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This paper reports the first predictions of the yield stress of suspensions of non-Brownian magnetic fibers in the presence of uniform magnetic fields. The quasi-static regime of the shear deformation (before the flow onset) of the suspension is studied. Four different structures of the magnetic fiber suspensions are considered -column, zigzag, 3D stochastic and near-planar stochastic structures -and the yield stress is attributed to the failure of the given structure at a critical strain. The main contributions to the yield stress are found to come from the restoring magnetic torque acting on each fiber and from the solid friction between fibers. The enhanced magnetorheological effect of magnetic fiber suspensions observed experimentally (companion paper) is explained and quantified in terms of interfiber friction. Surprisingly, the dipolar magnetic interactions between fibers do not affect significantly the yield stress. The lowest yield stress is obtained for the zigzag structure and the highest one for the column structure. A reasonable agreement with the experiments is obtained for 5 and 7 %

fiber volume fractions in the frame of the more realistic model of near-planar stochastic structures.

I. INTRODUCTION

The theoretical study of nonmagnetic fiber suspensions started with the work of [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF] who calculated the rotation of a single elongated particle in shear flow.

Jeffery's results were subsequently used for the calculation of the stress tensor of diluted fiber suspensions [START_REF] Batchelor | The stress system in a suspension of force-free particles[END_REF]; [START_REF] Brenner | Rheology of a dilute suspension of axisymmetric Brownian particles[END_REF]; [START_REF] Hinch | Time-dependent shear flows of a suspension of particles with weak Brownian rotations[END_REF]], as well as of semidiluted and concentrated suspensions with either long-range or short-range hydrodynamic interactions [START_REF] Batchelor | The stress generated in a non-dilute suspension of elongated particles by pure straining motion[END_REF]; [START_REF] Shaqfeh | The hydrodynamic stress in a suspension of rods[END_REF]; [START_REF] Doi | The theory of Polymer Dynamics[END_REF]; [START_REF] Folgar | Orientation Behavior of Fibers in Concentrated Suspensions[END_REF]; [START_REF] Joung | Direct simulation of flexible fibers[END_REF]; [START_REF] Powell | Rheology of Suspensions of Rodlike Particles[END_REF]; [START_REF] Qi | Direct simulations of flexible cylindrical fiber suspensions in finite Reynolds number flows[END_REF]; [START_REF] Rahnama | The effect of hydrodynamic interactions on the orientation distribution in a fiber suspension subject to simple shear flow[END_REF]; [START_REF] Yamamoto | Dynamic simulation of fiber suspensions in shear flow[END_REF]]. Useful reviews are given by [START_REF] Ganani | Suspensions of rodlike particles -literature-review and data correlations[END_REF], [START_REF] Larson | The Structure and Rheology of Complex Fluids[END_REF], [START_REF] Petrie | The rheology of fibre suspensions[END_REF] and [START_REF] Zirnsak | Normal stresses in fiber suspensions[END_REF].

Unfortunately, the predictions of the theories that take into account only hydrodynamic interactions, fail for rather concentrated fiber suspensions. In this case, the contact forces between fibers give a significant contribution to the stress. In concentrated suspensions, the fibers create an entangled elastic network and experience solid friction when sliding over each other [START_REF] Petrich | Interactions between contacting fibers[END_REF]]. Such suspensions possess a yield stress attributed to the interfiber failure of the network. [START_REF] Bennington | The yield stress of fiber suspensions[END_REF] reported the first attempt to include the interparticle friction in order to calculate the yield stress in fiber suspensions. A more rigorous model that takes into account stochastic fiber orientations was reported by [START_REF] Toll | Dynamics of a planar concentrated fiber suspension with nonhydrodynamic interaction[END_REF] for planar fiber suspensions. This theory gives a reasonably good prediction of the yield stress of planar fiber suspensions measured in shear and squeeze flow [START_REF] Servais | Fiber-fiber interaction in concentrated suspensions: Disperse fibers[END_REF](2002)]. A more general theory for real 3D fiber suspensions has recently been reported [START_REF] Djalili-Moghaddam | A model for short-range interactions in fibre suspensions[END_REF]]. This theory incorporates both long-range hydrodynamic interactions and short-range interactions (near the contact point between two fibers) and gives a reasonably good correspondence with experimental results for the viscosity of fiber suspensions.

Particle level dynamic simulations of sheared flexible fiber suspensions have also been performed and have shown the extreme importance of the interfiber friction coefficient in the flocculation and rheology of the suspensions [Schmid et al. (2000); Schmid and Klingenberg (2000); [START_REF] Switzer | Flocculation in simulations of sheared fiber suspensions[END_REF]; [START_REF] Lindstrom | Simulation of the motion of flexible fibers in viscous fluid flow[END_REF]].

Note that colloidal forces between particles can also give rise to a significant yield stress in fiber suspensions [START_REF] Philipse | On the Density and Structure Formation in Gels and Clusters of Colloidal Rods and Fibers[END_REF]; [START_REF] Wierenga | Aqueous Dispersions of Colloidal Boehmite: Structure, Dynamics, and Yield Stress of Rod Gels[END_REF]; [START_REF] Hovarth | The influence of colloidal interactions on fiber network strength[END_REF]]. However, colloidal interactions are significant for submicron particles and are expected to play a minor role for the relatively large fibers used in our experiments.

The other interaction that could provoke a gelation of a fiber suspension is the magnetic interaction. In suspensions of spherical magnetic particles, the application of a magnetic field causes the formation of a network of particles or aggregates throughout the suspension, which gives rise to the appearance of large yield stresses -up to 100 kPa [START_REF] Bossis | Magnetorheology: Fluids, Structures and Rheology[END_REF]; [START_REF] Ginder | Behavior of magnetorheological fluids[END_REF]]. This phenomenon is known as magnetorheological effect and these suspensions are called magnetorheological (MR) suspensions. The rheology of conventional MR suspensions (suspensions of spherical magnetic particles) has been widely investigated since the first study reported by [START_REF] Winslow | Induced fibration of suspensions[END_REF]. Detailed reviews can be found in [START_REF] Bossis | Magnetorheology: Fluids, Structures and Rheology[END_REF], [START_REF] Ginder | Behavior of magnetorheological fluids[END_REF], [START_REF] Larson | The Structure and Rheology of Complex Fluids[END_REF], [START_REF] Shulman | Magnetorheological systems[END_REF] and [START_REF] Shulman | Magnetorheological effect[END_REF].

Whereas the rheology of suspensions of either nonmagnetic fibers or magnetic spherical particles has been the subject of thousands of papers and a few monographs, too little attention has been paid to the rheology of suspensions of magnetic fibers, especially non-Brownian ones. Nevertheless, due to the shape anisotropy of fibers and the possible existence of friction between them, their use in MR suspensions could enhance significantly the MR effect [START_REF] López-López | New magnetorheological fluids based on magnetic fibers[END_REF]]. Furthermore, an interesting rheological behavior is expected for such magnetic fiber suspensions, combining the behaviors observed in nonmagnetic fiber suspensions and in conventional MR suspensions. Some experimental rheological data on the rheology of elongated particle suspensions that support this statement are reported in the papers by [START_REF] López-López | New magnetorheological fluids based on magnetic fibers[END_REF], [START_REF] Kuzhir | Shear and squeeze rheometry of suspensions of magnetic polymerized chains[END_REF], [START_REF] Bell | Magnetorheology of submicron diameter iron microwires dispersed silicon oil[END_REF] and [START_REF] Ngatu | Dimorphic magnetorheological fluids: exploiting partial substitution of microspheres by nanowires[END_REF]. A detailed experimental investigation on the shear rheology of magnetic fiber suspensions, including the concentration dependence of the yield stress and observations of the suspension structures under applied magnetic field, is presented in the companion paper. A two-to three-time increase in the yield stress of magnetic fiber suspensions compared to suspensions of spherical magnetic particles was found. However, no theoretical model explaining this increase has been reported. In the present paper, we introduce the first microstructural models for magnetic fiber suspensions and explain the enhanced magnetorheological response of these suspensions in terms of interfiber solid friction. Our theory covers the quasi-static regime of the shear deformation (before the flow onset) and combines the features of the point-wise interaction theory developed by [START_REF] Toll | Dynamics of a planar concentrated fiber suspension with nonhydrodynamic interaction[END_REF] for classical fiber suspensions and the features of the column structure and zigzag structure models for classical MR suspensions [START_REF] Bossis | Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models[END_REF]; [START_REF] Volkova | Study of rheology of suspensions of magnetic particles[END_REF]].

In contrast to suspensions of non-Brownian magnetic fibers, colloidal dispersions of nano-sized elongated magnetic particles have been studied theoretically in some detail [START_REF] Aoshima | Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of rod-like ferromagnetic particles in an applied magnetic field[END_REF]; [START_REF] Rubí | The viscosity of a suspension of elongated magnetic dipoles[END_REF]; [START_REF] Salueña | The viscosity of a suspension of ferromagnetic rod-like particles[END_REF]; [START_REF] Satoh | Rheological properties and orientational distributions of dilute ferromagnetic spherocylinder particle dispersions -Approximate solutions by means of Galerkin's method[END_REF][START_REF] Satoh | Rheological properties and particle behaviors of a nondilute colloidal dispersion composed of ferromagnetic spherocylinder particles subjected to a simple shear flow (analysis by means of mean-field approximation)[END_REF][START_REF] Satoh | Influence of magnetic interactions between clusters on particle orientational characteristics and viscosity of a colloidal dispersion composed of ferromagnetic spherocylinder particles: Analysis by means of mean field approximation for a simple shear flow[END_REF], [START_REF] Tsebers | Simulation of the magnetic rheology of a dilute suspension of ellipsoidal particles in a numerical experiment[END_REF]]. These authors predicted for these dispersions an increase in viscosity and a shear thinning behavior upon magnetic field application, but no field-induced yield stress due to the intense Brownian motion. This behavior was confirmed experimentally [START_REF] Maiorov | Measurement of the ferrofluid viscosity in magnetic field[END_REF]].

The present paper is outlined as follows. In the following section we consider the different interactions in magnetic fiber suspensions and we compare their energies. This allows us to determine the dominating interactions and, subsequently, to exclude the less important ones from our theory. In section III, we construct a micromechanical model for four particular structures of the magnetic fiber suspensions: (i) column structures; (ii) zigzag structures; and more realistic (iii) 3D stochastic structures and (iv) near-planar stochastic structures. Finally, in section IV all these models are tested by comparing their predictions with the experimental results reported in the companion paper.

II. INTERACTIONS IN FIBER SUSPENSION

When a suspension of non-Brownian magnetic fibers is subjected to a magnetic field, the fibers get magnetized, are attracted to each other and form an entangled network, as described in the companion paper. The suspension yield stress is directly affected by the mechanical strength of the fiber network, which, in turn, depends on the interfiber interactions. In our analysis, we shall consider only very long (or very thin) magnetic fibers, with aspect ratio 10 / ≥ d l . In the presence of magnetic field, we expect at least the following interactions in suspensions of long fibers: a) Interaction between the fibers and the field. The magnetic field exerts a magnetic torque on a fiber, which tends to align it with the field. The energy of this interaction scales as

H MV mH U f m 0 µ = ∝ , (1) 
where

0 f m MV µ =
is the magnetic moment of the fiber, H the magnetic field intensity in A/m, M the magnetization of the fiber material in A/m, V f = πd 2 l/4 the volume of the fiber, d and l the fiber diameter and length respectively, and µ 0 = 4π 10 -7 Henry/m the magnetic permeability of vacuum.

b)

Magnetic interaction between fibers. Let us assume that fibers are dipoles with the north and the south poles situated on the fibers extremities. The total interaction is therefore the sum of the pair interactions between the poles of the fibers. The characteristic energy of such interaction is

2 2 2 0 0 4 d f p d U M V r lr µ πµ ∝ ∝ . ( 2 
)
In this formula p = m/l is the intensity of the "magnetic poles" and r is the distance between the poles of neighboring fibers.

c)

Mechanical contacts between fibers. They are manifested through a normal reaction force, f n , and a tangential friction force, which is assumed to be Columbic:

n f f ξ τ =
, with ξ being the friction coefficient. Under shear deformation, the fibers slip along each other and the energy dissipated per fiber is equal to the work of the friction forces acting on a given fiber:

x f W n r f ∆ ∝ ξ , with l x ∆
being the displacement of one fiber relative to another one.

When the fibers are misaligned with the magnetic field, the normal contact forces equilibrate the magnetic torque, m T mH ∝ , acting on the fiber, and therefore

0 f m n MV H T f l l µ ∝ = .
Finally, the expression for the work

r f W takes the form H MV W f r f 0 ξµ ∝ . ( 3 
)
Let us now compare the interaction energies. Dividing equation (2) by equation (1), we get the ratio between the dipolar interaction energy and the "fiber-field" interaction energy:

r l H d M U U m d 2 ∝ . ( 4 
)
According to the experimental observations, the fibers in the suspension can touch each other either by their extremities or by their lateral cylindrical surfaces (see Figure 8 of the companion paper). In the former case, the distance between the poles of neighboring fibers, r, is of the order of the fiber diameter, d, and the energy ratio (4) scales as Hl

Md U U m d ∝
. In the latter case, the contact point is located somewhere between the fiber extremities, and for long fibers the distance r is of the order of the fiber length, l, and the energy ratio (4) becomes

2       ∝ l d H M U U m d
. We estimated the energy ratio (4) for both cases, at low and high magnetic field and for a fiber aspect ratio / ~10 l d . These estimations are summarized in Table 1.

From data in Table 1, the dipolar magnetic interaction seems to be weaker than the "fiberfield" interaction, except for end-by-end alignment of fibers at low magnetic field. Fiber magnetization

M =χH ~ (10 ÷ 10 2 )H M ~ H M =χH ~ (10 ÷ 10 2 )H M ~ H Energy ratio (equation 6) l d Hl Md U U m d χ ∝ ∝ l d U U m d ∝ 2 2       ∝       ∝ l d l d H M U U m d χ 2       ∝ l d U U m d Energy ratio (numerical value) 10 1 ÷ ∝ m d U U 1 . 0 ∝ m d U U 1 1 . 0 ÷ ∝ m d U U 01 . 0 ∝ m d U U
Dividing equation (3) by equation (1), we get the ratio between the energy dissipated by solid friction and the "fiber-field" magnetic interaction energy: / [START_REF] Petrich | Interactions between contacting fibers[END_REF] reported a value ξ ~ 0.4 for the friction coefficient of polymeric fibers. We do not have the value of the friction coefficient for our cobalt fibers, but it should be much larger than the value for polymeric fibers due to the high roughness of the fiber surface [Lopez-Lopez et al. (2007)]. Thus, the work of the friction force should be at least of the same order of magnitude than the magnetic energy, U m . Therefore, we expect an important contribution of the friction forces to the yield stress.

f r m W U ξ ∝ .
Finally, note that colloidal forces and Brownian motion are not considered because the corresponding characteristic energies are much lower than the energy of the magnetic interaction: et al. (2008)]. The fiber diameter and length were taken d~5 µm and l~50 µm, respectively. Note that the hydrodynamic interactions are also neglected because the quasi-static deformation of the suspensions without any flow is considered.

The three above considered interactions -"fiber-field", dipolar "fiber-fiber" and solid friction between fibers-will now be incorporated into the theoretical model in order to predict the yield stress of a fiber suspension in the presence of magnetic field. The shear stress of the structured suspension will be calculated for the quasi-static deformation of its structure (before the flow onset) as the sum of the particle stresses. Consequently, we need to know the arrangement of fibers in the suspension structure. Four different structures will be considered in this paper. We shall start with the simplest model of the column structure, which possesses the highest possible anisotropy, and is usually observed in conventional MR suspensions, composed of spherical magnetic particles [START_REF] Bossis | Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models[END_REF]; [START_REF] Zubarev | Yield stress in thin layers of ferrofluids[END_REF]].

III. MICROSTRUCTURAL MODELS

III.1. COLUMN STRUCTURE

Let us consider a suspension of identical magnetic fibers confined between two infinite plates. The distance between these plates is supposed to be much larger than the fiber length. When the magnetic field is applied normally to the plates, the fibers gather into straight columns aligned with the field direction and spanning the gap between the plates, like

shown in Figure 1a. The suspension is sheared by a displacement of the upper plate, and the strain angle is Θ. In this model, we consider that in each column the fibers overlap each other at the same overlap length, b 0 (Figure 2a). When the suspension is strained, the fibers slip along each other and the columns extend and tilt. If the fibers in the columns do not slip on the plates, each column is tilted at the angle Θ under shear (Figure 1b). Such regular network resists the shear deformation. There are at least three mechanisms of fiber suspension response to the applied strain. First, each fiber experiences a restoring magnetic torque that tends to turn it back to the vertical position. Second, the solid friction between fibers hinders the extension of the columns and, consequently, the overall strain deformation of the suspension. Finally, the magnetic dipolar attraction between fibers must be overcome in order to break the structure and to make the MR fluid flow. Firstly, we shall incorporate into our model the two first mechanisms.

The fibers touch each other by their lateral cylindrical surface and, therefore, their contact area is reduced to a line of length b (Figure 2c). The contact forces are assumed to be distributed homogeneously along the contact line and, therefore, they can be considered to be concentrated in a single point of the contact line -at the center of the overlapping section b.

Two forces are exerted at each contact point: the normal force, f n , and the tangential friction force, f τ =ξf n . The torque balance on each fiber gives:

2 m n T f s f d τ = + , (5) 
s being the distance between the central cross-section of the fiber and the contact point (Figure 1b). If the contact point is located far from the center of the long fiber (s >> d), we neglect the second term in equation ( 5) and the normal force is therefore:

2 m n T f s ≈ . ( 6 
)
The mechanical stresses arising in fiber suspensions are due to the contact forces exerted on the fibers. Since the carrier liquid is not elastic but Newtonian and there is not any significant flow in the quasi-static deformation regime, the only contribution to the suspension stress tensor is the particle stress. This is a volume average of the stresses contributed by each fiber. In our particular case, since the forces acting on the fibers are concentrated in single points (point-wise interactions), the expression for the suspension shear stress is given by [START_REF] Larson | The Structure and Rheology of Complex Fluids[END_REF]; [START_REF] Toll | Dynamics of a planar concentrated fiber suspension with nonhydrodynamic interaction[END_REF]]:

∑

∑ = fibers contacts 1 y z f r V τ . ( 7 
)
Here V is the total volume of the suspension, r is the distance between the fiber center and the contact point and the sum is taken over all the contact points on every particle of the suspension. Since we have two contact points per fiber, the expression (7) takes the form:

( ) ( )

y z f y z f f r V f r V N 2 2 Φ = = τ . ( 8 
)
Here N f is the total number of fibers in the suspension volume, V; V f is the fiber volume and Φ

is the volume fraction of fibers. The z-component of the distance, r, is

( ) Θ ≈ Θ + Θ = cos sin 2 cos s d s r z
, and the y-component of the contact force, f, is the sum of the corresponding components of the normal and friction forces:

( )

Θ + Θ = Θ + Θ = sin cos sin cos ξ τ n n y f f f f
. Substituting these expressions into equation ( 8)

and replacing f n by the appropriate formula (6), we get:

2 1 cos sin 2 2 m f T V τ ξ Φ   = Θ + Θ     (9)
The magnetic torque exerted on a fiber is given by the expression:

0 sin sin m f T mH MV H ψ µ ψ = = . ( 10 
)
Here ψ is the angle between the vectors of the magnetic moment of the fiber, m, and the magnetic field intensity H. The magnetization of the fibers, M, is a function of the magnetic field intensity H f inside the fibers:

( ) f f f H H M χ = with f
χ being the fiber magnetic susceptibility. The field H f (cf. equation A.5) and the angle ψ are defined in the same way as for an infinitely prolate ellipsoid subjected to an uniform magnetic field, H, applied at an angle Θ with respect to the major axis of the ellipsoid [START_REF] Landau | Electrodynamics of Continuous Media[END_REF]].

Substituting the expressions for M and ψ sin into equation ( 10), we get the following formula for the magnetic torque:

2 2 0 1 sin 2 2 2 f m f f T V H χ µ χ = Θ + . ( 11 
)
And the final expression for the shear stress reads:

( )

      Θ + Θ Θ + Φ = + = 2 sin 2 1 cos 2 sin 2 2 1 2 2 2 0 2 ξ µ χ χ τ τ τ H f f r f m . ( 12 
)
The first term m τ is the contribution of the "fiber-field" interaction and the second term r f τ is the contribution of the friction forces. The magnetic field, H, is in fact the mean magnetic field inside the MR suspension. It is related to the external magnetic field, H 0 , through the relative magnetic permeability of the fiber suspension. Its calculation is summarized in the Appendix.

The stress-strain curves calculated by equation ( 12) are presented in Figure 3 for two values of the friction coefficient, ξ = 0 and 1, for a magnetic field H 0 = 100 kA/m, and for a volume fraction Φ = 0.05. As expected, these curves have a maximum at some critical strain angle, Θ c . Above this critical strain the static column structure becomes unstable (Figure 1c), breaks and the flow starts (Figure 1d). In case of small initial overlap of fibers, they can be aligned end-by-end at subcritical angles (cf. Figure 1e). Such configuration will also be unstable, and the fibers will turn towards the vertical position under the action of the magnetic torque (Figure 1g), they will detach from each other and the flow will start (Figure 1h).

Consequently, the column structure breaks either at the critical angle Θ c or at the angle ( )

0 1 cos β - = Θ a a
, corresponding to the end-by-end alignment, l b 0 0 = β being the dimensionless overlap. The yield stress of the fiber suspension is the shear stress at which the column structure breaks; it is given by equation ( 12), in which we must replace the angle Θ by the yield angle

, )] 1 cos( , min[ 0 β - Θ = Θ a c Y
, being the minimum strain angle corresponding to the structure failure.

At sufficiently large overlaps, β 0 ≥ 0.15, the yield stress corresponds to the maximum of the stress-strain curve. This maximum is shifted towards larger values of Θ when the friction coefficient is increased (Figure 3), and it is determined by the condition 0 = ∂ ∂ θ τ . To get an approximate value of the angle Θ c , we assume both χ f and H to be independent of the strain angle, Θ, and in this way we obtain the following equation for Θ c :

0 4 sin 4 cos 2 cos = Θ + Θ + Θ c c c ξ (13)
Such approximation gives only a 5% error on the yield stress. For a friction coefficient, ξ = 1, we get a critical angle, Θ c ≈ 37º. In the absence of friction, ξ = 0, equation ( 13) gives Θ c ≈ 30º, which corresponds to a yield stress:

2 0 2 2 16 3 3 H f f Y µ χ χ τ + Φ = (14) 
We shall compare these calculations with the experimental results in the last section of the present paper. Note that, in the extreme cases of very low or very high magnetic field, we can replace the term

2 0 2 2 H f f µ χ χ +
in equations ( 13) and ( 14) by We shall now include the dipolar magnetic interactions between fibers in our model.

We suppose our fibers to be long sphero-cylinders with north (-) and south (+) magnetic poles, of intensity p, located in the center of the end hemispheres, as shown in Figure 2c. The (-)-pole of the lower fiber is attracted to the (+)-pole and repulsed by the (-)-pole of the upper fiber (forces f ± and - f , respectively). On the other hand, the (+)-pole of the lower fiber is attracted to the (-)-pole and repulsed by the (+)-pole of the upper fiber (forces m f and + + f , respectively). The total interaction is the vector sum of these four forces. Each of these forces is equivalent to the electrostatic force acting between two electric charges: it is oriented along the line joining the centers of the interacting poles and follows Coulomb's law:

2 0 2 4 ij ij r p f πµ = (15) 
Here i = +,-; j = +,-and l m p = is the intensity of the magnetic pole of a fiber.

Since

2 1 ij ij r f ∝
, the strongest dipolar interaction is reached when the extremities of the neighboring fibers are in contact. Therefore, it is reasonable to take into account only the interaction between the two closest poles of neighboring fibers. Then, including these forces in the torque balance (5) and in the stress equation ( 7), and performing the necessary calculations, we arrive to the final expression for the shear stress:

( )

                  Θ + + Θ + Θ       - Θ + Θ Θ + Φ = + + = 2 2 2 2 2 2 0 2 sin 2 4 cos 2 2 sin 16 2 sin 2 1 cos ) 2 sin( ) 2 ( 2 f f f f d fr m l d G H χ χ ξ χ µ χ τ τ τ τ (16) Here, ( ) ( ) [ ] 2 3 2 l d l d G + - = β ξ β , with Θ - - = cos 1 1 0 β β
. The three contributions to the shear stress are the "fiber-field" interaction ( m τ ), friction ( fr τ ) and fiber-fiber dipolar interaction ( d τ ).

In order to check the effect of the dipolar interactions, we show in Figure 3 the stressstrain curves for magnetic fiber suspensions without dipolar interactions (equation 12) and with dipolar interactions (equation 16). Almost in the whole range of strain angles, the magnetic interaction between fibers lowers slightly the shear stress. This is because the fibers tend to be aligned end-by-end and, therefore, the columns tend to extend. The inclined columns, confined between two plates, push therefore the upper plate and facilitate the shear deformation of the suspension. At high strain angles, when the fiber extremities become closer, the magnetic attraction between the fiber poles increases. The normal component, f mn , of the magnetic force becomes comparable with the tangential one, f mτ . The friction force increases too, being proportional to the normal force. Therefore, we observe a rapid growth of the shear stress close to end-by-end alignment (Figure 3). 

III.2. ZIGZAG STRUCTURE

In reality, the fibers are not perfectly aligned but form a complicated network. One of the model structures with lower anisotropy is the one where the fibers are connected by their extremities, forming zigzag-like chains that span the gap between two parallel plates (Figure 4). Let the angle between the fibers and the magnetic field be δ 0 at zero strain (Figure 4a).

When the suspension is sheared at a strain angle, Θ, the zigzag structures are supposed to be inclined in such a way that the axis of symmetry of each zigzag chain (the line joining fiber centers) makes the angle Θ with the magnetic field (Figure 4b). We also suppose that all the fibers in the chain make the same angle, δ, with the axis of symmetry. This angle is found from geometrical considerations:

Θ = cos cos cos 0 δ δ .
Each fiber is subjected to the magnetic torque and to the action of the contact and magnetic dipolar forces. If we assume the fibers to be sphero-cylinders, the fiber contact points will be located on the lines joining the centers of the end hemispheres of the neighboring fibers. Each of these lines is parallel to the chain axis of symmetry and, therefore, the normal contact force, f n , and the magnetic force, f m , are also parallel to this axis. In each zigzag chain, one half of the fibers make the angle Θ + δ with the magnetic field, and the other half the angle Θδ. Neglecting the terms of the order of l d , the balance of torques for these two kinds of fibers reads:

( )

1 sin cos n m T f f l f l τ δ δ = - + (17) 
( )

2 sin cos n m T f f l f l τ δ δ = - - + (18) 
Since both fibers make different angles with the magnetic field, they are subjected to different magnetic torques, T 1 and T 2 . We have assigned the counter-clockwise direction to positive magnetic torques. Thus, in Figure 5, the torque T 1 is positive and T 2 is negative. It is important to note that, in the absence of friction between fibers, the torque balance ( 17), ( 18) can only be satisfied at zero strain, when 1 2 T T = -. The friction between fibers prevents their extremities from sliding over each other, so that the zigzag structure is not destroyed by the shear deformation. Furthermore, when the fiber extremities do not slide, the friction force, f τ , is independent of the normal force f n . It can take any value not exceeding the maximum, n f ξ .

When the friction force becomes

n f f ξ τ =
, the fiber extremities slide over each other until they detach and the structure breaks -this could correspond to the flow onset.

The magnetic torques T 1 and T 2 are defined by equation ( 11), in the same way as for the fibers in the column structure. We only have to replace in equation ( 11 

[ ] δ τ τ cos cos sin cos ) ( Θ Θ + Θ - - Φ = f f f V m n f (19) Working out the forces, ) ( m n f f -
and τ f , as functions of the torques, T 1 and T 2 , using equations ( 17), ( 18), and replacing the torques by the appropriate relation ( 11), we arrive to the final expression for the shear stress:

        + Θ + - - Θ + Θ - Θ + Θ Φ = ) cos( 2 ) cos( 2 sin cos ) sin( ) sin( 2 1 1 2 1 2 2 2 2 0 δ χ χ δ χ χ δ δ δ µ τ f f f f H (20)
Note that the friction coefficient does not intervene in the expression for the shear stress. This is because the fibers do not slide over each other. The friction force adapts its value to satisfy the mechanical equilibrium of the structure, which is totally defined by the magnetic torques acting on the fibers.

The stress-strain curves for fiber suspensions with zigzag structure are presented in Figure 6 for a magnetic field intensity, H 0 = 100 kA/m and for three different initial zigzag angles, δ 0 = 20º, 36º and 45º. We see that the shear stress is quite sensitive to the initial angle δ 0 , but the shape of the stress-strain curves is the same for any δ 0 . At low strain, the suspension develops a negative shear stress. This is because the fibers tend to align with the magnetic field, and they push each other in such a way that the zigzag chains tend to be straightened up. These chains act as compressed springs, and when they are inclined under shear, they push the upper plate both upward and in the direction of the shear. This favors the shear deformation of the suspension. At the same time, the restoring magnetic torque acting on each chain hinders the structure deformation. At a strain angle large enough, the restoring effect of the magnetic torque becomes dominant and the shear stress positive, undergoing a rapid growth with the strain (Figure 6). Once it is positive, the shear stress for the zigzag structure grows monotonically with the strain angle until the zigzag chains extend completely and become straight chains (Figure 4d). At this point, corresponding to a strain angle Θ = δ 0 , the zigzag structure becomes unstable and the fiber suspension begins to flow (Figure 4e).

Alternatively, if the friction force between fiber extremities, f τ , reaches its maximum, ξf n , the structure loses its stability at lower strains (Figure 4c). In this case, as mentioned above, the fiber extremities slide over each other and the structure breaks at a critical angle, Θ c , defined by the condition f τ = ξf n . Therefore, the yield angle is the minimum angle between Θ c and δ 0 :

Θ Y = min[Θ c , δ 0 ].
In order to determine the critical angle, Θ c , the following formulas are used:

m f f f f f n f l V H f +         - Θ + - + Θ + = ) ( 2 sin 2 ) ( 2 sin 2 sin 4 2 2 2 1 2 1 2 0 δ χ χ δ χ χ δ µ , (21)         - Θ + + + Θ + = ) ( 2 sin 2 ) ( 2 sin 2 cos 4 2 2 2 1 2 1 2 0 δ χ χ δ χ χ δ µ τ f f f f f l V H f , ( 22 
) 2 1 2 2 2 2 2 1 2 2 2 2 1 0 2 2 0 2 1 2 1 2 1 ) ( sin ) ( cos 2 1 2 1 ) ( sin ) ( cos 16 4                                   + + - Θ + - Θ                     + + + Θ + + Θ = = ⊥ ⊥ f f f f f m l V H l d m m f χ χ δ δ χ χ δ δ χ χ µ πµ (23)
The magnetic susceptibilities,

1 f χ , 2 f
χ , and ⊥ χ , as well as the internal magnetic field, are calculated in the Appendix. The yield stress for the zigzag structure is calculated using equation ( 20) by replacing the strain angle, Θ, by the yield angle Θ Y .

III.3. 3D FIBER NETWORK

Both models studied above (column and the zigzag structures) are, of course, ideal representations of the real fiber structure. In the present section, we will consider a 3D network of the fiber suspension with a stochastic distribution of fiber orientations (Figure 7a), like the one observed in experiments (cf. Figure 8 of the companion paper). As in the previous models, the fiber suspension is sandwiched between two horizontal infinite planes and subjected to a magnetic field normal to the planes. Let us consider a shear deformation of the suspension by a strain angle Θ, in the yz-plane. The fiber network deforms under strain, and the fibers displace and pivot relatively to each other, their orientations being described by the polar angle θ and the azimuthal angle ϕ. We make the following assumptions:

1. The fibers are long cylinders: 1 / >> d l .

2. The effect of the magnetic field created by neighboring fibers on the magnetization of a given fiber is taken into account by considering that each fiber is placed in an effective medium with the mean magnetic field, H, calculated by the mean field theory (see the Appendix).

3. As in the case of the column and zigzag structures, both mechanical contact and dipolar magnetic interactions are considered to be point-wise.

In equilibrium, all forces applied to each fiber must satisfy the force and the torque balance:

0 = ∑ i i f , ( 24 
) m i i i + = ∑ T r × f 0 . (25)
Here r i is the vector connecting the fiber center with the point of application of the force f i . If the fibers are considered to be infinitely thin, the vector r i is parallel to the fiber. We can decompose the forces acting on the fibers into the components

x f ′ , y f ′ ,  ′ = f f z
, along the axes of the coordinate frame Ox'y'z' attached to a given fiber (Figure 7b). The magnetic torque vector, m = T m × H , is perpendicular to the plane Ozz' formed by the fiber and the magnetic field vector H, and is parallel to the Oy' axis of the fiber reference frame (Figure 7b). Projections of the torques onto the axes Ox' and Oy' give:

∑ = - ′ i i y i f s 0 , ( 26 
)
0 m i x i i T s f ′ -+ = ∑ , ( 27 
)
where the scalar T m is defined by equation ( 11), s i is the distance between the fiber center and the point of application of the force f i ; s i > 0 if the point of application of the corresponding force is located above the fiber center, and otherwise s i < 0.

The shear stress of the fiber suspension is defined by the general expression (7), where the y-component of the force intervenes. Since the force f i is decomposed into the components x f ′ , y f ′ and  f along the axes of the fiber reference frame, the y-component of this force is the sum of the y-components of each individual term:

( ) ( ) ( ) yi yi y yi x yi f f f f  + + = ' ' . ( 28 
)
From geometrical considerations (Figures 7b,c) we obtain: ( )

ϕ θ sin cos i x yi x f f ′ ′ = ; ( ) ϕ cos i y yi y f f ′ ′ = , ( ) ϕ θ sin sin i yi f f   = and θ cos i zi s r =
. Thus, using these expressions and replacing the force f y by equation ( 28), the expression (7) for the shear stress takes the form:

( ) 2 fibers fibers 1 1 cos sin cos cos cos sin sin

zi yi i x i i y i i i i i r f s f s f s f V V τ θ ϕ θ ϕ θ θ ϕ ′ ′  = = + + ∑ ∑ ∑ ∑ (29)
Finally, taking into account the torque balance (equations 26, 27) and formula (11) for the torque T m , the expression for the shear stress is written as:

( ) ( ) ∑ ∑ ∑ ∑ ∑   + + Φ = +         + = fibers 2 2 2 0 fibers fibers 2 2 2 0 sin 2 sin 2 1 sin cos 2 sin 2 2 1 sin 2 sin 2 1 sin cos 2 sin 2 2 1 1 i i i f f i i i f f f f s V H f s V H V V ϕ θ ϕ θ θ χ χ µ ϕ θ ϕ θ θ χ χ µ τ (30)
The symbol ... denotes the averaging over a stochastic fiber orientation:

∫ ∫ = π π θ θ θ ϕ ϕ 0 2 0 (...) sin ) , ( ... d F d
, with ( , )

F ϕ θ being the orientation distribution function of fibers.

Formula ( 30) is pertinent to the calculation of the shear stress via direct particle-level simulations, planned for future work. For analytical calculations, it is required the knowledge of the distribution of the longitudinal forces exerted on the fibers, i f  , as well as the angular distribution function of fiber orientations, ) , ( θ ϕ

F

. At this moment, we do not know how to predict them rigorously with statistical or energy analyses. Nevertheless, we can perform analytical predictions of our theory for the near-planar stochastic structure by introducing some simplifications in the model.

III.4. NEAR-PLANAR STOCHASTIC STRUCTURE

Let us now suppose that all the fibers lie more or less in planes parallel to the shear plane. Thus, the fiber suspension can be represented as a series of sheets, each one parallel to the shear plane, and containing stochastically oriented fibers, as depicted in Figure 8a. We shall calculate the yield stress of such fiber network under the following considerations:

1. Analogously to the column structure, the magnetic dipolar forces are negligible and the only forces exerted on the fibers are the contact forces.

2. Most of the contact points are located on the lateral fiber surface rather than at the fiber extremities.

3. When the suspension is sheared, all the fibers slide over each other, with the Coulomb's friction force, f τ = ξf n . The two last assumptions were introduced by [START_REF] Toll | Dynamics of a planar concentrated fiber suspension with nonhydrodynamic interaction[END_REF] for suspensions of very long nonmagnetic fibers.

4. Fibers contained in the same sheet touch each other in a few points and their contact forces are supposed to be parallel to the shear yz-plane. According to the second assumption, the friction force between fibers contained in the same sheet is parallel to the fiber major axis Oz'. Therefore, the longitudinal contact force between fibers of the same sheet is

* * * i n i i f f f ξ τ = =  .
5. Fibers contained in neighboring sheets have also a few mechanical contacts between them. Their normal contact forces, 0 n f , are supposed to be perpendicular to the shear yzplane. Since the magnetic torque exerted on the fibers is in the shear plane, there is no magnetic torque in the xz-plane, and the normal contact forces, 0 n f , are compensated only by the magnetic dipolar forces between contacting fibers (Figure 8b). Tangential friction forces between fibers contained in different sheets lie in the shear yz-plane, and are equal to

m i n i f f f ξ ξ τ 0 0 =
. According to the first assumption, these friction forces are negligible compared to the friction forces between fibers of the same sheet: *

0 i i f f τ τ

<<

. Consequently, the longitudinal contact force acting on fibers will only include the friction forces between fibers contained in the same sheet: * *

i n i i f f f ξ = =   .
By analogy with formula ( 27), the balance of torques acting on a given fiber in the shear yz-plane, reads:

* 0 m i ni i T s f -+ = ∑ , (31) 
Taking into account this expression, replacing the magnetic torque by formula (11) and setting 2 π ϕ = , we arrive to the following expression for the shear stress of our near-planar structure:

( )

2 2 2 2 2 2 0 0 fibers 1 1 1 1 sin2 cos sin2 sin2 cos sin2 2 2 2 2 2 2 f f m f f H T H V χ χ τ µ θ θ ξ θ µ θ θ ξ θ χ χ   = Φ + = Φ +   + +   ∑ (32)
6.

The angular mean in Equation ( 32) is calculated via the angular distribution function of the near-planar structure:

∫ - = 2 2 (...) ) ( ... π π θ θ d F
. The fiber orientation is supposed to be strongly influenced by the shear deformation, and the angular distribution function is assumed to be Gaussian and centered at the strain angle, Θ:

] ) ( exp[ ) ( 2 2 1 Θ - - = θ α α θ F (33)
Hear α 1 and α 2 are the parameters of the distribution function. Furthermore, in the absence of shear the fiber distribution is considered to be isotropic in the yz-plane. When the strain is progressively increased, the fibers incline with the strain and get more aligned. At a threshold strain angle, Θ a , the structure is supposed to be completely stretched, the straight fiber chains making the angle Θ a with the magnetic field (Figure 1e). Under these conditions, the coefficient α 2 of the distribution function (equation 33) must be zero at zero shear, and infinite at the strain angle Θ a . Then, this coefficient is supposed to be the following function of the strain:

Θ - Θ Θ = a 2 α . The first coefficient, α 1 , is found from the normalization condition: ∫ - = 2 2 1 ) ( π π θ θ d F , i.e.
[ ]

1 2 2 2 2 1 ) ( exp - -       Θ - - = ∫ θ θ α α π π d
. Finally, the threshold strain angle is set at Θ a = 60º, which corresponds to the complete alignment of the column structure with the interfiber overlap b 0 = 0.5l (or overlap parameter β 0 = 0.5).

The stress-strain curve obtained by this model is plotted in Figure 9 and compared with the corresponding curves obtained for the column and zigzag structures. In the same way as for the column structure, the stress-strain relation for the near-planar structure presents a local maximum, which corresponds to the yield stress. This maximum is observed at a strain angle close to the angle Θ a of complete alignment of the structure. Note that the stress-strain curve departs from non-zero shear stress at zero strain. This is not surprising because we have assumed that, at any strain, all fibers slide over each other and experience the friction force,

n f f ξ τ =
. At zero strain, the normal forces between randomly oriented fibers are not zero, leading to non-zero friction forces and thus to a non-zero contribution to the shear stress. In reality, when the fibers do not slide, the friction forces between them can take any value within the range:

n n f f f ξ ξ τ ≤ ≤ -
-this is the case of the zigzag structure, where the friction forces between fiber extremities adapt their value to maintain the structure mechanically stable. Consequently, at small strain angles our model cannot predict with confident the shear stress of the near-planar structure. It is the reason why we have plotted the initial part of the stress-strain curve as a dashed line (Figure 9). On the other hand, at higher strain angles, when the random structure has been sufficiently strained, most of the fibers are expected to slide over each other, and the assumption n f f ξ τ = seems to be reasonable, at least for the estimation of the yield stress.

IV. DISCUSSION. COMPARISON WITH EXPERIMENTS

In the present section we compare the theoretical predictions of the models constructed above with the experimental values of the yield stress of fiber suspensions reported in the companion paper. Figure 10 shows the theoretical and experimental values of the yield stress of fiber suspensions, plotted as a function of the external magnetic field, for four solid volume fractions, Φ = 0.01, 0.03, 0.05 and 0.07. The five curves in each graph correspond to the theoretical results using the models described in the present paper and the solid circles correspond to the experimental results reported in the companion paper. As observed in Figure 10, the highest estimation of the yield stress is given by the model of the column structure with friction (upper solid curve, cf. equation 12), and the lowest estimation by the model of the zigzag structure (lower solid curve, cf. equation 20). At magnetic fields H 0 ≥ 100 kA/m, the experimental points lie between these two curves. At lower magnetic fields the experimental yield stress is higher than the one given by the highest theoretical estimation. This is possibly due to the underestimated value of the initial magnetic susceptibility used in our calculations, χ i = 17.3. As mentioned in the companion paper, this value has been obtained by a fit of the experimental magnetization curve in the range of magnetic fields 45 -4000 kA/m.

Comparing different theoretical predictions, we note that the yield stress for the column structure with the friction coefficient ξ = 1, is roughly two times higher than the yield stress for the same structure without friction. In the latter case, the yield stress is given by formula (17), which is very similar to the formula for the column structure of classical MR suspensions composed of spherical particles [START_REF] Bossis | Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models[END_REF]]. The authors of this paper calculated the stress as the derivative of the magnetic energy with respect to the shear strain:

γ τ ∂ ∂ = m U .
The correspondence between our model and the one based on magnetic energy was expected in the limit case of zero friction, and is a test of the validity of our model.

As observed in Figure 10, the dipolar magnetic interactions between fibers do not give any significant contribution to the yield stress (dotted curve, cf. equation 16). In reality, the magnetic interactions between contacting fibers could be much stronger than those predicted by the dipolar approximation. The multipolar approach [START_REF] Klingenberg | The small shear rate response of electrorheological suspensions. 2. Extension beyond the point-dipole limit[END_REF]; [START_REF] Clercx | Many-body electrostatic interactions in electrorheological fluids[END_REF]], direct numerical simulations [START_REF] Bossis | Yield behavior of magnetorheological suspensions[END_REF]; [START_REF] López-López | Magnetorheology for suspensions of solid particles dispersed in ferrofluids[END_REF]] and other sophisticated models [START_REF] Ginder | Rheology of magnetorheological fluids: Models and measurements[END_REF]; [START_REF] Bossis | Magnetorheology: Fluids, Structures and Rheology[END_REF]] allowed to determine with precision the magnetic forces between spherical particles. Nevertheless, the dipolar approximation remains valid at high magnetic fields, when the magnetization of the particles is of the same order that the saturation magnetization. In our experiments we cover such range of magnetic fields (H 0 ≥ 200 kA/m, cf. Figure 1 of the companion paper).

Therefore, our conclusions made in the frame of the dipolar approximation remain valid, at least for this range of magnetic fields. At lower fields the magnetic attraction between fibers is underestimated and that could be another reason for the discrepancy between theoretical and experimental results at H 0 ≤ 100 kA/m.

By analyzing the zigzag model we can identify the two reasons why this model predicts the lowest yield stress. Firstly, the strained zigzag chains act as compressed springs that push upward the rheometer plate (cf. Figure 4b). Secondly, this structure has a relatively low anisotropy compared to the column structure. The most realistic model -the model of the near-planar stochastic structure (equation 32)-gives a reasonable correspondence with the experiments at fiber volume fractions Φ = 0.05 and 0.07 (Figures 10c-d). This model takes into account the friction between fibers as well as the progressive alignment of the fiber network with increasing strain.

Let us now analyze the effect of solid concentration on the yield stress of fiber suspensions. As observed in Figure 10, at fiber volume fractions Φ = 0.01 and 0.03, the experimental points are closer to the prediction of the zigzag model. For more concentrated suspensions (Φ = 0.05 and 0.07), the experiment is better described by the column structure model. One of the possible reasons for this behavior is a higher anisotropy of the more concentrated fiber suspensions. In fact, in more concentrated suspensions the fibers have less free space to pivot. Consequently, as the solid concentration increases, the fiber network is supposed to approach a column structure. Nevertheless, whatever the fiber concentration, the column structure with perfect alignment of fibers can be realized only in the absence of friction. Note that the three inspected models -column structure, zigzag structure and nearplanar structure-give almost linear concentration dependence of the yield stress. A small deviation from linearity is observed at low-to-moderate magnetic field (up to 100 kA/m). This is connected to the weak concentration dependence of the magnetic permeability of fiber suspensions, which intervenes in the expression for the internal magnetic field, H (cf. equation A.1). However, such magnetostatic effect cannot explain a power-law concentration dependence of the yield stress as high as that observed experimentally:

1.5 Y τ ∝ Φ (cf.
companion paper). The linear concentration dependence in the column and the near-planar structure models comes mostly from the assumption that the friction force between fibers is longitudinal and always equal to n f ξ . In this case, in equation ( 30) the sum ∑  i i i f s over all the contact points on a given fiber is simply proportional to the magnetic torque acting on a considered fiber:

i m i i s f T ξ  =

∑

, whatever the number of contact points. Consequently, the theoretical yield stress is linear in the number of fibers per unit volume (i.e. in the concentration) rather than in the total number of contact points. However, in a real situation of the 3D stochastic structure described in Section III.3, the second term of the stress equation ( 30), ( )

∑ ∑  fibers sin 2 sin 2 1 i i i f s V ϕ θ
, is not necessarily proportional to the magnetic torque and can hide a stronger concentration dependence. This is the case of isotropic suspensions of non-magnetic elastic fibers, for which the yield stress is proportional to the number of contact points per unit volume, which varies as the square of the solid volume fraction [START_REF] Toll | Dynamics of a planar concentrated fiber suspension with nonhydrodynamic interaction[END_REF]; [START_REF] Servais | Fiber-fiber interaction in concentrated suspensions: Disperse fibers[END_REF]].

Note finally that the fiber friction coefficient, ξ, is the only unknown parameter in the models of the column and the near-planar stochastic structures. We plan to measure this coefficient in order to obtain a model free of unknown parameters.

V. CONCLUDING REMARKS

In this work, predictions of the yield stress of magnetic fiber suspensions in the presence of magnetic field have been performed for the first time, on the basis of new microstructural models. Our theory describes reasonably well the enhanced magnetorheological effect observed experimentally in magnetic fiber suspensions (companion paper), in terms of the interfiber solid friction. Different structures of fiber suspensions have been considered in this paper. The quasi-static regime of the shear deformation of each structure (before the flow onset) has been studied, and the suspension yield stress has been attributed to the structure failure at a critical strain.

The simplest column structure is expected at low interfiber friction and/or at high fiber volume fraction. Because of its high anisotropy, such structure gives the highest estimation of the yield stress of magnetic fiber suspensions. A more isotropic structure is obtained when the fibers form zigzag chains, which can act as compressed springs, restoring their energy and decreasing the stress. Such zigzag structure gives the lowest estimation of the yield stress. In the more realistic near-planar stochastic structure the fibers are supposed to lie more or less in planes parallel to the shear plane and to be stochastically oriented within these planes. We have introduced a Gaussian distribution function of fiber orientations centered at the strain angle. The yield stress predicted by this model is closer to the one predicted by the column structure model than to that predicted by the zigzag structure model.

We have also developed an effective medium theory for the real 3D stochastic fiber network. This theory does not give an analytical prediction for the yield stress, but gives a general expression for the shear stress as a function of the mean magnetic torque exerted on the fibers and the contact forces parallel to the fiber axis. Particle level simulations will be performed in the future to investigate the behavior of such 3D network under shear.

In all the models, we have found that the two main contributions to the yield stress of magnetic fiber suspensions come from the magnetic torque and from the friction force, while the dipolar magnetic interaction between fibers plays a minor role. Nevertheless, a numerical simulation (by finite element methods) of the magnetic interactions will be conducted in the future to verify the validity of the dipolar approach used in the present work.

Finally, the three considered models predict almost linear concentration dependence of the yield stress of fiber suspensions in the presence of magnetic field, while a dependence on Φ 1.55 was observed in experiments (companion paper). This discrepancy comes from the assumption that the friction force between fibers is equal to n f ξ , which will be corrected in our future work. Despite this discrepancy, our theory covers a quite wide range of the rheological phenomena observed in the new and promising magnetorheological fiber suspensions. Using Maxwell-Garnett theory, we also get the magnetic permeability of fiber suspensions with zigzag structure. The internal magnetic field is given by formula (A.1) with  µ and ⊥ µ being the components of the magnetic permeability tensor along the main axes of the zigzag chains, Oz' and Oy' (cf. Figure 5):

f i s s i f H M M χ χ χ + = , (A.4) 2 2 2 2 1 2 1 sin cos           + + Θ + Θ = ⊥ f f H H χ χ . ( A 
( )

      Φ - - Φ + = + = β β χ µ N N 1 1 1 1 , (A.6) ( ) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ Φ - - Φ + = + = β β χ µ N N 1 1 1 1 , (A.7) with δ 2 sin 2 1 =  N , δ 2 cos 2 1 = ⊥ N
and  β , ⊥ β being given by the following expressions:

δ χ χ δ χ χ χ χ χ χ β 2 2 2 2 1 1 2 2 1 1 sin 2 sin 2 1 1 2 1 f f f f f f f f N N + + + =         + + + =    , (A.8) δ χ χ δ χ χ χ χ χ χ β 2 2 2 2 1 1 2 2 1 1 cos 2 cos 2 1 1 2 1 f f f f f f f f N N + + + =         + + + = ⊥ ⊥ ⊥ .
(A.9)

Here the subscripts "1" and "2" correspond respectively to the fibers making the angle δ 

χ , 2 f χ , 1 f H , 2 f
H and H as functions of the applied magnetic field, H 0 , and the angles Θ and δ.

Finally, the magnetic field inside isotropic fiber suspensions is given by:

µ 0 H H = ,
with the mean magnetic permeability, µ , defined by formula (A.10) for the 3D isotropic structure [START_REF] Kuzhir | Flow of magnetorheological fluid through porous media[END_REF]] and (A.11) for the planar (2D) isotropic structure: where we must replace H f by the mean magnetic field inside the fibers, f H . For the 3D isotropic and planar structures this field is calculated by averaging the magnetic field H f (equation A.5) over random fiber orientations. Note finally that, due to the saturation effects, the magnetic permeability of the fiber suspension decreases significantly when the external magnetic field is increased. At field H 0 ≥ 200 kA/m, and for a fiber volume fraction Φ ≤ 0.07, the magnetic permeability of the suspension is not far from unity and, consequently, the internal magnetic field, H, is quite close to the external one, H 0 . 

( ) ( ) ( ) ( ) ( ) Φ - + + Φ + + =       + Φ -       - + - Φ + = ⊥ ⊥   ⊥ ⊥   2 3 6 4 2 3 3 2 3 1 1 1 3 2 1 3 1 1 3 f f f f D N N N N χ χ χ χ β β β β µ , (A.10) ( ) ( ) ( ) ( ) ( ) 
Φ - + + Φ + + =       + Φ -       - + - Φ + = ⊥ ⊥   ⊥ ⊥   2 4 3 2 2 2 1 2 1 1 1 2 1 1 2 1 1 2 f f f f D N N N N

  The yield stress corresponds to the global maximum of the stress-strain curve. It is reached either at the critical strain angle end-by-end alignment for higher friction coefficients,

  ) the angle Θ by appropriate angles Θ + δ and Θδ and the magnetic susceptibility χ f by the susceptibilities 1 f χ and 2 f χ of the first and the second type of fibers. Both 1 f χ and 2 f χ are functions of the magnetic field and are defined in the Appendix. The shear stress is given by the general expression (7) and, for the zigzag structure (always neglecting the terms of the order of l d ),this expression takes the form:

  .3 and M s = 1366 kA/m are the initial magnetic susceptibility and the saturation magnetization of fibers, respectively. The simultaneous resolution of equations (A.1)-(A.5) gives us the values of f χ , H f and H at given external magnetic field H 0 , strain angle Θ and concentration Φ.

  field. The fiber susceptibilities, 1 f χ and 2 f χ , are functions of the magnetic fields inside the fibers, 1 f H and 2 f H , and are defined by equations (A.4)-(A.5),where the angle Θ must be replaced by δ (A.1, A.4, A.5, A.6, A.7) we get the magnetic parameters 1 f

.

  The fiber magnetic susceptibility, f χ , is obtained from equation (A.4),
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 3 Figure 3. Shear stress, τ, versus shear strain angle, Θ, calculated using the column structure
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 4 Figure 4. Zigzag structure behavior. At zero strain (a), the fibers gather in zigzag chains spanning the gap. When the suspension is sheared (b), the chains are inclined at the angle Θ
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 5 Figure 5. Geometry of the zigzag structure model. a) zigzag chain at zero strain; b), c) inclined chain at strain angle Θ. The forces and torques acting on the most inclined fibers and
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 6 Figure 6. Theoretical results of the zigzag structure model: stress-strain curve for three initial zigzag angles, δ 0 = 20º, 36º and 45º, and for a magnetic field intensity H 0 = 100 kA/m. The zigzag structure with the angle δ 0 = 45º breaks before reaching complete alignment -the
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 7 Figure 7. Geometry of the 3D fiber network. a) network sheared in the yz-plane by a strain angle Θ -the fiber orientation is defined by the angles θ (≠Θ) and ϕ ; b) sketch of forces and
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 8 Figure 8. Geometry of the near-planar structure. a) The fiber network can be "sliced" into
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 9 Figure 9. Stress-strain curve for column, zigzag and near-planar stochastic structure of a fiber suspension at magnetic field intensity H 0 = 100 kA/m, fiber volume fraction Φ = 0.05, and friction coefficient ξ = 1. The dipolar magnetic forces are neglected in all three cases. The initial zigzag angle for the zigzag structure is δ 0 = 30º.
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 10 Figure 10. Yield stress of fiber suspensions versus external magnetic field intensity, H 0 , for different fiber volume fractions, Φ: (a) Φ = 0.01; (b) Φ = 0.03; (c) Φ = 0.05; and (d) Φ = 0.07. The upper and the middle solid lines correspond to the model of the column structure with ξ = 1 (equation 12) and ξ = 0 (equation 14), respectively; dotted line: same model but with dipolar magnetic interactions (equation 16) and with ξ = 1, β 0 = 0.5 and / 10 l d = ; lower solid line: model of the zigzag structure (equation 20) with ξ = 1 and δ 0 = 30º; dashed line: model of the near-planar stochastic structure (equation 32) with ξ = 1; solid circles: experimental data.
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	. Comparison between dipolar "fiber-fiber" and "fiber-field" interactions.
	End-by-end contact	Side-by-side contact
	Low field	High field	Low field	High field
	0 < H ≤ 50 kA/m	H ≥ 200 kA/m	0 < H ≤ 50 kA/m	H ≥ 200 kA/m

ACKNOWLEDGMENTS

The authors would like to kindly thank Prof. Andrey Zubarev and Dr. Sandris Lacis for helpful discussions. Eureka E! 3733 Hydrosmart project and "Conseil Régional PACA" (Biomag project) are acknowledged for their financial support. One of the authors (M.T.L.-L.) also acknowledges financial support by Secretaría de Estado de Universidades e Investigación (Postdoctoral Fellowship Program, MEC, Spain) and by the University of Granada (Spain).

APPENDIX: CALCULATION OF THE MAGNETIC FIELD INSIDE THE FIBER SUSPENSION

The magnetic field intensity inside a thin layer of fiber suspension sandwiched between two plates is given by: 

. Hence, the internal magnetic field is:

We determine  µ and ⊥ µ using Maxwell-Garnett mean field theory [START_REF] Berthier | Optique des milieux composites[END_REF]] in the same way as it was done by [START_REF] Bossis | Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models[END_REF] for the column structure composed of spherical particles:

In the general case, the fiber susceptibility, f χ , is a function of the magnetic field inside the fiber, H f . To get this function, we fitted the experimental magnetization curve (cf. Figure 1 of the companion paper) to the Fröhlich-Kennelly formula [START_REF] Jiles | Introduction to Magnetism and Magnetic Materials[END_REF]]. The expressions for f χ and H f read: