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SYNOPSIS 

This paper reports the first predictions of the yield stress of suspensions of non-Brownian 

magnetic fibers in the presence of uniform magnetic fields. The quasi-static regime of the 

shear deformation (before the flow onset) of the suspension is studied. Four different 

structures of the magnetic fiber suspensions are considered – column, zigzag, 3D stochastic 

and near-planar stochastic structures – and the yield stress is attributed to the failure of the 

given structure at a critical strain. The main contributions to the yield stress are found to come 

from the restoring magnetic torque acting on each fiber and from the solid friction between 

fibers. The enhanced magnetorheological effect of magnetic fiber suspensions observed 

experimentally (companion paper) is explained and quantified in terms of interfiber friction. 

Surprisingly, the dipolar magnetic interactions between fibers do not affect significantly the 

yield stress. The lowest yield stress is obtained for the zigzag structure and the highest one for 

the column structure. A reasonable agreement with the experiments is obtained for 5 and 7 % 
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fiber volume fractions in the frame of the more realistic model of near-planar stochastic 

structures. 

 
I. INTRODUCTION 

 

The theoretical study of nonmagnetic fiber suspensions started with the work of 

Jeffery (1922) who calculated the rotation of a single elongated particle in shear flow. 

Jeffery’s results were subsequently used for the calculation of the stress tensor of diluted fiber 

suspensions [Batchelor (1970); Brenner (1974); Hinch and Leal (1973)], as well as of semi-

diluted and concentrated suspensions with either long-range or short-range hydrodynamic 

interactions [Batchelor (1971); Shaqfeh and Fredrickson (1990); Doi and Edwards (1986); 

Folgar and Tucker (1984); Joung et al. (2001); Powell (1990); Qi (2006); Rahnama et al. 

(1995); Yamamoto and Matsuoka (1995)]. Useful reviews are given by Ganani and Powell 

(1985), Larson (1999), Petrie (1999) and Zirnsak et al. (1994). 

Unfortunately, the predictions of the theories that take into account only 

hydrodynamic interactions, fail for rather concentrated fiber suspensions. In this case, the 

contact forces between fibers give a significant contribution to the stress. In concentrated 

suspensions, the fibers create an entangled elastic network and experience solid friction when 

sliding over each other [Petrich and Koch (1998)]. Such suspensions possess a yield stress 

attributed to the interfiber failure of the network. Bennington et al. (1990) reported the first 

attempt to include the interparticle friction in order to calculate the yield stress in fiber 

suspensions. A more rigorous model that takes into account stochastic fiber orientations was 

reported by Toll and Manson (1994) for planar fiber suspensions. This theory gives a 

reasonably good prediction of the yield stress of planar fiber suspensions measured in shear 

and squeeze flow [Servais et al. (1999); (2002)]. A more general theory for real 3D fiber 

suspensions has recently been reported [Djalili-Moghaddam and Toll (2005)]. This theory 
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incorporates both long-range hydrodynamic interactions and short-range interactions (near the 

contact point between two fibers) and gives a reasonably good correspondence with 

experimental results for the viscosity of fiber suspensions. 

Particle level dynamic simulations of sheared flexible fiber suspensions have also been 

performed and have shown the extreme importance of the interfiber friction coefficient in the 

flocculation and rheology of the suspensions [Schmid et al. (2000); Schmid and Klingenberg 

(2000); Switzer and Klingenberg (2004); Lindstrom and Uesaka (2007)]. 

Note that colloidal forces between particles can also give rise to a significant yield 

stress in fiber suspensions [Philipse and Wierenga (1998); Wierenga et al. (1998); Hovarth 

and Lindstrom (2007)]. However, colloidal interactions are significant for submicron particles 

and are expected to play a minor role for the relatively large fibers used in our experiments. 

The other interaction that could provoke a gelation of a fiber suspension is the magnetic 

interaction. In suspensions of spherical magnetic particles, the application of a magnetic field 

causes the formation of a network of particles or aggregates throughout the suspension, which 

gives rise to the appearance of large yield stresses –up to 100 kPa [Bossis et al. (2002); 

Ginder (1998)]. This phenomenon is known as magnetorheological effect and these 

suspensions are called magnetorheological (MR) suspensions. The rheology of conventional 

MR suspensions (suspensions of spherical magnetic particles) has been widely investigated 

since the first study reported by Winslow (1949). Detailed reviews can be found in Bossis et 

al. (2002), Ginder (1998), Larson (1999), Shulman (1996) and Shulman and Kordonsky 

(1982). 

Whereas the rheology of suspensions of either nonmagnetic fibers or magnetic 

spherical particles has been the subject of thousands of papers and a few monographs, too 

little attention has been paid to the rheology of suspensions of magnetic fibers, especially non-

Brownian ones. Nevertheless, due to the shape anisotropy of fibers and the possible existence 
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of friction between them, their use in MR suspensions could enhance significantly the MR 

effect [López-López et al. (2007)]. Furthermore, an interesting rheological behavior is 

expected for such magnetic fiber suspensions, combining the behaviors observed in 

nonmagnetic fiber suspensions and in conventional MR suspensions. Some experimental 

rheological data on the rheology of elongated particle suspensions that support this statement 

are reported in the papers by López-López et al. (2007), Kuzhir et al. (2007), Bell et al. (2008) 

and Ngatu et al. (2008). A detailed experimental investigation on the shear rheology of 

magnetic fiber suspensions, including the concentration dependence of the yield stress and 

observations of the suspension structures under applied magnetic field, is presented in the 

companion paper. A two- to three-time increase in the yield stress of magnetic fiber 

suspensions compared to suspensions of spherical magnetic particles was found. However, no 

theoretical model explaining this increase has been reported. In the present paper, we 

introduce the first microstructural models for magnetic fiber suspensions and explain the 

enhanced magnetorheological response of these suspensions in terms of interfiber solid 

friction. Our theory covers the quasi-static regime of the shear deformation (before the flow 

onset) and combines the features of the point-wise interaction theory developed by Toll and 

Manson (1994) for classical fiber suspensions and the features of the column structure and 

zigzag structure models for classical MR suspensions [Bossis et al. (1997); Volkova (1998)]. 

In contrast to suspensions of non-Brownian magnetic fibers, colloidal dispersions of 

nano-sized elongated magnetic particles have been studied theoretically in some detail 

[Aoshima and Satoh (2008); Rubí et al. (1993); Salueña et al. (1994); Satoh (2001, 2003, 

2005), Tsebers (1984)]. These authors predicted for these dispersions an increase in viscosity 

and a shear thinning behavior upon magnetic field application, but no field-induced yield 

stress due to the intense Brownian motion. This behavior was confirmed experimentally 

[Maiorov (1980)]. 



 5

The present paper is outlined as follows. In the following section we consider the 

different interactions in magnetic fiber suspensions and we compare their energies. This 

allows us to determine the dominating interactions and, subsequently, to exclude the less 

important ones from our theory. In section III, we construct a micromechanical model for four 

particular structures of the magnetic fiber suspensions: (i) column structures; (ii) zigzag 

structures; and more realistic (iii) 3D stochastic structures and (iv) near-planar stochastic 

structures. Finally, in section IV all these models are tested by comparing their predictions 

with the experimental results reported in the companion paper. 

 

II. INTERACTIONS IN FIBER SUSPENSION 

 

When a suspension of non-Brownian magnetic fibers is subjected to a magnetic field, 

the fibers get magnetized, are attracted to each other and form an entangled network, as 

described in the companion paper. The suspension yield stress is directly affected by the 

mechanical strength of the fiber network, which, in turn, depends on the interfiber 

interactions. In our analysis, we shall consider only very long (or very thin) magnetic fibers, 

with aspect ratio 10/ ≥dl . In the presence of magnetic field, we expect at least the following 

interactions in suspensions of long fibers: 

a) Interaction between the fibers and the field. The magnetic field exerts a magnetic 

torque on a fiber, which tends to align it with the field. The energy of this interaction scales as 

HMVmHU fm 0µ=∝ ,      (1) 

where 0 fm MVµ=  is the magnetic moment of the fiber, H the magnetic field intensity in A/m, 

M the magnetization of the fiber material in A/m, Vf = πd2l/4 the volume of the fiber, d and l 
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the fiber diameter and length respectively, and µ0 = 4π 10-7 Henry/m the magnetic 

permeability of vacuum. 

b) Magnetic interaction between fibers. Let us assume that fibers are dipoles with the 

north and the south poles situated on the fibers extremities. The total interaction is therefore 

the sum of the pair interactions between the poles of the fibers. The characteristic energy of 

such interaction is 

2 2
2

0
04d f

p d
U M V

r lr
µ

πµ
∝ ∝ .       (2) 

In this formula p = m/l is the intensity of the “magnetic poles” and r is the distance between 

the poles of neighboring fibers.  

c) Mechanical contacts between fibers. They are manifested through a normal reaction 

force, fn, and a tangential friction force, which is assumed to be Columbic: nff ξτ = , with ξ 

being the friction coefficient. Under shear deformation, the fibers slip along each other and 

the energy dissipated per fiber is equal to the work of the friction forces acting on a given 

fiber: xfW nrf ∆∝ ξ , with lx ~∆  being the displacement of one fiber relative to another one. 

When the fibers are misaligned with the magnetic field, the normal contact forces equilibrate 

the magnetic torque, mT mH∝ , acting on the fiber, and therefore 0 fm
n

MV HT
f

l l

µ
∝ = . 

Finally, the expression for the work rfW  takes the form 

HMVW frf 0ξµ∝ .        (3) 

Let us now compare the interaction energies. Dividing equation (2) by equation (1), 

we get the ratio between the dipolar interaction energy and the “fiber-field” interaction 

energy:  
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rlH

dM

U

U

m

d
2

∝  .        (4) 

According to the experimental observations, the fibers in the suspension can touch each other 

either by their extremities or by their lateral cylindrical surfaces (see Figure 8 of the 

companion paper). In the former case, the distance between the poles of neighboring fibers, r, 

is of the order of the fiber diameter, d, and the energy ratio (4) scales as 
Hl

Md

U

U

m

d ∝ . In the 

latter case, the contact point is located somewhere between the fiber extremities, and for long 

fibers the distance r is of the order of the fiber length, l, and the energy ratio (4) becomes 

2








∝
l

d

H

M

U

U

m

d . We estimated the energy ratio (4) for both cases, at low and high magnetic 

field and for a fiber aspect ratio / ~ 10l d . These estimations are summarized in Table 1. 

From data in Table 1, the dipolar magnetic interaction seems to be weaker than the “fiber-

field” interaction, except for end-by-end alignment of fibers at low magnetic field.  

 

Table 1. Comparison between dipolar “fiber-fiber” and “fiber-field” interactions.  

End-by-end contact Side-by-side contact  
Low field 

0 < H ≤ 50 kA/m 
High field 
H ≥ 200 kA/m 

Low field 
0 < H ≤ 50 kA/m 

High field 
H ≥ 200 kA/m 

Fiber 
magnetization 

M =χH ~ (10 ÷ 102)H  M ~ H M =χH ~ (10 ÷ 102)H  M ~ H  

Energy ratio 
(equation 6) l

d

Hl

Md

U

U

m

d χ∝∝

 

l

d

U

U

m

d ∝  
22








∝






∝
l

d

l

d

H

M

U

U

m

d χ

 

2








∝
l

d

U

U

m

d

 

Energy ratio 
(numerical value) 101÷∝

m

d

U

U
 1.0∝

m

d

U

U  11.0 ÷∝
m

d

U

U
 01.0∝

m

d

U

U
 

 

Dividing equation (3) by equation (1), we get the ratio between the energy dissipated 

by solid friction and the “fiber-field” magnetic interaction energy: /f r mW U ξ∝ . Petrich and 

Koch (1998) reported a value ξ ~ 0.4 for the friction coefficient of polymeric fibers. We do 
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not have the value of the friction coefficient for our cobalt fibers, but it should be much larger 

than the value for polymeric fibers due to the high roughness of the fiber surface [Lopez-

Lopez et al. (2007)]. Thus, the work of the friction force should be at least of the same order 

of magnitude than the magnetic energy, Um. Therefore, we expect an important contribution 

of the friction forces to the yield stress. 

Finally, note that colloidal forces and Brownian motion are not considered because the 

corresponding characteristic energies are much lower than the energy of the magnetic 

interaction: 5
0/ /( ) 10VdW m HU U A MH hdlµ −∝ ⋅ �  and 2 10

0/ /( ) 10Br mU U kT MH d lµ −∝ ⋅ � , 

UVdW and UBr being respectively the characteristic energies of the van der Waals interaction 

and the Brownian motion. Here AH~10-19 is the Hamaker constant, h~4 nm is twice the typical 

thickness of the layer of surfactant grafted on the particles [Lopez-Lopez et al. (2008)]. The 

fiber diameter and length were taken d~5 µm and l~50 µm, respectively. Note that the 

hydrodynamic interactions are also neglected because the quasi-static deformation of the 

suspensions without any flow is considered. 

The three above considered interactions –“fiber-field”, dipolar “fiber-fiber” and solid 

friction between fibers– will now be incorporated into the theoretical model in order to predict 

the yield stress of a fiber suspension in the presence of magnetic field. The shear stress of the 

structured suspension will be calculated for the quasi-static deformation of its structure 

(before the flow onset) as the sum of the particle stresses. Consequently, we need to know the 

arrangement of fibers in the suspension structure. Four different structures will be considered 

in this paper. We shall start with the simplest model of the column structure, which possesses 

the highest possible anisotropy, and is usually observed in conventional MR suspensions, 

composed of spherical magnetic particles [Bossis et al. (1997); Zubarev and Iskakova (2006)].  

III. MICROSTRUCTURAL MODELS 
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III.1. COLUMN STRUCTURE 

Let us consider a suspension of identical magnetic fibers confined between two 

infinite plates. The distance between these plates is supposed to be much larger than the fiber 

length. When the magnetic field is applied normally to the plates, the fibers gather into 

straight columns aligned with the field direction and spanning the gap between the plates, like 

shown in Figure 1a. The suspension is sheared by a displacement of the upper plate, and the 

strain angle is Θ. In this model, we consider that in each column the fibers overlap each other 

at the same overlap length, b0 (Figure 2a). When the suspension is strained, the fibers slip 

along each other and the columns extend and tilt. If the fibers in the columns do not slip on 

the plates, each column is tilted at the angle Θ under shear (Figure 1b). Such regular network 

resists the shear deformation. There are at least three mechanisms of fiber suspension 

response to the applied strain. First, each fiber experiences a restoring magnetic torque that 

tends to turn it back to the vertical position. Second, the solid friction between fibers hinders 

the extension of the columns and, consequently, the overall strain deformation of the 

suspension. Finally, the magnetic dipolar attraction between fibers must be overcome in order 

to break the structure and to make the MR fluid flow. Firstly, we shall incorporate into our 

model the two first mechanisms.  

The fibers touch each other by their lateral cylindrical surface and, therefore, their 

contact area is reduced to a line of length b (Figure 2c). The contact forces are assumed to be 

distributed homogeneously along the contact line and, therefore, they can be considered to be 

concentrated in a single point of the contact line – at the center of the overlapping section b. 

Two forces are exerted at each contact point: the normal force, fn, and the tangential friction 

force, fτ=ξfn. The torque balance on each fiber gives: 

2m nT f s f dτ= + ,        (5) 
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s being the distance between the central cross-section of the fiber and the contact point 

(Figure 1b). If the contact point is located far from the center of the long fiber (s >> d), we 

neglect the second term in equation (5) and the normal force is therefore: 

2
m

n

T
f

s
≈ .        (6) 

The mechanical stresses arising in fiber suspensions are due to the contact forces 

exerted on the fibers. Since the carrier liquid is not elastic but Newtonian and there is not any 

significant flow in the quasi-static deformation regime, the only contribution to the suspension 

stress tensor is the particle stress. This is a volume average of the stresses contributed by each 

fiber. In our particular case, since the forces acting on the fibers are concentrated in single 

points (point-wise interactions), the expression for the suspension shear stress is given by 

[Larson (1999); Toll and Manson (1994)]:  

∑ ∑=
fibers contacts

1
yz fr

V
τ .      (7) 

Here V is the total volume of the suspension, r is the distance between the fiber center and the 

contact point and the sum is taken over all the contact points on every particle of the 

suspension. Since we have two contact points per fiber, the expression (7) takes the form: 

( ) ( )yz
f

yz
f fr

V
fr

V

N
22

Φ==τ .      (8) 

Here Nf is the total number of fibers in the suspension volume, V; Vf is the fiber volume and Φ 

is the volume fraction of fibers. The z-component of the distance, r, is 

( ) Θ≈Θ+Θ= cossin2cos sdsrz , and the y-component of the contact force, f, is the sum of 

the corresponding components of the normal and friction forces: 

( )Θ+Θ=Θ+Θ= sincossincos ξτ nny ffff . Substituting these expressions into equation (8) 

and replacing fn by the appropriate formula (6), we get: 
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2 1
cos sin 2

2m
f

T
V

τ ξΦ  = Θ + Θ 
 

     (9) 

The magnetic torque exerted on a fiber is given by the expression: 

0sin sinm fT mH MV Hψ µ ψ= = .     (10) 

Here ψ is the angle between the vectors of the magnetic moment of the fiber, m, and the 

magnetic field intensity H. The magnetization of the fibers, M, is a function of the magnetic 

field intensity Hf inside the fibers: ( ) fff HHM χ=  with fχ  being the fiber magnetic 

susceptibility. The field Hf (cf. equation A.5) and the angle ψ are defined in the same way as 

for an infinitely prolate ellipsoid subjected to an uniform magnetic field, H, applied at an 

angle Θ with respect to the major axis of the ellipsoid [Landau and Lifshitz (1960)]. 

Substituting the expressions for M and ψsin  into equation (10), we get the following formula 

for the magnetic torque: 

2
2

0

1
sin 2

2 2
f

m f
f

T V H
χ

µ
χ

= Θ
+

.     (11) 

And the final expression for the shear stress reads: 

( ) 






 Θ+ΘΘ
+

Φ=+= 2sin
2
1

cos2sin
22

1 222
0

2

ξµ
χ

χ
τττ H

f

f
rfm . (12) 

The first term mτ  is the contribution of the “fiber-field” interaction and the second term rfτ  is 

the contribution of the friction forces. The magnetic field, H, is in fact the mean magnetic 

field inside the MR suspension. It is related to the external magnetic field, H0, through the 

relative magnetic permeability of the fiber suspension. Its calculation is summarized in the 

Appendix.  

The stress-strain curves calculated by equation (12) are presented in Figure 3 for two 

values of the friction coefficient, ξ = 0 and 1, for a magnetic field H0 = 100 kA/m, and for a 

volume fraction Φ = 0.05. As expected, these curves have a maximum at some critical strain 
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angle, Θc. Above this critical strain the static column structure becomes unstable (Figure 1c), 

breaks and the flow starts (Figure 1d). In case of small initial overlap of fibers, they can be 

aligned end-by-end at subcritical angles (cf. Figure 1e). Such configuration will also be 

unstable, and the fibers will turn towards the vertical position under the action of the magnetic 

torque (Figure 1g), they will detach from each other and the flow will start (Figure 1h). 

Consequently, the column structure breaks either at the critical angle Θc or at the angle 

( )01cos β−=Θ aa , corresponding to the end-by-end alignment, lb00 =β  being the 

dimensionless overlap. The yield stress of the fiber suspension is the shear stress at which the 

column structure breaks; it is given by equation (12), in which we must replace the angle Θ by 

the yield angle, )]1cos(,min[ 0β−Θ=Θ acY , being the minimum strain angle corresponding 

to the structure failure. 

At sufficiently large overlaps, β0 ≥ 0.15, the yield stress corresponds to the maximum 

of the stress-strain curve. This maximum is shifted towards larger values of Θ when the 

friction coefficient is increased (Figure 3), and it is determined by the condition 0=
∂
∂
θ
τ

. To 

get an approximate value of the angle Θc, we assume both χf and H to be independent of the 

strain angle, Θ, and in this way we obtain the following equation for Θc: 

04sin4cos2cos =Θ+Θ+Θ ccc ξ      (13) 

Such approximation gives only a 5% error on the yield stress. For a friction coefficient, ξ = 1, 

we get a critical angle, Θc ≈ 37º. In the absence of friction, ξ = 0, equation (13) gives Θc ≈ 

30º, which corresponds to a yield stress: 

2
0

2

216
33

H
f

f
Y µ

χ
χ

τ
+

Φ=       (14) 

We shall compare these calculations with the experimental results in the last section of the 

present paper. Note that, in the extreme cases of very low or very high magnetic field, we can 
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replace the term 2
0

2

2
H

f

f µ
χ

χ
+

 in equations (13) and (14) by 2
0Hf µχ  or 2

02
1

sMµ , 

respectively. 

We shall now include the dipolar magnetic interactions between fibers in our model. 

We suppose our fibers to be long sphero-cylinders with north (–) and south (+) magnetic 

poles, of intensity p, located in the center of the end hemispheres, as shown in Figure 2c. The 

(–)-pole of the lower fiber is attracted to the (+)-pole and repulsed by the (–)-pole of the upper 

fiber (forces f± and −f , respectively). On the other hand, the (+)-pole of the lower fiber is 

attracted to the (–)-pole and repulsed by the (+)-pole of the upper fiber (forces 
m

f  and +
+

f , 

respectively). The total interaction is the vector sum of these four forces. Each of these forces 

is equivalent to the electrostatic force acting between two electric charges: it is oriented along 

the line joining the centers of the interacting poles and follows Coulomb’s law:  

2
0

2

4 ij
ij r

p
f

πµ
=         (15) 

Here i = +,−; j = +,− and 
l

m
p =  is the intensity of the magnetic pole of a fiber.  

Since 21 ijij rf ∝ , the strongest dipolar interaction is reached when the extremities of 

the neighboring fibers are in contact. Therefore, it is reasonable to take into account only the 

interaction between the two closest poles of neighboring fibers. Then, including these forces 

in the torque balance (5) and in the stress equation (7), and performing the necessary 

calculations, we arrive to the final expression for the shear stress:  

( )

























Θ

+
+Θ+Θ







−Θ+ΘΘ
+

Φ
=++= 22

2
22

2
0

2

sin
2

4
cos22sin

16
2sin

2

1
cos)2sin(

)2(2 f
f

f

f
dfrm l

dGH

χ
χξ

χ
µχ

ττττ  (16) 
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Here, 
( )

( )[ ] 232ld

ld
G

+

−=
β

ξβ
, with 

Θ
−−=

cos
1

1 0ββ . The three contributions to the shear stress are 

the “fiber-field” interaction ( mτ ), friction ( frτ ) and fiber-fiber dipolar interaction (dτ ).  

In order to check the effect of the dipolar interactions, we show in Figure 3 the stress-

strain curves for magnetic fiber suspensions without dipolar interactions (equation 12) and 

with dipolar interactions (equation 16). Almost in the whole range of strain angles, the 

magnetic interaction between fibers lowers slightly the shear stress. This is because the fibers 

tend to be aligned end-by-end and, therefore, the columns tend to extend. The inclined 

columns, confined between two plates, push therefore the upper plate and facilitate the shear 

deformation of the suspension. At high strain angles, when the fiber extremities become 

closer, the magnetic attraction between the fiber poles increases. The normal component, fmn, 

of the magnetic force becomes comparable with the tangential one, fmτ. The friction force 

increases too, being proportional to the normal force. Therefore, we observe a rapid growth of 

the shear stress close to end-by-end alignment (Figure 3). The yield stress corresponds to the 

global maximum of the stress-strain curve. It is reached either at the critical strain angle 

º30≈cθ  for 7.0≤ξ , or at end-by-end alignment for higher friction coefficients, 7.0≥ξ  

(Figure 3). 

 

III.2. ZIGZAG STRUCTURE 

In reality, the fibers are not perfectly aligned but form a complicated network. One of 

the model structures with lower anisotropy is the one where the fibers are connected by their 

extremities, forming zigzag-like chains that span the gap between two parallel plates (Figure 

4). Let the angle between the fibers and the magnetic field be δ0 at zero strain (Figure 4a). 

When the suspension is sheared at a strain angle, Θ, the zigzag structures are supposed to be 

inclined in such a way that the axis of symmetry of each zigzag chain (the line joining fiber 
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centers) makes the angle Θ with the magnetic field (Figure 4b). We also suppose that all the 

fibers in the chain make the same angle, δ, with the axis of symmetry. This angle is found 

from geometrical considerations: 
Θ

=
cos
cos

cos 0δδ .  

Each fiber is subjected to the magnetic torque and to the action of the contact and 

magnetic dipolar forces. If we assume the fibers to be sphero-cylinders, the fiber contact 

points will be located on the lines joining the centers of the end hemispheres of the 

neighboring fibers. Each of these lines is parallel to the chain axis of symmetry and, therefore, 

the normal contact force, fn, and the magnetic force, fm, are also parallel to this axis. In each 

zigzag chain, one half of the fibers make the angle Θ + δ with the magnetic field, and the 

other half the angle Θ – δ. Neglecting the terms of the order of ld , the balance of torques for 

these two kinds of fibers reads:  

( )1 sin cosn mT f f l f lτδ δ= − +       (17) 

( )2 sin cosn mT f f l f lτδ δ= − − +       (18) 

Since both fibers make different angles with the magnetic field, they are subjected to different 

magnetic torques, T1 and T2. We have assigned the counter-clockwise direction to positive 

magnetic torques. Thus, in Figure 5, the torque T1 is positive and T2 is negative. It is 

important to note that, in the absence of friction between fibers, the torque balance (17), (18) 

can only be satisfied at zero strain, when 1 2T T= − . The friction between fibers prevents their 

extremities from sliding over each other, so that the zigzag structure is not destroyed by the 

shear deformation. Furthermore, when the fiber extremities do not slide, the friction force, fτ, 

is independent of the normal force fn. It can take any value not exceeding the maximum, nfξ . 

When the friction force becomes nff ξτ = , the fiber extremities slide over each other until 

they detach and the structure breaks –this could correspond to the flow onset. 
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The magnetic torques T1 and T2 are defined by equation (11), in the same way as for 

the fibers in the column structure. We only have to replace in equation (11) the angle Θ by 

appropriate angles Θ + δ and Θ – δ and the magnetic susceptibility χf by the susceptibilities 

1fχ  and 2fχ  of the first and the second type of fibers. Both 1fχ  and 2fχ  are functions of the 

magnetic field and are defined in the Appendix. The shear stress is given by the general 

expression (7) and, for the zigzag structure (always neglecting the terms of the order of ld ), 

this expression takes the form:  

[ ] δτ τ coscossincos)( ΘΘ+Θ−−Φ= fff
V mn

f

   (19) 

Working out the forces, )( mn ff −  and τf , as functions of the torques, T1 and T2, using 

equations (17), (18), and replacing the torques by the appropriate relation (11), we arrive to 

the final expression for the shear stress: 
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Note that the friction coefficient does not intervene in the expression for the shear stress. This 

is because the fibers do not slide over each other. The friction force adapts its value to satisfy 

the mechanical equilibrium of the structure, which is totally defined by the magnetic torques 

acting on the fibers.  

The stress-strain curves for fiber suspensions with zigzag structure are presented in 

Figure 6 for a magnetic field intensity, H0 = 100 kA/m and for three different initial zigzag 

angles, δ0 = 20º, 36º and 45º. We see that the shear stress is quite sensitive to the initial angle 

δ0, but the shape of the stress-strain curves is the same for any δ0. At low strain, the 

suspension develops a negative shear stress. This is because the fibers tend to align with the 

magnetic field, and they push each other in such a way that the zigzag chains tend to be 

straightened up. These chains act as compressed springs, and when they are inclined under 
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shear, they push the upper plate both upward and in the direction of the shear. This favors the 

shear deformation of the suspension. At the same time, the restoring magnetic torque acting 

on each chain hinders the structure deformation. At a strain angle large enough, the restoring 

effect of the magnetic torque becomes dominant and the shear stress positive, undergoing a 

rapid growth with the strain (Figure 6). Once it is positive, the shear stress for the zigzag 

structure grows monotonically with the strain angle until the zigzag chains extend completely 

and become straight chains (Figure 4d). At this point, corresponding to a strain angle Θ = δ0, 

the zigzag structure becomes unstable and the fiber suspension begins to flow (Figure 4e). 

Alternatively, if the friction force between fiber extremities, fτ, reaches its maximum, ξfn, the 

structure loses its stability at lower strains (Figure 4c). In this case, as mentioned above, the 

fiber extremities slide over each other and the structure breaks at a critical angle, Θc, defined 

by the condition fτ = ξfn. Therefore, the yield angle is the minimum angle between Θc and δ0: 

ΘY = min[Θc , δ0]. In order to determine the critical angle, Θc, the following formulas are 

used:  
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The magnetic susceptibilities, 1fχ , 2fχ , and ⊥χ , as well as the internal magnetic field, are 

calculated in the Appendix. The yield stress for the zigzag structure is calculated using 

equation (20) by replacing the strain angle, Θ, by the yield angle ΘY.  

 

III.3. 3D FIBER NETWORK 

Both models studied above (column and the zigzag structures) are, of course, ideal 

representations of the real fiber structure. In the present section, we will consider a 3D 

network of the fiber suspension with a stochastic distribution of fiber orientations (Figure 7a), 

like the one observed in experiments (cf. Figure 8 of the companion paper). As in the previous 

models, the fiber suspension is sandwiched between two horizontal infinite planes and 

subjected to a magnetic field normal to the planes. Let us consider a shear deformation of the 

suspension by a strain angle Θ, in the yz-plane. The fiber network deforms under strain, and 

the fibers displace and pivot relatively to each other, their orientations being described by the 

polar angle θ and the azimuthal angle ϕ. We make the following assumptions: 

1. The fibers are long cylinders: 1/ >>dl . 

2. The effect of the magnetic field created by neighboring fibers on the magnetization of a 

given fiber is taken into account by considering that each fiber is placed in an effective 

medium with the mean magnetic field, H, calculated by the mean field theory (see the 

Appendix). 

3. As in the case of the column and zigzag structures, both mechanical contact and dipolar 

magnetic interactions are considered to be point-wise.  

In equilibrium, all forces applied to each fiber must satisfy the force and the torque balance: 

0=∑i if ,        (24) 
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m i ii
+ =∑T r ×f 0 .       (25) 

Here r i is the vector connecting the fiber center with the point of application of the force f i. If 

the fibers are considered to be infinitely thin, the vector r i is parallel to the fiber. We can 

decompose the forces acting on the fibers into the components xf ′ , yf ′ , ′ = ff z , along the 

axes of the coordinate frame Ox’y’z’ attached to a given fiber (Figure 7b). The magnetic 

torque vector, m =T m×H , is perpendicular to the plane Ozz’ formed by the fiber and the 

magnetic field vector H, and is parallel to the Oy’ axis of the fiber reference frame (Figure 

7b). Projections of the torques onto the axes Ox’ and Oy’ give: 

∑ =− ′i iyi fs 0  ,       (26) 

0m i x ii
T s f ′− + =∑ ,       (27) 

where the scalar Tm is defined by equation (11), si is the distance between the fiber center and 

the point of application of the force f i; si > 0 if the point of application of the corresponding 

force is located above the fiber center, and otherwise si < 0. 

The shear stress of the fiber suspension is defined by the general expression (7), where 

the y-component of the force intervenes. Since the force f i is decomposed into the components 

xf ′ , yf ′  and


f  along the axes of the fiber reference frame, the y-component of this force is 

the sum of the y-components of each individual term: 

( ) ( ) ( )
yiyiyyixyi ffff


++= '' .      (28) 

From geometrical considerations (Figures 7b, c) we obtain: ( ) ϕθ sincosixyix ff ′′ = ; 

( ) ϕcosiyyiy ff ′′ = , ( ) ϕθ sinsin
iyi

ff


=  and θcosizi sr = . Thus, using these expressions and 

replacing the force fy by equation (28), the expression (7) for the shear stress takes the form: 

( )2

fibers fibers

1 1
cos sin cos cos cos sin sinzi yi i x i i y i i ii i

r f s f s f s f
V V

τ θ ϕ θ ϕ θ θ ϕ′ ′ 
= = + +∑ ∑ ∑ ∑

            (29) 
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Finally, taking into account the torque balance (equations 26, 27) and formula (11) for the 

torque Tm, the expression for the shear stress is written as: 
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 (30) 

The symbol ...  denotes the averaging over a stochastic fiber orientation: 

∫∫=
ππ

θθθϕϕ
0

2

0
(...)sin),(... dFd , with ( , )F ϕ θ  being the orientation distribution function 

of fibers.  

Formula (30) is pertinent to the calculation of the shear stress via direct particle-level 

simulations, planned for future work. For analytical calculations, it is required the knowledge 

of the distribution of the longitudinal forces exerted on the fibers, 
i

f


, as well as the angular 

distribution function of fiber orientations, ),( θϕF . At this moment, we do not know how to 

predict them rigorously with statistical or energy analyses. Nevertheless, we can perform 

analytical predictions of our theory for the near-planar stochastic structure by introducing 

some simplifications in the model. 

 

III.4. NEAR-PLANAR STOCHASTIC STRUCTURE 

 

Let us now suppose that all the fibers lie more or less in planes parallel to the shear 

plane. Thus, the fiber suspension can be represented as a series of sheets, each one parallel to 

the shear plane, and containing stochastically oriented fibers, as depicted in Figure 8a. We 

shall calculate the yield stress of such fiber network under the following considerations: 

1. Analogously to the column structure, the magnetic dipolar forces are negligible and the 

only forces exerted on the fibers are the contact forces. 
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2. Most of the contact points are located on the lateral fiber surface rather than at the fiber 

extremities.  

3. When the suspension is sheared, all the fibers slide over each other, with the Coulomb’s 

friction force, fτ = ξfn. The two last assumptions were introduced by Toll and Manson (1994) 

for suspensions of very long nonmagnetic fibers. 

4. Fibers contained in the same sheet touch each other in a few points and their contact 

forces are supposed to be parallel to the shear yz-plane. According to the second assumption, 

the friction force between fibers contained in the same sheet is parallel to the fiber major axis 

Oz’. Therefore, the longitudinal contact force between fibers of the same sheet is 

*** inii
fff ξτ ==


. 

5. Fibers contained in neighboring sheets have also a few mechanical contacts between 

them. Their normal contact forces, 0nf , are supposed to be perpendicular to the shear yz-

plane. Since the magnetic torque exerted on the fibers is in the shear plane, there is no 

magnetic torque in the xz-plane, and the normal contact forces, 0
nf , are compensated only by 

the magnetic dipolar forces between contacting fibers (Figure 8b). Tangential friction forces 

between fibers contained in different sheets lie in the shear yz-plane, and are equal to 

mini fff ξξτ ~00 = . According to the first assumption, these friction forces are negligible 

compared to the friction forces between fibers of the same sheet: *0
ii ff ττ << . Consequently, 

the longitudinal contact force acting on fibers will only include the friction forces between 

fibers contained in the same sheet: ** inii
fff ξ==


. 

 By analogy with formula (27), the balance of torques acting on a given fiber in the shear 

yz-plane, reads: 
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* 0m i nii
T s f− + =∑ ,       (31) 

Taking into account this expression, replacing the magnetic torque by formula (11) and 

setting 2πϕ = , we arrive to the following expression for the shear stress of our near-planar 

structure: 
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             (32) 

6. The angular mean in Equation (32) is calculated via the angular distribution function 

of the near-planar structure: ∫−=
2

2
(...))(...

π

π
θθ dF . The fiber orientation is supposed to be 

strongly influenced by the shear deformation, and the angular distribution function is assumed 

to be Gaussian and centered at the strain angle, Θ: 

])(exp[)( 2
21 Θ−−= θααθF       (33) 

Hear α1 and α2 are the parameters of the distribution function. Furthermore, in the absence of 

shear the fiber distribution is considered to be isotropic in the yz-plane. When the strain is 

progressively increased, the fibers incline with the strain and get more aligned. At a threshold 

strain angle, Θa, the structure is supposed to be completely stretched, the straight fiber chains 

making the angle Θa with the magnetic field (Figure 1e). Under these conditions, the 

coefficient α2 of the distribution function (equation 33) must be zero at zero shear, and 

infinite at the strain angle Θa. Then, this coefficient is supposed to be the following function 

of the strain: 
Θ−Θ

Θ=
a

2α . The first coefficient, α1, is found from the normalization 

condition: ∫− =
2

2
1)(

π

π
θθ dF , i.e. [ ] 1

2
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d . Finally, the threshold 
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strain angle is set at Θa = 60º, which corresponds to the complete alignment of the column 

structure with the interfiber overlap b0 = 0.5l (or overlap parameter β0 = 0.5). 

The stress-strain curve obtained by this model is plotted in Figure 9 and compared 

with the corresponding curves obtained for the column and zigzag structures. In the same way 

as for the column structure, the stress-strain relation for the near-planar structure presents a 

local maximum, which corresponds to the yield stress. This maximum is observed at a strain 

angle close to the angle Θa of complete alignment of the structure. Note that the stress-strain 

curve departs from non-zero shear stress at zero strain. This is not surprising because we have 

assumed that, at any strain, all fibers slide over each other and experience the friction force, 

nff ξτ = . At zero strain, the normal forces between randomly oriented fibers are not zero, 

leading to non-zero friction forces and thus to a non-zero contribution to the shear stress. In 

reality, when the fibers do not slide, the friction forces between them can take any value 

within the range: nn fff ξξ τ ≤≤−  –this is the case of the zigzag structure, where the friction 

forces between fiber extremities adapt their value to maintain the structure mechanically 

stable. Consequently, at small strain angles our model cannot predict with confident the shear 

stress of the near-planar structure. It is the reason why we have plotted the initial part of the 

stress-strain curve as a dashed line (Figure 9). On the other hand, at higher strain angles, when 

the random structure has been sufficiently strained, most of the fibers are expected to slide 

over each other, and the assumption nff ξτ =  seems to be reasonable, at least for the 

estimation of the yield stress. 

 

IV. DISCUSSION. COMPARISON WITH EXPERIMENTS 

In the present section we compare the theoretical predictions of the models 

constructed above with the experimental values of the yield stress of fiber suspensions 

reported in the companion paper. Figure 10 shows the theoretical and experimental values of 
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the yield stress of fiber suspensions, plotted as a function of the external magnetic field, for 

four solid volume fractions, Φ = 0.01, 0.03, 0.05 and 0.07. The five curves in each graph 

correspond to the theoretical results using the models described in the present paper and the 

solid circles correspond to the experimental results reported in the companion paper. As 

observed in Figure 10, the highest estimation of the yield stress is given by the model of the 

column structure with friction (upper solid curve, cf. equation 12), and the lowest estimation 

by the model of the zigzag structure (lower solid curve, cf. equation 20). At magnetic fields 

H0 ≥ 100 kA/m, the experimental points lie between these two curves. At lower magnetic 

fields the experimental yield stress is higher than the one given by the highest theoretical 

estimation. This is possibly due to the underestimated value of the initial magnetic 

susceptibility used in our calculations, χi = 17.3. As mentioned in the companion paper, this 

value has been obtained by a fit of the experimental magnetization curve in the range of 

magnetic fields 45 – 4000 kA/m.  

Comparing different theoretical predictions, we note that the yield stress for the 

column structure with the friction coefficient ξ = 1, is roughly two times higher than the yield 

stress for the same structure without friction. In the latter case, the yield stress is given by 

formula (17), which is very similar to the formula for the column structure of classical MR 

suspensions composed of spherical particles [Bossis et al. (1997)]. The authors of this paper 

calculated the stress as the derivative of the magnetic energy with respect to the shear strain: 

γ
τ

∂
∂= mU

. The correspondence between our model and the one based on magnetic energy was 

expected in the limit case of zero friction, and is a test of the validity of our model. 

As observed in Figure 10, the dipolar magnetic interactions between fibers do not give 

any significant contribution to the yield stress (dotted curve, cf. equation 16). In reality, the 

magnetic interactions between contacting fibers could be much stronger than those predicted 
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by the dipolar approximation. The multipolar approach [Klingenberg et al. (1991); Clercx and 

Bossis (1993)], direct numerical simulations [Bossis et al. (2003); López-López et al. (2006)] 

and other sophisticated models [Ginder et al. (1996); Bossis et al. (2002)] allowed to 

determine with precision the magnetic forces between spherical particles. Nevertheless, the 

dipolar approximation remains valid at high magnetic fields, when the magnetization of the 

particles is of the same order that the saturation magnetization. In our experiments we cover 

such range of magnetic fields (H0 ≥ 200 kA/m, cf. Figure 1 of the companion paper). 

Therefore, our conclusions made in the frame of the dipolar approximation remain valid, at 

least for this range of magnetic fields. At lower fields the magnetic attraction between fibers 

is underestimated and that could be another reason for the discrepancy between theoretical 

and experimental results at H0 ≤ 100 kA/m. 

By analyzing the zigzag model we can identify the two reasons why this model 

predicts the lowest yield stress. Firstly, the strained zigzag chains act as compressed springs 

that push upward the rheometer plate (cf. Figure 4b). Secondly, this structure has a relatively 

low anisotropy compared to the column structure. The most realistic model –the model of the 

near-planar stochastic structure (equation 32)– gives a reasonable correspondence with the 

experiments at fiber volume fractions Φ = 0.05 and 0.07 (Figures 10c-d). This model takes 

into account the friction between fibers as well as the progressive alignment of the fiber 

network with increasing strain. 

Let us now analyze the effect of solid concentration on the yield stress of fiber 

suspensions. As observed in Figure 10, at fiber volume fractions Φ = 0.01 and 0.03, the 

experimental points are closer to the prediction of the zigzag model. For more concentrated 

suspensions (Φ = 0.05 and 0.07), the experiment is better described by the column structure 

model. One of the possible reasons for this behavior is a higher anisotropy of the more 

concentrated fiber suspensions. In fact, in more concentrated suspensions the fibers have less 
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free space to pivot. Consequently, as the solid concentration increases, the fiber network is 

supposed to approach a column structure. Nevertheless, whatever the fiber concentration, the 

column structure with perfect alignment of fibers can be realized only in the absence of 

friction. Note that the three inspected models –column structure, zigzag structure and near-

planar structure– give almost linear concentration dependence of the yield stress. A small 

deviation from linearity is observed at low-to-moderate magnetic field (up to 100 kA/m). This 

is connected to the weak concentration dependence of the magnetic permeability of fiber 

suspensions, which intervenes in the expression for the internal magnetic field, H (cf. 

equation A.1). However, such magnetostatic effect cannot explain a power-law concentration 

dependence of the yield stress as high as that observed experimentally: 1.5
Yτ ∝ Φ  (cf. 

companion paper). The linear concentration dependence in the column and the near-planar 

structure models comes mostly from the assumption that the friction force between fibers is 

longitudinal and always equal to nfξ . In this case, in equation (30) the sum ∑ i ii fs  over all 

the contact points on a given fiber is simply proportional to the magnetic torque acting on a 

considered fiber: i mii
s f Tξ


=∑ , whatever the number of contact points. Consequently, the 

theoretical yield stress is linear in the number of fibers per unit volume (i.e. in the 

concentration) rather than in the total number of contact points. However, in a real situation of 

the 3D stochastic structure described in Section III.3, the second term of the stress equation 

(30), ( )∑ ∑ fibers
sin2sin

2
1

i ii fs
V

ϕθ , is not necessarily proportional to the magnetic torque 

and can hide a stronger concentration dependence. This is the case of isotropic suspensions of 

non-magnetic elastic fibers, for which the yield stress is proportional to the number of contact 

points per unit volume, which varies as the square of the solid volume fraction [Toll and 

Manson (1994); Servais et al. (1999)]. 
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Note finally that the fiber friction coefficient, ξ, is the only unknown parameter in the 

models of the column and the near-planar stochastic structures. We plan to measure this 

coefficient in order to obtain a model free of unknown parameters. 

 

V. CONCLUDING REMARKS 

In this work, predictions of the yield stress of magnetic fiber suspensions in the 

presence of magnetic field have been performed for the first time, on the basis of new 

microstructural models. Our theory describes reasonably well the enhanced 

magnetorheological effect observed experimentally in magnetic fiber suspensions (companion 

paper), in terms of the interfiber solid friction. Different structures of fiber suspensions have 

been considered in this paper. The quasi-static regime of the shear deformation of each 

structure (before the flow onset) has been studied, and the suspension yield stress has been 

attributed to the structure failure at a critical strain. 

The simplest column structure is expected at low interfiber friction and/or at high fiber 

volume fraction. Because of its high anisotropy, such structure gives the highest estimation of 

the yield stress of magnetic fiber suspensions. A more isotropic structure is obtained when the 

fibers form zigzag chains, which can act as compressed springs, restoring their energy and 

decreasing the stress. Such zigzag structure gives the lowest estimation of the yield stress. In 

the more realistic near-planar stochastic structure the fibers are supposed to lie more or less in 

planes parallel to the shear plane and to be stochastically oriented within these planes. We 

have introduced a Gaussian distribution function of fiber orientations centered at the strain 

angle. The yield stress predicted by this model is closer to the one predicted by the column 

structure model than to that predicted by the zigzag structure model. 

We have also developed an effective medium theory for the real 3D stochastic fiber 

network. This theory does not give an analytical prediction for the yield stress, but gives a 
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general expression for the shear stress as a function of the mean magnetic torque exerted on 

the fibers and the contact forces parallel to the fiber axis. Particle level simulations will be 

performed in the future to investigate the behavior of such 3D network under shear. 

In all the models, we have found that the two main contributions to the yield stress of 

magnetic fiber suspensions come from the magnetic torque and from the friction force, while 

the dipolar magnetic interaction between fibers plays a minor role. Nevertheless, a numerical 

simulation (by finite element methods) of the magnetic interactions will be conducted in the 

future to verify the validity of the dipolar approach used in the present work. 

Finally, the three considered models predict almost linear concentration dependence of 

the yield stress of fiber suspensions in the presence of magnetic field, while a dependence on 

Φ1.55 was observed in experiments (companion paper). This discrepancy comes from the 

assumption that the friction force between fibers is equal to nfξ , which will be corrected in 

our future work. Despite this discrepancy, our theory covers a quite wide range of the 

rheological phenomena observed in the new and promising magnetorheological fiber 

suspensions. 
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APPENDIX: CALCULATION OF THE MAGNETIC FIELD INSIDE THE FIBER 

SUSPENSION  
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The magnetic field intensity inside a thin layer of fiber suspension sandwiched 

between two plates is given by: 
zz

H
H

µ
0= , whatever the structure of the suspension. Here H0 is 

the external magnetic field intensity and µzz is the zz-component of the permeability tensor of 

the fiber suspension. The magnetic permeability of the suspension depends on the fiber 

magnetic properties, the fiber volume fraction of the suspension and the geometry of the 

suspension structure, i.e. the arrangement of fibers in the suspension. Let us consider first the 

column structure of fiber suspensions, for which µzz is related to the permeability components 

along the major and minor fiber axes, 


µ  and ⊥µ ,  through the expression: 

Θ+Θ= ⊥

22 sincos µµµzz . Hence, the internal magnetic field is:  

Θ+Θ
=

⊥

22
0

sincos µµ
H

H .     (A.1) 

We determine


µ  and ⊥µ  using Maxwell-Garnett mean field theory [Berthier (1993)] in the 

same way as it was done by Bossis et al. (1997) for the column structure composed of 

spherical particles: 

fχχµ Φ+=+=


11 ,     (A.2) 
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1 .     (A.3) 

In the general case, the fiber susceptibility, fχ , is a function of the magnetic field inside the 

fiber, Hf. To get this function, we fitted the experimental magnetization curve (cf. Figure 1 of 

the companion paper) to the Fröhlich-Kennelly formula [Jiles (1991)]. The expressions for 

fχ  and Hf  read: 
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Here iχ  = 17.3 and Ms = 1366 kA/m are the initial magnetic susceptibility and the saturation 

magnetization of fibers, respectively. The simultaneous resolution of equations (A.1)–(A.5) 

gives us the values of fχ , Hf and H at given external magnetic field H0, strain angle Θ and 

concentration Φ. 

Using Maxwell-Garnett theory, we also get the magnetic permeability of fiber 

suspensions with zigzag structure. The internal magnetic field is given by formula (A.1) with 


µ  and ⊥µ  being the components of the magnetic permeability tensor along the main axes of 

the zigzag chains, Oz’ and Oy’ (cf. Figure 5):  
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Here the subscripts “1” and “2” correspond respectively to the fibers making the angle δ+Θ  

and δ−Θ  with the magnetic field. The fiber susceptibilities, 1fχ  and 2fχ , are functions of 

the magnetic fields inside the fibers, 1fH  and 2fH , and are defined by equations (A.4)–(A.5), 
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where the angle Θ must be replaced by δ+Θ  for 1fH  and δ−Θ  for 2fH . Resolving the 

system of equations (A.1, A.4, A.5, A.6, A.7) we get the magnetic parameters 1fχ , 2fχ , 1fH , 

2fH  and H as functions of the applied magnetic field, H0, and the angles Θ and δ.  

Finally, the magnetic field inside isotropic fiber suspensions is given by: 
µ

0H
H = , 

with the mean magnetic permeability, µ , defined by formula (A.10) for the 3D isotropic 

structure [Kuzhir et al. (2003)] and (A.11) for the planar (2D) isotropic structure: 
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In these formulas, 0=


N  and 21=⊥N  are the demagnetization factors of the fiber; fχβ =


 

and 

21 f

f

χ
χ

β
+

=⊥ . The fiber magnetic susceptibility, fχ , is obtained from equation (A.4), 

where we must replace Hf by the mean magnetic field inside the fibers, fH . For the 3D 

isotropic and planar structures this field is calculated by averaging the magnetic field Hf 

(equation A.5) over random fiber orientations. Note finally that, due to the saturation effects, 

the magnetic permeability of the fiber suspension decreases significantly when the external 

magnetic field is increased. At field H0 ≥ 200 kA/m, and for a fiber volume fraction Φ ≤ 0.07, 

the magnetic permeability of the suspension is not far from unity and, consequently, the 

internal magnetic field, H, is quite close to the external one, H0. 
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FIGURE CAPTIONS 

 

Figure 1. Column structure behavior. At zero strain (a), the columns are aligned with the 

magnetic field. When the suspension is sheared (b), the columns are inclined at an angle Θ. 

Further shearing brings the structure either to the maximum of the shear stress (c) and the 

structure breaks (d) or to the end-by-end alignment (e). 

 

Figure 2. Geometry of the column structure model. a) fibers aligned with the field at zero 

strain; b) fibers inclined at a strain angle, Θ (no dipolar interactions between fibers); c) dipolar 

forces between fibers. 

 

Figure 3. Shear stress, τ, versus shear strain angle, Θ, calculated using the column structure 

model. Solid lines: calculations without dipolar interactions; dash lines: with dipolar 

interactions. Lower lines: no friction (ξ = 0); upper lines: friction with ξ = 1. The vertical 

dotted line corresponds to the end-by-end alignment of the fibers. For all the curves, the 

magnetic field intensity is H0 = 100 kA/m, the dimensionless overlap is β0 = 0.5 and the fiber 

aspect ratio is / 10l d = .  

 

Figure 4. Zigzag structure behavior. At zero strain (a), the fibers gather in zigzag chains 

spanning the gap. When the suspension is sheared (b), the chains are inclined at the angle Θ 

and extend along their axis of symmetry. At further shearing, the structure becomes unstable, 

either when the friction force reaches its maximum (c), or when the zigzag chains extend 

completely (d). The structure breaks causing the flow of the fiber suspension (e). 
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Figure 5. Geometry of the zigzag structure model. a) zigzag chain at zero strain; b), c) 

inclined chain at strain angle Θ. The forces and torques acting on the most inclined fibers and 

the less inclined fibers are illustrated in (b) and (c), respectively. 

 

Figure 6. Theoretical results of the zigzag structure model: stress-strain curve for three initial 

zigzag angles, δ0 = 20º, 36º and 45º, and for a magnetic field intensity H0 = 100 kA/m. The 

zigzag structure with the angle δ0 = 45º breaks before reaching complete alignment –the 

dotted part of the curve indicates the inaccessible stress/strain region. The dashed arrows 

indicate the points corresponding to the yield stress. 

 

Figure 7. Geometry of the 3D fiber network. a) network sheared in the yz-plane by a strain 

angle Θ –the fiber orientation is defined by the angles θ (≠Θ) and ϕ ; b) sketch of forces and 

torques acting on a fiber; c) sketch explaining the magnitudes r and s, which characterize the 

location of the points of force application (solid circles in the fiber). The gray plane denotes 

the plane Ox’z’z, where the magnetic torque is exerted. 

 

Figure 8. Geometry of the near-planar structure. a) The fiber network can be “sliced” into 

sheets parallel to the shear yz-plane. b) Projection of the fiber network onto the xz-plane. The 

fibers of the back sheet exert normal contact forces, 0
nf , on the fibers of the front sheet. 

 

Figure 9. Stress-strain curve for column, zigzag and near-planar stochastic structure of a fiber 

suspension at magnetic field intensity H0 = 100 kA/m, fiber volume fraction Φ = 0.05, and 

friction coefficient ξ = 1. The dipolar magnetic forces are neglected in all three cases. The 

initial zigzag angle for the zigzag structure is δ0 = 30º. 
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Figure 10. Yield stress of fiber suspensions versus external magnetic field intensity, H0, for 

different fiber volume fractions, Φ: (a) Φ = 0.01; (b) Φ = 0.03; (c) Φ = 0.05; and (d) Φ = 0.07. 

The upper and the middle solid lines correspond to the model of the column structure with ξ = 

1 (equation 12) and ξ = 0 (equation 14), respectively; dotted line: same model but with dipolar 

magnetic interactions (equation 16) and with ξ = 1, β0 = 0.5 and / 10l d = ; lower solid line: 

model of the zigzag structure (equation 20) with ξ = 1 and δ0 = 30º; dashed line: model of the 

near-planar stochastic structure (equation 32) with ξ = 1; solid circles: experimental data. 
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