
HAL Id: hal-00439845
https://hal.science/hal-00439845v1

Submitted on 8 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enabling automated threat response through the use of
a dynamic security policy

Hervé Debar, Yohann Thomas, Frédéric Cuppens, Nora Cuppens-Boulahia

To cite this version:
Hervé Debar, Yohann Thomas, Frédéric Cuppens, Nora Cuppens-Boulahia. Enabling automated
threat response through the use of a dynamic security policy. Journal in Computer Virology (JCV),
2007, 3 (3), pp.195-210. �hal-00439845�

https://hal.science/hal-00439845v1
https://hal.archives-ouvertes.fr

Enabling Automated Threat Response through

the Use of a Dynamic Security Policy

Hervé Debar1, Yohann Thomas1,2

{herve.debar,yohann.thomas}@orange-ftgroup.com
1France Télécom R&D - 42 rue des Coutures - 14066 Caen, France

Frédéric Cuppens2, Nora Cuppens-Boulahia2

{frederic.cuppens,nora.cuppens}@enst-bretagne.fr
2GET/ENST Bretagne - 2 rue de la Châtaigneraie - 35512 Cesson-Sévigné, France

Keywords: Intrusion Detection, Threat Response, Reaction, Access Control

Abstract

Information systems security issues are currently being addressed using
different techniques, such as authentication, encryption and access con-
trol, through the definition of security policies, but also using monitoring
techniques, in particular intrusion detection systems. We can observe
that security monitoring is currently totally decorrelated from security
policies, that is security requirements are not linked with the means used
to control their fulfillment. Most of the time, security operators have
to analyze monitoring results and manually react to provide countermea-
sures to threats compromising the security policy. The response process
is far from trivial, since it both relies on the relevance of the threat anal-
ysis and on the adequacy of the selected countermeasures. In this paper,
we present an approach aiming at connecting monitoring techniques with
security policy management in order to provide response to threat. We
propose an architecture allowing to dynamically and automatically deploy
a generic security policy into concrete policy instances taking into account
the threat level characterized thanks to intrusion detection systems. Such
an approach provides means to bridge the gap between existing detection
approaches and new requirements, which clearly deal with the develop-
ment of intrusion prevention systems, enabling a better protection of the
resources and services.

1 Introduction

Managing information systems requires to make a compromise between multiple
parameters, one of them being security. Although security is of crucial interest,

1

constraints such as performance and convenience are to be strongly considered.
In particular, being able to serve large numbers of users concurrently or to main-
tain acceptable response times, while keeping capital (hardware and software)
and operations (manpower) expenses under control, is a major issue. Moreover,
ease of use and automation are frequent requirements to provide better service
to users.

Nowadays, the compromise between these multiple adjustment variables is
generally defined statically at design time. However, security is not static, since
new vulnerabilities, new users and usages, and new attackers continually appear.
This is also true for the other variables. In particular, it is essential to reflect the
evolution of the information system through an up-to-date view of hardware and
software, which impact both performance and convenience, and thus maintain
a dynamic balance between the different requirements.

Consequently, the compromise needs to change over time, in particular to
respond to threat. This paper describes a mechanism for threat management
at the security policy level. The security policy is dynamically updated with re-
spect to current threats. Our mechanism enables management and deployment
of dynamic security policies with safeguards, and we provide an architecture to
deploy such policies, which can be dynamically enforced to ensure that the best
compromise is always met.

1.1 Intrusion Prevention and Threat Response

Intrusion detection systems now belong to the arsenal of mainstream security
tools and are deployed within organizations to monitor the information system
operations and report security threats. While many issues have been highlighted
with the diagnosis proposed by intrusion detection systems, the technology has
matured sufficiently to tackle the problem of intrusion prevention. In particular,
correlating alerts with the inventory of the hosts [1] allows to better characterize
intrusions, through correlation with vulnerabilities, alert severity mitigation,
and false positive recognition. The objective of intrusion prevention is not only
to detect threats but also to block them, to prevent the attacker from building
upon its advantage and further propagating within the information system, and
this has been forecasted for quite some time [2].

Intrusion prevention currently means that when an alert is triggered, a mech-
anism is activated to terminate the network connection or the process associated
with the event. Network-based intrusion prevention devices effectively act as
application level firewalls, adding the capability to block traffic based on packet
content in addition to headers and connection context. Host-based intrusion
prevention software has the capability to terminate a process that is trespassing
or abusing its privileges, as shown by [4], but is limited to a single machine. In
many cases, the time to react is so small that the threat response mechanism is
implemented very close to the detection mechanism, to ensure that the response
is effective in dealing with the threat.

However, response is statically associated with each alert, which leads to
undesirable side effects [3]. Previous network-based threat response mechanisms

2

based on connection termination by TCP reset injection have shown that they
have undesirable side effects in certain contexts, as shown in RFC 3360 [5]
and that including response mechanisms online is a requirement for timely and
successful response.

We argue that while threat response in itself is a desirable goal, the im-
plementation of threat response at the intrusion prevention system level yields
undesirable side effects. First of all, the response is based on an event analyzed
by the intrusion prevention device. This means that for every malicious event,
the threat response must be applied; unfortunately, this results in a default per-
mit (or open) security policy, where only events that trigger an alert during
the analysis process will be blocked. More generally, the decision on which the
threat response is based is a local decision, which does not take into account
other operational constraints. This has two undesirable side effects, (1) opera-
tors lacking the global vision of the behaviour of the information system will be
reluctant to activate threat response mechanisms, and (2) local responses may
interfere with global desired behaviour.

1.2 Comprehensive Approach to Threat Response

The objective of the paper is to propose a more comprehensive approach to
threat response. We observe that the deployment of modern information sys-
tems and networks is associated with access control technologies, located at
critical points of the network. We therefore would like to link the threat de-
tection performed by intrusion detection / prevention systems and the access
control mechanisms, to provide an adaptive security policy capable of dynami-
cally adjusting to threats. This comprehensive approach does not compete with
the immediate application of threat response mechanisms by intrusion preven-
tion systems, but should take over the application of threat response once the
threat is properly characterized.

We assume in this approach that intrusion detection systems and alert cor-
relation techniques allow a clear identification of the threat, including the threat
type (typically represented by a set of signatures and references to vulnerability
databases), the threat origin (represented in most cases by an IP address), and
the threat victim (represented by a host under our control, a process, or any
set of components of our information system), as in [6] for example. As shown
in [7], it is indeed possible to use configuration information to adapt the detec-
tion mechanism to its environment, thus ensuring that contextual information
in the alerts is exhaustive and correct. While this assumption may be considered
strong given the history of false positives and negatives that has plagued intru-
sion detection research, we do believe that current intrusion detection systems,
both commercial and research prototypes, allow a reasonable identification of
the threat, and that they will make sufficient progress that the three parameters
on which we rely will be filled with appropriate values.

A lot of work has also been undertaken in the research community to reliably
identify attack sources, such as identifying stepping stones, or various trace-back
mechanisms. Our approach will be able to use more accurate source information

3

if available, but can also concentrate on the protected assets of the informa-
tion system, that are also the victims of the threat. Several approaches have
been proposed for intrusion response [8, 9], but they require the deployment of
additional systems; our approach leverages existing security policy enforcement
mechanisms, limiting the need for new devices. Finally, threat response has been
studied repeatedly in the context of denial-of-service attacks, where the threat
impact is related to system availability and not system compromise. While we
do not consider availability threats at this stage, as shown in table 2, we should
be able to use DDoS filtering mechanisms as policy enforcement points.

Our proposed approach is based on defining a contextual security policy. The
threat response mechanism is implemented as contextual policy rules, which are
then applied to the information system when contexts become active. The
aforementioned alert management and correlation platform should therefore, in
addition to obtaining synthetic alerts, instantiate the appropriate contexts. We
describe the particular security policy followed in our approach in Section 2,
and then give examples in Section 3 of how such a policy can ensure response
to threat. We then explain how contexts, and especially threat contexts, are
managed in Section 4. Section 5 provides the architecture of the threat response
system, and we explain in Section 6 the information workflow allowing to obtain
new policies from alerts characterizing threats. We then present an application
of the threat response system to an email environment in Section 7 and conclude
by discussing issues and future work in Sections 8 and 9.

This paper is an extended version of [10]. Additional content mainly deals
with context management and the way alerts are processed to obtain new policy
instances responding to threat. In particular, a context algebra is provided to
express composed contexts, allowing the definition of fine-grained policy rules.
A workflow explaining how new policy instances are obtained from alerts is also
given, and response strategy is discussed.

2 Security Policy Formalism

2.1 Choice of a Security Policy Formalism

Most of current security models such as DAC [11] or RBAC [12] can only be
used to specify static security policies. When an intrusion occurs, the security
administrator has to manually update the policy by removing obsolete security
rules or inserting new security rules. Unfortunately, the time required for such
a manual update is generally too long to represent an effective way to react to
an intrusion. The administrator has also to update the policy again once the
intrusion is circumvented to restore the policy in a state corresponding to a non
intrusive context. Note that in this paper, we will use the terms policy rule and
security rule indifferently to specify security policy statements.

Our objective is to design a method to help the administrator in these tasks
of updating the policy. For this purpose, we need a model to specify security
policies that dynamically change when some intrusion is detected. In the ab-

4

sence of intrusion, the policy to be applied corresponds to a nominal context.
Other contexts must be defined to specify additional security rules to be trig-
gered when intrusions are detected. In fact, a parallel could be drawn with
provisional authorizations [13]; contexts are linked to the history of reported
intrusions, and activate provisional security rules. Some of these security rules
may correspond to permissions (positive authorizations) but more often they
will represent prohibitions (negative authorizations). The prohibitions will be
automatically deployed over the information system as a reaction to the intru-
sion. For instance, this may correspond to automatically insert a new deny rule
in a firewall.

Thus, the model to be used must provide means to manage conflicts be-
tween permissions and prohibitions. In particular, the policy associated with
a nominal context can include minimal security requirements. These minimal
requirements must not be overridden, even when an intrusion is detected. For
instance, they may include minimal availability requirements. Of course, these
minimal requirements may conflict with contextual rules associated with the
detection of a given intrusion. In this case, simple strategies such as prohibition
takes precedence or permission takes precedence will not be appropriate to solve
the conflict. Instead, the model must include the possibility to specify high level
conflict management strategies to find the best compromise between conflicting
rules [14].

The model must also provide an abstract and global view of the security pol-
icy. This is the purpose of the Policy Instantiation Engine (PIE, see Section 5.1
below) to manage this global security policy. The PIE will have to clearly sepa-
rate the global policy from its implementation in the PEPs (Policy Enforcement
Points). In particular, the conflicts are to be solved at the abstract level before
generating PEPs configurations. Unfortunately, most security models do not
provide such a clear separation.

In this paper, we suggest using an approach based on the Or-BAC model [15].
In the following section, we briefly present the main concepts used in Or-BAC
to specify a security policy and explain why this model is a good candidate to
manage the kind of contextual security policies we need to support our proposal.

2.2 The Or-BAC Formalism

The concept of organization is central in the Or-BAC model [16]. Intuitively,
an organization is any entity that is responsible for managing a security policy.
Thus, a company is an organization, but concrete security components such as
a firewall may be also viewed as an organization.

The objective of Or-BAC is to specify the security policy at the organi-
zational level, that is abstractly from the implementation of this policy. Thus,
instead of modeling the policy by using the concrete and implementation-related
concepts of subject, action and object, the Or-BAC model suggests reasoning
with the roles that subjects, actions or objects play in the organization. The
role of a subject is simply called a role as in the RBAC model. On the other
hand, the role of an action is called an activity whereas the role of an object is

5

called a view.
Each organization can then define security rules which specify that some

roles are permitted or prohibited to carry out some activities on some views.
These security rules do not apply statically but their activation may depend on
contextual conditions. For this purpose, the concept of context is explicitly in-
troduced in Or-BAC. Thus, using a formalism based on first order logic, security
rules are modeled using a 6-places predicate:

• security rule(type, org, role, activity, view, context) where type belongs to
{permission, prohibition}.

For instance, the following security rule:

• security rule(prohibition, corp, pop user, read pop, mail server, pop attack).

means that, in organization corp, a pop user is forbidden to use the pop service
to consult his or her mail in the context of pop attack.

All these concepts, organization, role, activity, view and context, may be
structured hierarchically. Permissions and prohibitions are both inherited through
these hierarchies (see [17] for more details).

Since a given security policy may include permissions and prohibitions, con-
flict management strategies have to be defined to solve the possible conflicts.
In Or-BAC, such a strategy consists in assigning a priority to each security
rule [14]. Priorities define a partial order on the set of security rules so that
when a conflict occurs between two rules, preference is given to the rule with
the higher priority. Priority assigned to security rules must be compatible with
hierarchies defined on entities such as organization, role, activity, view and con-
text. Thus, in case of conflict, if a given security rule is inherited by a given
entity, this rule will have lower priority than another security rule explicitly
assigned to this entity.

Once the organizational security policy is defined, it is possible to check if
the conflict management strategy is effective, that is it will solve every conflict
at the concrete level (see [15] for further details). Since the Or-BAC model
abides to the Datalog restrictions [18], we can prove that it is possible to decide
in polynomial time that a conflict management strategy is effective.

The organizational policy is then used to automatically derive concrete con-
figurations of PEPs. For this purpose, we need to assign to subjects, actions
and objects, the roles they play in the organization. In the Or-BAC model, this
is modeled using the three following 3-places predicates:

• empower(org, subject, role): means that in organization org, subject is
empowered in role.

• consider(org, action, activity): means that in organization org, action is
considered an implementation of activity.

• use(org, object, view): means that in organization org, object is used in
view.

6

For instance, the fact empower(corp, alice, pop user) means that organiza-
tion corp empowers Alice in role pop user.

Notice that, instead of enumerating facts corresponding to instances of pred-
icate empower, it is also possible to specify role definitions which correspond to
logical conditions that, when satisfied, are used to derive that some subjects are
automatically empowered in the role associated with the role definition. Activ-
ity and view definitions are similarly used to automatically manage assignment
of action to activity and object to view. For instance, in a network environment,
we can use a role definition to specify that every host in the zone 111.222.1.0/24
are empowered in the role DMZ.

Notice that we shall use Prolog notation to specify Or-BAC security policies.
On this purpose, the only important Prolog constructs to remember are that
constant values start with a lowercase character, that variables start with an
uppercase character, and that denotes any value.

2.3 Or-BAC Contexts

Regarding contexts, we have also to define logical conditions to characterize
when contexts are active. In the Or-BAC model, this is represented by logical
rules that derive the following predicate:

• hold(org, subject, action, object, context): means that in organization org,
subject performs action on object in context context.

We say that context c is active in organization org when it is possible to
derive hold(org, s, a, o, c) for some subject s, action a and object o.

Using the model, one can then derive concrete authorizations that apply
to subject, action and object from organizational security rules. For instance,
let us consider listing 1. In an organization Org, the security rule expresses a
permission for a given Role to make a given Activity on a given V iew in a
given Context. The predicates empower, consider and use indicate that Role,
Activity and V iew are respectively abstractions of Subject, Action and Object
in the considered organization. When the considered Context is being held for
Subject, Action and Object through the hold predicate, we can thus derive the
fact that it is permitted for Subject to make Action on Object.

Listing 1: Derivation of concrete authorizations
i s p e rm i t t ed (Subject , Action , Object) :−

s e c u r i t y r u l e (permiss ion , Org , Role , Act iv i ty , View , Context) ,
empower (Org , Subject , Role) ,
c on s id e r (Org , Action , Act i v i ty) ,
use (Org , Object , View) ,
hold (Org , Subject , Action , Object , Context) .

This general principle of derivation of concrete authorizations from organiza-
tional authorizations is used to automatically generate concrete configurations
(see [19] for further details in the case of network security policies).

7

3 Examples

Or-BAC is used to define attack classes thanks to threat contexts. We propose
here two examples of threats and explain how response is managed considering
activated hold predicates and security rules describing the policy to apply in
such cases.

3.1 Syn-flooding attack

Imagine a Syn-flooding attack towards a webserver. We use IDMEF messages as
explained in Section 4.3.1 to say that if a given alert message is received with (1)
a classification reference equal to CVE-1999-0116 (corresponding to the CVE
reference of a Syn-flooding attack) and (2) the target is attacked through a
service whose name is http (or port is tcp/80) and (3) the target corresponds
to a network node whose name is ws, then the syn flooding context is active
for http action on ws object. The corresponding translation in Prolog can be
found in Listing 2.

Listing 2: syn flooding context definition
hold (corp , , http , ws , s yn f l o od i ng) :−

a l e r t (CreateTime , Source , Target , C l a s s i f i c a t i o n) ,
r e f e r e n c e (C l a s s i f i c a t i o n , ’CVE−1999−0116 ’) ,
s e r v i c e (Target , http) ,
hostname (Target , ws) .

Notice that, since in a Syn-flooding attack, the intruder is spoofing its source
address, the subject corresponding to the threat origin is not instantiated in the
hold predicate which is represented by “ ”.

When an attack occurs and a new alert is launched by the intrusion detec-
tion process, (a) new fact(s) hold(org, s, a, o, c) is (are) derived for some threat
context c. So, c is now active and the security rules associated with this context
are triggered to react to the intrusion.

Notice that our approach provides fine-grained reaction. For instance, let us
consider a network where a given host ws is assigned to the role web server.
Let us assume that a Syn-flooding attack is detected against this host on port
tcp/80, which corresponds to service http. In this case, we shall derive the
following fact:

• hold(org, , http, ws, syn flooding): means that host ws is now in the
threat context syn flooding through http.

Since the syn flooding context is now active, security rules associated with
this context are triggered. For instance, let us assume that there is the following
security rule:

• security rule(prohib, org, internet, tcp service, web server, syn flooding):
means that, in the threat context syn flooding, internet is prohibited to
perform tcp service activity on the web server.

8

This security rule is triggered once the syn flooding context is active. How-
ever, only host ws (whose role is web server) is in the context of syn flooding
through http (which is a tcp service). As a consequence, the reaction will not
close every tcp service from the Internet to every web server. Instead, the
reaction in this case will be limited to close http from the Internet to host ws.

3.2 Pop reconnaissance attack

Imagine now that an internal attacker is attempting a reconnaissance attack on
a pop3 server in order to determine valid users. The reference CVE-2005-1133
is an instance of such an attack for a pop3 server in IBM iSeries AS/400.

The definition of the pop attack context says that if a given alert message is
received with (1) a classification reference equal to CVE-2005-1133 (correspond-
ing to the CVE reference of a pop reconnaissance attack) and (2) the target is
attacked through a service whose port is tcp/110 (or name is pop3) by (3) a
source that corresponds to a mail user whose name is charlie and (4) the target
corresponds to a network node whose name is ms, then the pop attack context
is active for charlie subject making tcp/110 action on ms object. Notice that
we face here an internal attack and we consider that the diagnostic has revealed
that the source is not a decoy, so we are able to instantiate the subject being
the source in the hold predicate. The corresponding translation in Prolog can
be found in Listing 3.

Listing 3: pop attack context definition
hold (corp , cha r l i e , ’ tcp /110 ’ , ms , pop attack) :−

a l e r t (CreateTime , Source , Target , C l a s s i f i c a t i o n) ,
r e f e r e n c e (C l a s s i f i c a t i o n , ’CVE−2005−1133 ’) ,
hostname (Source , c h a r l i e) ,
p roce s s (Target , ’ tcp /110 ’) ,
hostname (Target , ms) .

In this case, we shall derive the following hold fact:

• hold(org, charlie, tcp/110,ms, pop attack): means that host ms is now in
the threat context pop attack through port tcp/110, the attacker being
user charlie.

Since the pop attack context is now active, security rules associated with this
context are triggered. For instance, let us assume that there is the following
security rule:

• security rule(prohib, org, mail user, read pop, mail server, pop attack):
means that, in the threat context pop attack, a mail user is prohibited to
perform read pop activity on the mail server.

This security rule is triggered once the pop attack context is active. How-
ever, only host ms (whose role is mail server) is in the context of pop attack
through port tcp/110 (or pop3 service, which are read pop actions) for subject
user charlie (which belongs to the mail user role). Alike the previous example,

9

the reaction in this case will be limited to forbid port tcp/110 to host ms, but
for user charlie only.

These two examples illustrate the fact that, in our approach, we can associate
threat contexts with general security rules. However, fine-grained instantiation
of the intrusion can be used to limit the reaction to those entities that are
involved in the attack (as an intruder or a victim). Notice that the presented
listings could be generalized by replacing constants by variables. For instance,
in listing 2, it is possible to replace the constant ws by a variable, and similarly
for constants charlie and ms in listing 3.

4 Context management

The central idea of our proposal is based on using contexts to model how to
dynamically update the security policy when a threat is detected. Therefore,
the core of our proposal is to manage contexts according to threat informa-
tion. Note that we generically talk about threat contexts to refer to contexts
used to characterize threats and to provide threat response. Thus, examples of
threat contexts may in fact refer to attacks or intrusions (successful attacks).
For instance, syn flooding is considered as a threat context, and pop attack is
considered as a threat context.

We present in this section how we define atomic and composed contexts, and
how we aim at activating and deactivating these contexts according to threat
level.

4.1 Atomic contexts

We consider that contexts may belong to three categories: operational, threat
and minimal. Let C be a set of contexts. We consider a set OC ⊆ C of opera-
tional contexts. For the sake of simplicity, we consider that, in the absence of
characterized threat, that is in the absence of attack or intrusion, the organiza-
tional policy is defined using a single nominal context. Thus, we assume that
nominal ∈ OC. However, in a more realistic setting, this policy may depend on
other contexts, for instance temporal contexts. Thus, we assume that OC may
contain additional sub-contexts, and that for example, working hours ∈ OC.
Additional details about operational contexts may be found in [20]. Note that
c ∈ OC is active does not mean that there is no attack or intrusion, but that
it is possible that there is no attack or intrusion. Indeed, operational contexts
do not provide any information about threats. For example, nominal is always
active, and working hours only relies on time. We then consider a set TC ⊆ C
of threat contexts. A context c ∈ TC is activated when a given threat is de-
tected. This means that c ∈ TC is active necessarily implies that there is an
attack or an intrusion. It is associated to a set of new security rules that apply
to fix the threat. Finally, we consider the set MC ⊆ C of minimal contexts.
Minimal contexts aim at defining high priority exceptions in the policy, allowing

10

to describe minimal security requirements that must apply even when intrusions
occur.

Contexts are organized hierarchically so that, when a conflict occurs, secu-
rity associated with contexts higher in the hierarchy will override security rules
associated with lower contexts. We assume that operational contexts are lower
than threat contexts which are in turn lower than minimal contexts. However,
potential conflicts may still remain between rules associated with contexts be-
longing to the same category. In such cases, a partial order has to be defined
between concerned rules, in order to ensure conflict resolution at the policy
evaluation level (see Section 5.3).

If c is an threat context, then subject s, action a and object o must be cor-
rectly mapped onto information available from threats, including threat source,
threat classification and threat target. So, in that case, the context definition
associated with c is a logical condition that matches the alert message generated
by the intrusion detection process.

4.2 Composed contexts

Providing the possibility to express fine-grained contexts is of major interest, in
particular to characterize threats. However, managing specific atomic contexts
would rapidly become difficult since it would result in a huge number of defini-
tions. On this purpose, a context algebra is defined to provide a way to combine
atomic contexts through a boolean algebra. The following basic functions are
provided on this purpose to manipulate composed contexts:

Negation : n(c) ↔ context c is not active

Conjunction : &(c1, c2) ↔ context c1 and context c2 are active

Disjunction : v(c1, c2) ↔ context c1 is active or context c2 is active

This algebra allows the expression of composed contexts based on the com-
position of atomic contexts, ensuring thus an easy way to define fine-grained
security rules.

However, managing security rules with composed contexts requires to be
able to deal with such context priorities. On this purpose, we now analyze the
possible combinations, giving examples for a better understanding of composed
context priorities. Contexts entering in the composition of composed contexts
are simply named composing contexts.

Definition 1 The negation of a context, whatever its category, is an operational
context because it is possible that there is no attack or intrusion in a negative
context.

Property 1 The priority of a negative context is equal to the priority of an
operational context. Consequently, the priority of a negative context is lower
than the priority of a threat context, and lower than the priority of a minimal
context.

11

Let us consider c1 ∈ OC, c2 ∈ TC and c3 ∈ MC. According to definition 1,
one can state that n(c1) ∈ OC, n(c2) ∈ OC and n(c3) ∈ OC. Now, according,
to property 1, one can state that n(c1), n(c2) and n(c3) have a priority of an
operational context. Thus, they have a lower priority than threat and minimal
contexts.
Ex. n(working hours), like working hours, is an operational context;
n(pop attack), negation of pop attack, is an operational context. Thus,
n(working hours) and n(pop attack) have both a lower priority than
pop attack, which is a threat context.

Definition 2 The conjunction of two contexts belonging to the same category
belongs to this category.

Property 2 The priority of the conjunction of two contexts belonging to the
same category is the priority assigned to this category.

Let us consider c1 ∈ OC and c2 ∈ OC. According to definition 2, one can
state that &(c1, c2) ∈ OC. Now, according to property 2, one can state that
&(c1, c2) has the priority of an operational context.
Ex. &(working hours, in dmz) is the conjunction of a temporal (thus,
operational) and a spatial (thus, operational) context. Consequently,
&(working hours, in dmz) is an operational context.

Now, let us consider c3 ∈ TC and c4 ∈ TC. One can state that &(c3, c4) ∈ TC
and that its priority is higher than operational, but lower than minimal.
Ex. &(pop attack, syn flooding) is the conjunction of two threat contexts.
Consequently, &(pop attack, syn flooding) is a threat context.

Definition 3 The conjunction of two contexts belonging to different categories
belongs to the category of the composing context having the highest priority.

Property 3 The priority of the conjunction of two contexts belonging to dif-
ferent categories is the highest priority of the composing contexts.

Let us consider c1 ∈ TC and c2 ∈ OC. According to definition 3, one can
state that &(c1, c2) ∈ TC. Now, according to property 3, one can state that
&(c1, c2) has the priority of a threat context.
Ex. &(pop attack, working hours) is the conjunction of a threat context and
an operational (temporal) context. Since an threat context has a higher priority
than an operational context, &(pop attack, working hours) is a threat context,
and thus it has the priority of a threat context.

Dealing with the disjunction is not so trivial, in particular with two contexts
belonging to different categories. Indeed, let us consider c1 ∈ OC and c2 ∈
TC. Determining to which category v(c1, c2) belongs requires to consider which
composing context among c1 and c2 is activating v(c1, c2), since c1 and c2 do
not have the same priority. Indeed, if v(c1, c2) is active because c1 is active,

12

this means that v(c1, c2) is an operational context, like c1. On the contrary,
if v(c1, c2) is active because c2 is active, this means that v(c1, c2) is a threat
context, like c2. Moreover, it is possible that v(c1, c2) is active because c1 and c2
are both active. In this case, v(c1, c2) belongs to the category of the composing
context having the highest priority.

In order to avoid the issue of active context determination, we make the
choice of automatically splitting the security rules defined with a disjunctive
context into a set of equivalent rules, each one being defined for each composing
context of the disjunction. For this purpose, we have simply to observe that a
security rule defined with a disjunctive context v(c1, c2) is logically equivalent
to the conjunction of two security rules respectively defined with context c1
and with context c2. Therefore, we first convert contexts to Disjunctive Normal
Form (DNF), that is as a disjunction of conjunctions, and then write the set of
equivalent rules.

Composed contexts are not necessarily composed of atomic contexts. Based
on the defined algebra, it is possible to envision not only the composition of
atomic contexts, but also the composition of composed contexts, so that one
can define rules triggered by fine-grained contexts expressing accurately the se-
curity requirements. For instance, one could express a prohibition for a role
user to make the activity read pop on the view mail server in the context:

&(v(remote access, &(internal access, n(working hours)), pop attack)),

that is either in a context of pop attack and remote access, or in a context of
pop attack and internal access on non-working hours.

4.3 Context activation

Activation of threat contexts raises two major points: (1) which information is
available to characterize threats, and (2) what do we do with this information
to characterize threats at the policy level. We should insist on the fact that
when we talk about context activation, we deal in fact with the activation of
complete hold facts, that is context, but also organization, subject, action and
object. This allows a full characterization of the threat, that is not only which
kind of threat (e.g. context pop threat), but also which subject, action and
object it deals with, and within which organization.

4.3.1 Information about threat

IDMEF (Intrusion Detection Message Exchange Format [21]) messages gener-
ated by intrusion detection sensors naturally carry threat information. Even
outside intrusion detection, IDMEF provides an appropriate format for describ-
ing log events, as shown for example by the Prelude IDS framework1. Therefore,

1http://www.prelude-ids.org/

13

we use IDMEF messages to select contexts and policy rules to activate. Among
the IDMEF message attributes, we particularly use:

CreateTime The CreateTime timestamp indicates the time at which the alert
was created and is mostly relevant for context activation.

Assessment The Assessment attribute carries information related to the risk
of the attacker’s actions.

Classification The Classification provides information about the mechanism of
the attack. This is important to relate the alert to the views and activities
of the Or-BAC policy rules, and to activate contexts.

Target The Target attribute carries information about the victim. This is
important to relate the alert to the views and activities of the Or-BAC
policy rules, and to activate contexts.

Source The Source attribute carries information about the attacker. This may
be relevant for roles in the Or-BAC policy rules if the attacker is an insider,
and to activate contexts.

We use the two first attributes to compute a context lifetime, as shown in
table 2. Attributes are also translated into contexts through the use of mapping
functions, as shown in Section 4.3.2.

4.3.2 Mapping alert information on hold predicates

Mapping alert information to context requires creating transformations from
alert content to instantiated triples (Subject, Action, Object) by writing the ap-
propriate hold predicates. Unfortunately, the naive mapping from IDMEF.Source
to Subject, from IDMEF.Classification to Action, and from IDMEF.Target to
Object, is far from sufficient, and this for three reasons:

1. We need a mapping that has variable granularity, to take into account the
different scope of different attacks. For example, a distributed denial-of-
service on all areas of the network needs to be handled differently than a
targeted brute-force password-guessing attack.

2. Alert information is sometimes incomplete; sources can be inexistent, in-
complete or wrong. Multiple classifications may provide inconsistent infor-
mation, such as conflicting attack references, may cover multiple attacks,
or may not be modeled in our system. We need to specify what happens
when an alert is incomplete.

3. We also need to specify complex responses mechanisms, that take into ac-
count environmental information, expressing complex reaction scenarios.
For example, a complete response system may require moving from HTTP
to HTTPS, and hence opening and closing multiple network accesses, and
starting and stopping multiple services.

14

Subject Action Object Context Lifetime
Createtime ntpstamp X

Source Node.name X
Node.Address.address X
Node.Address.netmask x
User.Userid.name X
Process.name x x
Service.name x x
Service.port x x

Target Node.name X
Node.Address.address X
Node.Address.netmask x
User.Userid.name x
Process.name X x x
Service.name X x x
Service.port X x x

Classification Reference.name x X
Assessment Impact.severity X

Impact.type X

Table 1: Mapping IDMEF classes on Or-BAC parameters

Table 1 lists the elements which should be taken into account to provide
relevant mappings. ’X’ means that the considered information is very likely to
be found in the IDMEF messages and thus to be used in the mappings. ’x’ means
that the information is less likely to be found, or that it is not yet used in the
mappings. Note that not all IDMEF parameters are taken into account in this
table, but we are currently investigating a complete and systematic mapping of
every IDMEF parameter.

The table reveals for instance that not only Classification.Reference can be
considered to instantiate contexts, but also Target.Process and Target.Service.
In fact, some information may be redundant. For instance, both the refer-
ence CVE-2005-1133 and the target service tcp/110 can be used to diagnose
a pop attack context. This kind of redundancy can help detecting conflicting
attack references, and is also used to determine contexts even in case of missing
information. For example, an alert with a missing reference but a target port
could be managed considering only the target port. However, one has to note
that such information are not necessarily rigorously equivalent, since one may
look for more precise evidences. For example, CVE-2005-1133 not only inform
that we face a pop threat, but also that it is a reconnaissance attack, which
can be of interest in the mapping process. On the opposite, target port tcp/110
only provides means to derive that we are coping with pop threat.

This mapping also takes into account organization-related policies for re-
sponse. For example, mappings may always ignore IDMEF.Source information,
concentrating on blocking traffic that reaches IDMEF.Target. They may prefer
system-related information (host names or network addresses) to user names, to
ensure a global response to the threat, or prefer user names to deliver extremely
targeted responses at the user account level.

15

4.4 Context deactivation

Deactivating threat contexts is used to revocate countermeasures once threats
are no longer present. On this purpose, we currently manage static context
lifetimes, which are computed thanks to IDMEF alerts assessment attributes.
Indeed, IDMEF alerts provide an IDMEF.Assessment.Impact attribute (de-
noted in dotted notation to follow the IDMEF class hierarchy) with three sub-
attributes, severity, completion and type. If completion is set to failed, no
context will be activated. Otherwise, based on the impact severity, and type,
we derive the duration of the context activity, according to the matrix defined
in table 2.

Impact severity info low medium high Comment
Impact type

admin 1 2 4 8 This is the most severe case.
dos 0 0 0 0 We are not currently handling DoS at-

tacks.
file 0 1 2 3

recon 0 0 0 0 We are not currently handling scans,
as they do not result in compromise.

user 0 1 2 4
other 0 0 1 2

Table 2: Intrusive context lifetime according to IDMEF impact severity and
type, in minutes

When an alert occurs, it is asserted for a certain duration. Thus, the cor-
responding context is activated with the expiration date set according to the
table. While this alert remains stored in the system, the context remains ac-
tive. When the lifetime expires, the alert is removed from the database, and the
context is deactivated, unless another instance of the alert has been received in
the meantime. Both asserts and retracts trigger a re-evaluation of the security
policy.

The values of table 2 have been defined through expert knowledge of the risks
incurred by each protocol. We currently use the same matrix for evaluating the
risk incurred by each access mechanism; the variation in risk associated with
each individual protocol is handled by the proper setting of the impact severity
attribute.

4.5 Influence of Mapping on the Response Strategy

The mapping from alerts to contexts (or more generally to Or-BAC hold facts)
also influences the response strategy. Depending on the information available,
one may provide a network-oriented response by retaining only network-based
information such as IP addresses and port numbers and discarding user-based
information such as user names, or conversely provide a user-oriented response.
One may also combine both for a very specific response. In a number of cases,
network-oriented response may be the only practical option, as network infor-

16

mation is available in the alerts and network security devices such as firewalls
are capable of blocking the undesired traffic.

Also, mapping influences the response to be either victim-centric or attacker-
centric. A victim-centric response aims at blocking traffic towards the attack
target, assuming that other attackers may attempt to exploit the same attack
mechanisms. An attacker-centric response aims at blocking traffic from the at-
tack source, ensuring that the attacker is prevented from accessing other servers
that may offer the same service or vulnerability, as is often the case in large
environments – indeed, our own case study shows three mail servers with iden-
tical characteristics; an attack on one of them is equally dangerous for the two
others, even though the attacker may not have yet stricken.

Finally, one may degrade the mapping, for example by authorizing a mapping
from IP addresses to subnet masks only. Hence, the response would apply to
all machines in the subnet, instead of the single victim machine.

5 The Threat Response System

5.1 System Architecture

Instances
Instantiation

Engine
(PIE)

Context
Definition

Generic
Or−BAC
Policy

Alert
Correlation

Engine
(ACE)

Sensor

Policy
Enforcement

Point
(PEP)

Configurations

Policy
Enforcement

Point
(PEP)

Configurations

Policy
Enforcement

Point
(PEP)

Configurations

Context
Data

IDMEF
Messages

Decision
Point
(PDP)

Policy
Policy

Policy

Figure 1: Threat response system architecture

The architecture of the threat response system is presented in figure 1. Soft-
ware or hardware modules are depicted by circles and messages and configu-
ration information associated with our components by diamonds. We assume
that any organization will deploy sensors and a security information manage-
ment framework, from which we will collect alert information. This is depicted
by the sensor block. The policy changes will be applied to PEPs, for example
mail servers, firewalls or intrusion detection systems. It is therefore likely that
some PEPs will also act as sensors. The function of our software modules is
described further in table 3.

17

Module Input Output Configuration Function

ACE IDMEF
messages

IDMEF
messages

External security
reference databases

Verify and update infor-
mation in IDMEF mes-
sages for threat assess-
ment.

PIE IDMEF
messages

Or-BAC
concrete
rules

Or-BAC policy and
context definitions

Activate threat con-
texts. Extract a new
security policy from the
active contexts.

PDP Or-BAC
concrete
rules

Config
scripts

Policy to script
translation rules

Segment the policy ac-
cording to PEP realms
and capabilities, and
translate the policy
rules to PEP-specific
scripted commands.

PEP Config
scripts

IDMEF
messages

Apply the configuration
script that implements
the security policy.

Table 3: Function of the software modules

5.2 Alert Correlation Engine (ACE)

Generally, information produced by sensors cannot be considered on their own.
Indeed, this information actually comes from many sources (sensors), and with
different formats (ex: a Snort alert, a Netfilter firewall log, etc.). Moreover, there
is a strong need for alerts volume reduction and semantics improvement. Alert
correlation aims at realizing this task, thus permitting false positives reduction
and producing meta-alerts offering a better semantics and severity levels for
more efficient analysis. This is mainly done by merging redundant information
and similarities in order to obtain global alerts with a fusion process [22]. We
define an ACE as an entity receiving as input every possible event produced by
sensors and giving as output high-level IDMEF-compliant alerts (meta-alerts).

Note that the exact definition of this module is considered out of scope for
this paper, since we consider the existence of valuable works on the subject [23,
24, 22, 25] and of a SIM commercial market as a proof of feasibility. Our
current ACE prototype only verifies and modifies impact information in the
IDMEF message, and validate sources and targets with respect to contexts.

5.3 Policy Instantiation Engine (PIE)

The security policy description is ensured by a set of Or-BAC rules. The pos-
sibility to express contextual policies offered by Or-BAC is used in order to
trigger rules considering high-level and fine-grained information. Thus, a pol-
icy instantiation engine (PIE) has two major functions: (1) activate contexts
(through Or-BAC hold facts) which (2) trigger re-evaluation of the security pol-
icy (through activation of abstract Or-BAC rules). Intrusive contexts activation

18

is addressed in Section 4.3. For operational contexts, such as temporal ones,
one can refer to [20] for further information. Note that the PIE also deals with
context deactivation, according to Section 4.4. Generic policy rules triggering
is explained in Section 2, and examples are given in Section 3.

Note that the PIE manages conflict resolution at the policy evaluation level
to produce a coherent set of policy instances (concrete Or-BAC rules) to deploy.
Conflict resolution is ensured at the abstract level, that is between Or-BAC se-
curity rules. It consists in deciding which rule takes precedence when two or
more rules present intersections of roles, activities, views and/or contexts. On
this purpose, we consider Or-BAC abstract entities inheritances and priorities
depending on contexts categories to define a partial order relationship between
conflicting rules, which is sufficient to ensure the proper evaluation of the secu-
rity policy, as shown in [26].

5.4 Policy Decision Point (PDP)

Policies instantiated in response to threat contexts are transmitted to one or
more PDP(s). A PDP is in charge of local policy decisions. Whenever it receives
a new policy instance, that is an Or-BAC concrete rule (permission or prohi-
bition), a PDP has to map this information onto concrete actions to produce
on PEPs to enforce the new policy. A PDP thus have to be aware of its PEPs
abilities, so that it can translate first the rules into generic configurations, con-
sidering the kind of PEP (e.g. a firewall), and then the generic configurations
into specific configurations, considering the implementation of the PEP (e.g. a
“Netfilter” firewall) [19]. Note that part of the decisional capability of the PDP
relies on the fact that a given Or-BAC concrete policy rule may provide differ-
ent actions on the PEPs. For instance, depending on the architecture of the
information system, reconfiguring access to mail user accounts may be realized
on the service itself, (e.g. pop3 service native configuration files) in the case of
dedicated services, or at the infrastructure level (e.g. reconfiguration of Active
Directory) in the case of federated services environment. One may also imagine
advanced deployment scenarios, taking into account network or application ses-
sions continuity. For example, an advanced scenario could be to first alert users
on an imminent service disruption, but let them a definite time to terminate
their immediate action.

5.5 Policy Enforcement Point (PEP)

PEPs receive new policies (or policy elements), which have been translated
by the PDP [19]. Expressing a new policy may have implications on multiple
PEPs. For example, it can involve both a server (stopping a service) and a
firewall (blocking a port). Each PEP dealing with a policy instance is sent a
configuration script, considering its type (ex: firewall), but also its implemen-
tation (ex: Netfilter). Note that a PEP can also be considered a sensor, which
possess specific functionalities of policy enforcement. This characteristic can
provide information allowing validation of new policies effective application.

19

6 From alerts to new policies

We present here the workflow allowing the mapping from alerts to new policy
instances. The PIE is divided into two subparts allowing (1) to map alerts
reported as IDMEF messages into Or-BAC hold facts characterizing threats
and allowing adequate countermeasures, and (2) to derive new policy instances
thanks to hold facts and to the abstract policy definition. Figure 2 presents
a global view of these two PIE functions. Mapping threats to hold facts is
managed through the Threat Characterization Engine (TCE), whereas concrete
policy instantiation is realized thanks to the Policy Core Engine (PCE). Note
that conflict resolution is managed at PCE level since it is ensured at the policy
evaluation step.

Policy Instantiation Engine

IDMEF
Messages Characterization

Threat

Engine

Policy
Instances

Relevant
hold
facts

Policy
Core

Engine

Security
rules

Use

Empower
Consider

Figure 2: Information workflow, from alerts to new policy instances

Figure 3 presents in details the components of the Threat Characterization
Engine. Threat characterization does not actually consists in a trivial and static
mapping, since (1) IDMEF messages may contain various information which
can be translated in different Or-BAC triples (subject, action, object), (2) some
information may lack in IDMEF messages, and (3) generated hold facts must
be relevant to current threat in order to provide the best adequate response.
On this purpose, the TCE process is divided into three steps: (1) syntactic
mapping, (2) enrichment, and (3) strategy application.

6.1 Syntactic mapping

The first stage consists in realizing a quite trivial syntactic mapping, that is
extracting as many triples (subject, action, object) as possible from a given ID-
MEF message. The obtained information is called raw Or-BAC instances, since
they are not usable to respond to threat. Such mappings are statically defined, a

20

Instances

IDMEF
Messages Mapping Enrichment

Enriched
Or−BAC
instances

Strategy
Application

Relevant
hold
facts

Threat Characterization Engine

Syntactic
Or−BAC

Raw

Figure 3: Threat Characterization Engine

subject being for instance the IP address of the source host given by the IDMEF
message. An example of an action is the target port (service) and an example
of an object is the DNS name of the target.

6.2 Enrichment

Once syntactic mapping has been realized, we face two issues linked with the
fact that alerts are sometimes incomplete, or that some optional parameters are
not necessarily defined. Thus, two enrichment steps are provided: (1) enrich
subjects, actions and objects which are only partially instantiated, and (2) find
similar actions to instantiated ones, but at different levels (e.g. network and
service levels, as aforementioned in Section 5.4).

1. Subjects, actions and objects are in fact data structures sometimes re-
grouping equivalent information. For instance, IP addresses and DNS
names are considered equivalent since they qualify the same subject. An-
other example is the equivalence between a service port (tcp/110) and a
service name (pop3). Consequently, and because we may sometimes find
in IDMEF messages only part of these information, a first enrichment step
consists in finding all equivalences and thus provide exhaustive subjects,
actions and objects.

2. Actions may present similar instances, but at different levels. In particu-
lar, we distinguish network actions, such as tcp/110, from service actions,
such as popd. These information both aim at responding to the pop3
service, but the former is probably to result in a firewall reconfiguration
(network response, for instance blocking tcp/110 port) and the latter may
trigger a server reconfiguration or stopping (service response, for instance
stopping /etc/popd daemon). Since we may find only part of these infor-
mation in the alerts, enrichment also consists in trying to instantiate all
the similar instances.

21

6.3 Strategy application

At this stage, the system has provided enriched Or-BAC instances, that is
all possible and exhaustive (subject, action, object) triples characterizing the
threat.

Strategy application first consists in triggering the context. On this purpose,
and although it does not appear on the figure, this process needs IDMEF infor-
mation related to context triggering (for instances, Classification.Reference).

Then, considering all available information (IDMEF message and enriched
Or-BAC instances), and optional information related to user-defined strategy
settings, the strategy application process deals with instantiation of relevant
hold(org, s, a, o, c) facts in order to respond to the considered threat. This means
that subject, action, and object may be altered considering desired strategy, to
tune the response scale (e.g. extense to a group of users, a sub-network, etc.).

Finally, given the obtained hold fact(s), the PIE is able to find the associ-
ated security rule(s), which allow(s) then to derive concrete authorizations as
explained in listing 1.

7 Case Study: e-mail Server

The case study is the email environment of our organization. The objective of
the adaptive security policy is to preserve access to email information, but not
necessarily via the same protocol. Email is a fairly critical service hosted on
3 exchange servers, which can be accessed by three different mechanisms, the
native outlook to exchange, pop and imap. In normal operation, all these three
modes are active and allow parallel access to the same information. Messages
read and sent by one mechanism are also altered by the other mechanisms.
We use SWI-Prolog to implement first-order logic based reasoning required by
Or-BAC.

7.1 Description of the Policy Components

The description of the case study and the policy components that we need to
develop for this case study are presented in figure 4. Ellipses represent abstract
information in Or-BAC (organizations, roles, activities, views and contexts)
and dashed rounded square boxes represent concrete instances linked by the
empower, consider and use facts.

This case study is built upon the architecture of our email service, serving
over 5000 users in multiple physical locations. The email service is hosted on
three exchange servers, protected by a specific firewall, as shown in figure 4(a).
Users have three channels for accessing email, the classic pop and imap protocols
with their application of choice and outlook using the proprietary exchange
protocol. All three are kept synchronous, and changes in the same account using
one of the access mechanisms are immediately seen using the others. While this
case study is limited in scope – a number of equipments do not appear on the

22

fwbob

charlie
mel2

mel3

mel1

daniel

alice

(a) Case study

corporation

emea

san francisco

new york

london

paris

berlin

us_branch

organizations

(b) Organizations

userbob

alice

daniel

charlie

empower

mail_user

pop_user imap_user outlook_user

admin

roles

(c) Roles

read_mail

read_exchangeread_pop read_imap

Mozilla Thunderbird

tcp/143

/etc/imapd

consider consider consider

Exchange

tcp/135

tcp/137

tcp/138

Outlook

CVE−2005−1133

/etc/popd

tcp/110

activities

(d) Activities

views

mail_server

mel2

mel1

mel3

use

(e) Views

minimal_mail

syn_flooding

CVE−1999−0116

contexts

mail_threat

CVE−2005−1133

network_threat

operational

working_hours

time nominal

threat

pop_attack exchange_attackimap_attack

minimal

(f) Contexts

Figure 4: Description of the policy components

schema, such as active directory authentication servers and DNS servers – it
provides a sound basis for description and development of the technology.

The organizations are the corporation and its different branches. The roles
graph of this case study is quite simple, since it only deals with users, differ-
entiating mail users from the system administrator. Note that roles are here
limited to users, but in a larger case study, we would as well have hosts play-
ing specific roles, such as workstation, webproxy, etc. The activities graph is
limited to reading mail activity, declined along the three possible protocols.
Note that all possible activity instances are not represented in the figure. The
views graph is trivial, since the only necessary view in the use case deals with

23

mailserver description. Finally, the contexts graph defines the different contexts
that can be activated and are used in defining policy rules. Note that according
to Section 4, contexts are divided into three categories: operational, threat and
minimal. Among operational contexts, the nominal context is always active and
defines the security policy that offers the most convenience to users. Intrusive
contexts define contexts that are activated by the alert correlation engine when
alert information is received from intrusion detection systems and when this
alert information is related to one of the specific protocols used for email access.
Finally, temporal contexts are used in policy rules to constrain minimal mail
context, to put the light on availability during working hours, and to focus on
confidentiality and integrity during non-working hours.

In the case study, the ACE, PIE and PDP are implemented as Prolog pred-
icates in SWI-Prolog, and the PEP as XSLT transformations. The components
of the model (graphs of abstractions and instances) are modeled in a straight-
forward way using Prolog facts, among them empower, consider and use.

7.2 Definition of the Security Policy

Listing 4: Email access control policy
s r (perm , corp , mai l user , read exchange , ma i l s e rve r ,&(minimal mail , working hours)) .
s r (prohib , corp , pop user , read pop , ma i l s e rve r , pop attack) .
s r (prohib , corp , imap user , read imap , ma i l s e rve r , imap attack) .
s r (prohib , corp , out look user , read exchange , ma i l s e rve r , exchange attack) .
s r (perm , corp , mai l user , read mai l , ma i l s e rve r , nominal) .

Following the definitions of Section 2, we define the security policy as shown
in listing 4. In this policy, we consider that it should always exist a way to read
mail during working hours, but not necessarily on non-working hours. Indeed,
although availability is of crucial interest during working hours, it may not be
so important during non-working hours, and the priority could be higher for
confidentiality and integrity. A solution to this availability issue is to define an
exception with a rule permitting for example exchange via outlook access with
a high level priority (minimal context), as shown in the first rule of listing 4.
Thus, we avoid the case for which the system would close all possible paths to
mail, which would lead to self-inflicted denial-of-service.

This security policy then specifies that any attack against one of the email
access mechanisms invalidates the access mechanism being attacked, and that
by default, mail users have access to all mechanisms to read mail. This simple
expression is obtained by taking into account that each rule also applies to
children in the graphs.

Note that this concise expression is generic and adaptable to multiple phys-
ical architectures. If we had multiple mail servers spread per location instead
of a centralized mail server farm, we would express the same policy. However,
we would change the deployment strategy at the PDP level and have a different
list of PEPs.

Once we have modeled the environment and the security policy, we need to
express the hold predicates as shown in listing 5. The working hours context
is modeled in a straightforward way, as is the nominal context. We define the

24

Listing 5: Email access control policy
hold (corp , Subject , Action , Object , Context) :−

a l e r t (CreateTime , Source , Target , C l a s s i f i c a t i o n) ,
r e f e r e n c e (C l a s s i f i c a t i o n , Reference) ,
t r i g g e r (Reference , Context) ,
map syntax (Source , Target , RawSubject , RawAction , RawObject) ,
map enrichment (RawSubject , RawAction , RawObject , EnrSubject , EnrAction , EnrObject) ,
map strategy (EnrSubject , EnrAction , EnrObject , Subject , Action , Object) .

hold (corp , Subject , , Object , minimal mail) :−
hold (corp , Subject , , Object , pop attack) ,
hold (corp , Subject , , Object , imap attack) ,
hold (corp , Subject , , Object , exchange attack) .

hold (corp , , , , working hours) :−
g l oba l c l o ck (DayClock , TimeClock) ,
TimeClock >= ’ 07 :00 : 00 ’ ,
TimeClock < ’ 20 : 00 : 00 ’ ,
DayClock != ’ saturday ’ ,
DayClock != ’ sunday ’ .

hold (corp , , , , nominal) .

minimal mail context as a sub-context of the minimal context. The context
minimal mail is active when all three email access mechanisms are attacked.
Hence, during working hours, when the &(minimal mail, working hours) con-
text is active, the policy expresses that the exchange access is re-opened ensuring
continued availability of email information.

Note that we do not necessarily consider only availability in such a case. In-
deed, confidentiality and integrity guarantees can also be provided by defining
additional constraints. For instance, one could define security rules ensuring
that resources are accessed only via a secured protocol. For example, one may
choose to switch from pop to pops in the case of pop3, or from imap to imaps
in the case of imap, etc. Moreover, it is possible to elevate authentication
requirements. For example, users could be forced to use certificates or biomet-
ric means to authenticate. Thus, availability requirement is still fulfilled, but
provided that additional conditions related to confidentiality and integrity are
ensured.

7.3 The Mapping Predicates

The core of the hold predicate related to threats (the first one in listing 5) is rep-
resented by the four mapping functions, trigger, map syntax, map enrichment
and map strategy. The trigger function aims at mapping an alert reference on its
corresponding context, as explained in Section 3. References are thus grouped
considering attack classes, which represent threat contexts. The map syntax,
map enrichment and map strategy functions are implemented with respect to
requirements explained in Section 6. An example of mapping in this case study
is given by listing 6.

Listing 6: Possible mapping in the case study
sub j e c t = IDMEF. Target . User . User id . name
act ion = IDMEF. C l a s s i f i c a t i o n . Reference . name or IDMEF. Target . Se rv i c e .{name , port}
ob j e c t = IDMEF. Target . Node .{name , Address}

25

Note that concerning response strategy, we have chosen here to protect user
accounts rather than eliminate attackers. It is thus different from the example
given in Section 3. For example, if Charlie performs a brute-force attack on
Alice’s email password, the Source.User.Userid.name will be charlie and the
Target.User.Userid.name will be alice. According to our mapping, we will block
access to Alice’s account, not from Charlie’s account. This stems from the fact
that Source.User is rarely instantiated in our alerts, and is often unreliable.
Another solution may consist in blocking the source, but at the host level rather
than at the user level. However, although this may apply to the case of an
internal attack, as explained in Section 3, where the actual attacker is reported
by the alert, it is not clear whether it would be efficient for an external attack.
Indeed, the proxy is seen as the source of the attack from the internal network,
and this may lead to the blocking of the proxy, instead of the real source. Such
a response would mean that all external hosts are blocked instead of attacker
only. Moreover, another issue deals with spoofing, that is react on the source
is impossible when the alert reports a spoofed source, since it is not the actual
attacker. Such considerations are typical information entering into the process
of response strategy. The exact implementation of the mappings predicates is
still an area of research; while our case study shows that it is possible to define
such mappings, the evaluation of what constitutes the “best” mapping remains
to be done.

8 Issues with the Approach

While this approach is still under development, the current work has brought
up a number of interesting issues, especially concerning service continuity and
dynamicity of policy changes.

Service Continuity The first question raised by this approach is service con-
tinuity. If connectivity is cut at the network level, clients receive error messages
but are not informed automatically about other opportunities to access the in-
formation they need. We therefore need to interact with clients to inform them
that they should change their access mechanism.

Server-side-only automated redirection is possible only in a limited number
of protocols. For example, in a web environment where clients have the op-
portunity to use both HTTP and HTTPS, we would be able to automatically
redirect clients from HTTP to HTTPS by changing the URLs embedded in the
web pages returned by the server. When the client clicks on a particular link
(assuming that the security policy has not changed in the meantime), he is
redirected to the appropriate service. Unfortunately, this opportunity does not
seem to exist for email protocols; therefore, we are studying the possibility to
configure multiple email accounts on a mail client, and change configurations
when needed.

26

Dynamicity of Policy Changes System and network administrators are
quite conservative when it comes to policy changes. Therefore, we need to dis-
courage rapid changes in policies and oscillations between policies, that would
perturb the clients and force them to change their access mechanisms several
times during their sessions. Experiments with the matrix shown in table 2
should clarify this problem and in particular allow us to verify if the proposed
timings converge towards the working hours policy or leave enough room for
multiple simultaneous access methods. Implementing dynamic context deac-
tivation should also prevent from such issues. Indeed, defining static context
lifetimes is a first step towards context deactivation, but it requires a strong ex-
pertise, and it may not provide the best results, since the threat could be shorter
than the resulting countermeasure lifetime, or on the contrary, longer than the
resulting countermeasure. Future work shall in part consist in improving the
context deactivation process, by making use of information reported by policy
enforcement points, acting as sensors, in order to dynamically characterize the
state of a considered threat.

9 Conclusion

In this paper, we have proposed a systematic approach to threat response. The
approach builds upon Or-BAC, an advanced security policy formalism, to de-
fine a contextual security policy that will be applied to the information system.
This enables the definition of multiple equilibrium points between security, per-
formance, convenience and compliance objectives. These equilibrium points are
expressed as contexts or context combinations of the security policy. The Or-
BAC framework includes tools for formally verifying the security policy and for
translating the formal security policy into practical configuration scripts that
can be applied to policy enforcement points to change the security policy. The
expression of the security policy allows the definition of simple responses to
each threat, a global and efficient response in the face of multiple threats being
computed during the instantiation of the security policy.

The threat contexts vary according to alerts collected by various sensors.
These alerts received as IDMEF messages are mapped onto policy subjects,
actions and objects and are used to activate specific contexts. The mapping
from IDMEF messages to policy entities is complex and has implications on the
choice of response that will be available to handle the threat. When a particular
context is activated, the new set of policy rules is validated and translated to the
enforcement points. These mechanisms have been implemented and validated on
a case study environment. The organization-based approach shows encouraging
results and we are confident that deployment at a larger scale will be possible.

Future work includes modeling service continuity, ensuring that clients get
continuous access to information seamlessly, defining and evaluating mapping
functions to formalize the impact these mapping functions have on threat re-
sponse choices, and evaluating the performances of the prototype approach with
respect to performance and efficiency in threat response.

27

References

[1] Thomas, Y., Debar, H., Morin, B.: Improving Security Management
through Passive Network Observation. In: ARES ’06: Proceedings of
the First International Conference on Availability, Reliability and Security
(ARES’06), IEEE Computer Society (2006) 382–389

[2] Brackney, R.: Cyber-Intrusion Response. In: Proceedings of the 17th
IEEE Symposium on Reliable Distributed Systems, West Lafayette, IN
(1998) 413

[3] Toth, T., Kruegel, C.: Evaluating the Impact of Automated Intrusion
Response Mechanisms. In: Proceedings of the 18th Annual Computer
Security Applications Conference (ACSAC), Las Vegas, NV, USA, IEEE
Computer Society Press (2002)

[4] Petkac, M., Badger, L.: Security Agility in Response to Intrusion Detec-
tion. In: Proceedings of the 16th Annual Computer Security Applications
Conference (ACSAC’00), New Orleans, LO, USA (2000) 11

[5] Floyd, S.: Inappropriate TCP Resets Considered Harmful. RFC 3360
(2002) http://www.ietf.org/rfc/rfc3360.txt.

[6] Cuppens, F., Gombault, S., Sans, T.: Selecting Appropriate Counter-
Measures in an Intrusion Detection Framework. In: 17th IEEE Computer
Security Foundations Workshop (CSFW), Pacific Grove, CA, USA (2004)

[7] Mounji, A., Charlier, B.L.: Continuous Assessment of a Unix Configuration
Integrating Intrusion Detection and Configuration Analysis (1997)

[8] Ragsdale, D.J., Carver, C.A., Humphries, J.W., Pooch, U.W.: Adapta-
tion techniques for intrusion detection and intrusion response system. In:
Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, Nashville, TN, IEEE Computer Society Press (2000) 2344–
2349

[9] Carver, C.A., Hill, J.M., Pooch, U.W.: Limiting Uncertainty in Intru-
sion Response. In: Proceedings of the 2001 IEEE workshop on Systems,
Man, and Cybernetics Information Assurance and Security, United States
Military Academy, West Point, NY (2001) 142–147

[10] Debar, H., Thomas, Y., Cuppens-Boulahia, N., Cuppens, F.: Using Con-
textual Security Policies for Threat Response. In Bueschkes, R., Laskov, P.,
eds.: Proceedings of the 3rd Conference on Detection of Intrusions and Mal-
ware & Vulnerability Assessment (DIMVA 06), Berlin, Germany, Springer
(2006)

[11] Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in Operating Sys-
tems. Communication of the ACM 19(8) (1976) 461–471

28

[12] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based
Access Control Models. IEEE Computer 29(2) (1996) 38–47

[13] Kudo, M., Hada, S.: XML Document Security based on Provisional Au-
thorization. In: CCS ’00: Proceedings of the 7th ACM conference on
Computer and communications security, ACM Press (2000) 87–96

[14] Cuppens, F., Cuppens-Boulahia, N., Ghorbel, M.B.: High-level conflict
management strategies in advanced access control models. In: Workshop
on Information and Computer Security (ICS), Timisoara, Roumania (2006)

[15] Miège, A.: Definition of a formal framework for specifying security policies.
The Or-BAC model and extensions. PhD thesis, ENST (2005)

[16] Kalam, A.A.E., Benferhat, S., Miège, A., Baida, R.E., Cuppens, F., Saurel,
C., Balbiani, P., Deswarte, Y., Trouessin, G.: Organization Based Access
Control. In: Proceedings of IEEE 4th International Workshop on Policies
for Distributed Systems and Networks (POLICY 2003), Lake Como, Italy
(2003)

[17] Cuppens, F., Cuppens-Boulahia, N., Miège, A.: Inheritance hierarchies in
the Or-BAC Model and application in a network environment. In Sabelfeld,
A., ed.: FCS’04. Volume 31. (2004) 41–59

[18] Ullman, J.D.: Principles of Database and Knowledge Base Systems. Com-
puter Science Press (1989)

[19] Cuppens, F., Cuppens-Boulahia, N., Sans, T., Miège, A.: A Formal Ap-
proach to Specify and Deploy a Network Security Policy. In: Second Work-
shop on Formal Aspects of Security and Trust (FAST), Toulouse, France
(2004)

[20] Cuppens, F., Miège, A.: Modelling Contexts in the Or-BAC Model. In:
ACSAC ’03: Proceedings of the 19th Annual Computer Security Applica-
tions Conference, IEEE Computer Society (2003) 416

[21] Debar, H., Curry, D., Feinstein, B.: The Intrusion Detection Message
Exchange Format. RFC 4765 (2006)

[22] Cuppens, F., Miège, A.: Alert Correlation in a Cooperative Intrusion
Detection Framework. In: Proceedings of the IEEE Symposium on Security
and Privacy. (2002)

[23] Dain, O., Cunningham, R.K.: Fusing a Heterogeneous Alert Stream into
Scenarios. In: Proceedings of the 2001 ACM Workshop on Data Mining
for Security Applications. (2001) 1–13

[24] Morin, B., Mé, L., Debar, H., Ducassé, M.: M2D2: A Formal Data Model
for IDS Alert Correlation. In: Proceedings of the Fifth International Sym-
posium on Recent Advances in Intrusion Detection (RAID). (2002)

29

[25] Ning, P., Cui, Y., Reeves, D.S.: Constructing Attack Scenarios Through
Correlation of Intrusion Alerts. In: Proceedings of the 9th Conference on
Computer and Communication Security. (2002)

[26] Cuppens, F., Miège, A.: Administration Model for Or-BAC. In: On
The Move Federated Conferences (OTM’03), Workshop on Metadata for
Security, Catania, Sicily, Italy (2003)

30

