., L. H. Switzer and D. J. Klingenbé&@jmulations of fiber flocculation: Effects

of fiber properties and interaction friction,” Jn&l.44, 781-809 (2000).

37



Shagfeh, E. S. G. and G. H. Fredrickson, “The hyginamic stress in a suspension of rods,”

Phys. Fluid A2, 7-24 (1990).

Servais C., J.-A. E. Manson and S. Toll, “Fibeefilinteraction in concentrated suspensions:

Disperse fibers,” J. Rheat3, 991-1004 (1999).

Servais, C., A. Luciani and J.-A. E. Manson, “Sqeedlow of concentrated long fibre

suspensions: experiments and model,” J. Non-NevAloid Mech.104, 165-184 (2002).

Shulman, Z. P. and W. I. Kordonsky, Magnetorheaaheffect. Nauka i Tehnika, Minsk,

1982 (in Russian).

Shulman, Z. P., “Magnetorheological systems,” in ghketic Fluids and Applications

Handbook. B. Berkovski and V. Bashtovoi, eds., Bddeuse, New York, 1996.

Switzer, L. H. and D. J. Klingenberg, “Flocculatian simulations of sheared fiber

suspensions,” Int. J. Multiphase FI®@Q, 67-87 (2004).

Toll, S. and J.-A. E. Manson, “Dynamics of a planancentrated fiber suspension with non-

hydrodynamic interaction,” J. Rheol. 38, 985-99994).

Tsebers, A. O., “Simulation of the magnetic rheglag a dilute suspension of ellipsoidal

particles in a numerical experiment,” Magnetohygramics20, 349-353 (1984).

38



Volkova, O., “Study of rheology of suspensions ofagnetic particles,” Ph.D. Thesis,

Université de Nice-Sophia Antipolis, 1998.

Wierenga, A., A. P. Philipse, H. N. W. Lekkerkerleard D. V. Boger, “Aqueous Dispersions

of Colloidal Boehmite: Structure, Dynamics, and [{li8tress of Rod Gels,” Langmuid, 55-

65 (1998).

Winslow, W. M., “Induced fibration of suspensiond,”’Appl. Phys. 20, 1137-1140 (1949).

Yamamoto, S. and T. Matsuoka, “Dynamic simulatidriileer suspensions in shear flow,” J.

Chem. Phys102, 2254-2260 (1995).

Zirnsak M. A., D. U. Hur and D. V. Boger, “Normairasses in fiber suspensions,” J. Non-

Newton. Fluid Mech54, 153-193 (1994).

Zubarev, A. Yu. and L. Yu. Iskakova, “Yield strassthin layers of ferrofluids,” Physica A

365, 265-281 (20086).

39



FIGURE CAPTIONS

Figure 1. Column structure behavior. At zero strain (a), todumns are aligned with the
magnetic field. When the suspension is shearedlf{p)columns are inclined at an an@le
Further shearing brings the structure either tontftaximum of the shear stress (c) and the

structure breaks (d) or to the end-by-end alignnent

Figure 2. Geometry of the column structure model. a) fibaigned with the field at zero
strain; b) fibers inclined at a strain angBe(no dipolar interactions between fibers); c) dgrol

forces between fibers.

Figure 3. Shear stresg, versus shear strain ang®, calculated using the column structure
model. Solid lines: calculations without dipolartaractions; dash lines: with dipolar
interactions. Lower lines: no frictioné (= 0); upper lines: friction withé = 1. The vertical
dotted line corresponds to the end-by-end alignnoénthe fibers. For all the curves, the
magnetic field intensity i8lp = 100 kA/m, the dimensionless overlagds= 0.5 and the fiber

aspect ratioig/d =10.

Figure 4. Zigzag structure behavior. At zero strain (a), fiers gather in zigzag chains
spanning the gap. When the suspension is sheayeth¢bchains are inclined at the an@le
and extend along their axis of symmetry. At furtekearing, the structure becomes unstable,
either when the friction force reaches its maxim(ay) or when the zigzag chains extend

completely (d). The structure breaks causing thw Bf the fiber suspension (e).
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Figure 5. Geometry of the zigzag structure model. a) zigehgin at zero strain; b), c)
inclined chain at strain ang®. The forces and torques acting on the most indlfreers and

the less inclined fibers are illustrated in (b) &404 respectively.

Figure 6. Theoretical results of the zigzag structure mosteéss-strain curve for three initial
zigzag anglesg, = 20°, 36° and 45°, and for a magnetic field isitgrH, = 100 kA/m. The
zigzag structure with the angl® = 45° breaks before reaching complete alignmeiné —t
dotted part of the curve indicates the inaccessshiess/strain region. The dashed arrows

indicate the points corresponding to the yieldssire

Figure 7. Geometry of the 3D fiber network. a) network skeain the yz-plane by a strain
angle® —the fiber orientation is defined by the angfé&®) and ¢ ; b) sketch of forces and
torques acting on a fiber; c) sketch explainingriegnitudes ands, which characterize the
location of the points of force application (sotiicles in the fiber). The gray plane denotes

the plane Ox’z’z, where the magnetic torque is &xer

Figure 8. Geometry of the near-planar structure. a) Ther filwork can be “sliced” into

sheets parallel to the shear yz-plane. b) Projedfdhe fiber network onto the xz-plane. The

fibers of the back sheet exert normal contact fré€ , on the fibers of the front sheet.

Figure 9. Stress-strain curve for column, zigzag and neangol stochastic structure of a fiber
suspension at magnetic field intendity = 100 kA/m, fiber volume fractio® = 0.05, and
friction coefficient = 1. The dipolar magnetic forces are neglectedllinhree cases. The

initial zigzag angle for the zigzag structurels= 30°.
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Figure 10. Yield stress of fiber suspensions versus extemadnetic field intensityHy, for
different fiber volume fractionsp: (a)® = 0.01; (b)® = 0.03; (c)® = 0.05; and (d¥ = 0.07.
The upper and the middle solid lines corresportiéanodel of the column structure wighx

1 (equation 12) and= 0 (equation 14), respectively; dotted line: sanwalel but with dipolar
magnetic interactions (equation 16) and with 1, & = 0.5 andl/d =10; lower solid line:
model of the zigzag structure (equation 20) with 1 andd = 30°; dashed line: model of the

near-planar stochastic structure (equation 32) @ithl; solid circles: experimental data.
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