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Abstract— In the context of virtualized-reality-based tele-
micromanipulation, this paper presents a visual calibration
technique for an optical microscope coupled to a CCD camera.
The accuracy and flexibility of the proposed automatic virtual
calibration method, based on Parallel Single-Plane properties,
are outlined. In contrast to standard approaches, a 3D virtual
calibration pattern is constructed using the micromanipulator
tip with subpixel-order localization in the image frame. The
proposed procedure leads to a linear system whose solution
provides directly both the intrinsic and extrinsic parameters
of the geometrical model. Computer simulations and real data
have been used to test the proposed technique, and promising
results have been obtained. Based on the proposed calibration
techniques, a 3D virtual microenvironment of the workspaceis
reconstructed through the real-time imaging of two perpendicular
optical microscopes. Our method provides a flexible, easy-to-
use technical alternative to the classical techniques usedin
micromanipulation systems.

Index Terms— Camera/Microscope Calibration, Telemicroma-
nipulation, Virtual Pattern, Virtual Reality

I. I NTRODUCTION

In the field of microtechnologies, optical microscopes are
the key sensor device for visually based micromanipula-
tion systems where vision feedback is required for guidance
manipulation strategies. Practical visual servoing examples
can be found in a large variety of constrained and variable
operating microenvironments such as vision feedback mi-
croassembly [1], vision servoing of biological injection tasks
[2] or microscope-assisted guided surgical interventions[3].
Nevertheless real-time sensor feedback provided by the optical
microscope is not always sufficient. As the image of the
microscope is two-dimensional, it is difficult to manipulate
the microobject in the 3D space because depth of field is
small and the field of view is narrow. To improve micro-
manipulation we have proposed a new camera/microscope
calibration for three-dimensional viewpoint selection [4] under
virtual reality (VR). One major problem is the full registration
of the 3D reconstructed world (virtual scene) and the 3D
micromanipulator positions (real scene). Few works have been

reported on VR navigation for tele-micromanipulation [5],[6],
and previous methods did not consider the crucial stage
of camera/microscope calibration in order to determine the
correspondence between 3D world coordinates and 2-D optical
microscope/camera coordinates.

A number of 3D micromanipulation approaches have been
investigated. Systematic methods based on 3D high-precision
micromanipulator position/orientation sensors to calibrate the
relative 3D position and orientation between the tool and
the optical microscope/camera have been proposed. However,
calibration accuracy is highly dependent on the accuracy of
micromanipulator kinematics [7] and on the measurement
system used [8]. Moreover, calibration accuracy may deterio-
rate as a result of thermal deformation, vibration and various
positioning errors [9].

In classical camera calibration methods [10],[11] a calibra-
tion pattern is used where the geometry of the 3D space is
known with high precision. At a micro scale it is difficult
to find a reliable micrometer-sized 3D calibration structure
containing nanomarkers that serve as well-distinguishable ref-
erence points for the calibration of large 3D depths of field.
Such a structure must include a 3D pattern with textures
(matching is based on correlation techniques), non-repetitive
motifs (to avoid ambiguity problems during matching) and
features occurring at different depths (error-prone 3D recon-
struction). Different microfabricated calibration patterns can
be used: by printing arrays of black dots uniformly distributed
over a microscopic area [12], by using engraving techniques
based on optical lithography [16],[14], or by using a water
drop covered with nickel filings [15]. These systems allow very
high-precision patterning, but lack operational flexibility, since
the calibration target must be painstakingly installed/removed
with each change in magnification (modification of the optical
tube lens length or optical objective). Furthermore, reattach-
ing the micromanipulator can lead to positional errors, and
attention must be paid to thermal deformations.

A promising solution is to construct 3D virtual calibra-
tion patterns automatically, using the micromanipulator end-
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effector positions as reference points. At the microscale,Sitti
et al. [17] were the first to propose a 2-D automatic AFM tip
center position calibration using tapping mode AFM imaging.
As extension of this method, a 3D calibration technique using
a glass pipette tip has been proposed by Kawajiet al. [18]
where the manipulator tip is calibrated to a sub-micron order
of accuracy by illuminating it with an optical fiber. However,
the accuracy and robustness of pipette tip detection is greatly
influenced by the microscope’s lighting environment.

In this study we construct a 3D virtual target by positioning
a piezoresistive Atomic Force Microscope cantilever (termed
hereafterAFM-tip) with its tip used as end-effector and force
sensor. An optical microscope coupled to a CCD camera is
used as the vision sensor. The AFM-tip is connected to the
micromanipulator and is randomly positioned within the 3D
working area of the observation frame in the microscope’s
focal plane. The successive measurements of precise 3D
positions of the AFM-tip in the current view constitutes a
virtual calibration pattern. The main contribution of thispaper,
which is a deeper study of the work presented in [19], is
to compare the calibration algorithm and its experimental
evaluation with Tsai’s well-known existing algorithms [10].
Moreover, since only single-plane calibration methods canbe
used, we propose a modified version of Zhang’s algorithm
[11] which yields both intrinsic and extrinsic parameters in
one computational step using the micromanipulator tip center
positions. Our method avoids the singularities in the fronto-
parallel optical microscope configuration that are a feature of
Tsai’s algorithms.

The remainder of this paper is as follows. In Section II
we present the microscope calibration framework. Section III
introduces the proposed 3D calibration methodology based
on a modified Zhang’s algorithm combined with the virtual
pattern. Section IV provides experimental calibration results
applied to the 3D reconstruction of a micromanipulation task.
Finally, Section V discusses the virtual calibration perfor-
mances compared to the main existing camera/microscope
optical calibration methods.

II. M ICROSCOPECALIBRATION FRAMEWORK

A. Microscope/Camera Optical Model

Modern research microscopes are usually equipped with
infinity-corrected objectives that avoid projecting the interme-
diate image directly onto the intermediate image plane [12].
Light emerging from these objectives is focused to infinity,and
a second lens, known as a tube lens, creates the image at its
focal plane and projects it onto the sensor plane (a CCD array)
where a real image is formed. For the purposes of geometrical
calibration, the microscope model is similar to the pinhole-
camera model [20] as shown in Fig.1.

A 3D point in the frameRw is defined by the coordinate
vector (Rw)M = [X, Y, Z]T . In R0, the 3D point(R0)M =
[X0, Y0, Z0]

T is defined by

(R0)M = R.(Rw)M + t (1)
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Fig. 1. Microscope pinhole model
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R is a rotation matrix with three degrees of freedom, andt is
a translation vector also with three degrees of freedom. These
six degrees of freedom are known as theextrinsicparameters
of the microscope/camera optical model.

We use the notatioñx to denote a vector in homogenous
coordinates, i.e. ifx = [a, b]T then x̃ = [a, b, 1]T .

By perspective projection, the relationship between(R0)M
and the image point(Ri)p̃u = [u, v, 1]T in Ri is

s
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wheres is an arbitrary scale factor andftot = ftl + fob.
The parametersku, kv, sk, u0, v0, ftl and fob are known
as theintrinsic parameters of the microscope/camera optical
model and represent respectively the two projection gains,the
skewness, the coordinates of the principal point, the optical
tube length and the exact focal length. Taking into account
the radial lens distorsion of the microscope/camera system
and its center as the principal point, the distorted image point
(Ri)p̃d = [ud, vd, 1]T can be expressed as

ud = u + (u − u0)(k1 r2 + k2 r4)
vd = v + (v − v0)(k1 r2 + k2 r4)

(3)

wherek1 andk2 are the coefficients of the radial distorsion
andr2 = u2

n +v2
n with (un, vn) the normalized distortion-free

image coordinates.
The main constraint in the optical microscopy calibration

is the low depth of field of the objectives. This implies
that multiple parallel calibration planes perpendicular to the
optical axis and located at varying depths cannot be applied
in microscope calibration. Moreover, rotating the calibration
pattern relative to the image plane will result in a blurred
image, making accurate geometry extraction impossible. Since
the calibration plane cannot be exactly parallel to the image
plane, we consider a near-parallel approximation (cosx ∼= 1,
sin x ∼= x) leading to the following simplified rotation matrix
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r11 r12 r13

r21 r22 r23

r31 r32 r33


 =




cα −sα cαβ + sαγ
sα cα sαβ − cαγ
−β γ 1


 (4)

wherecx ≡ cosx and α, β, γ represent the Euler angles.
Finally, the reduced parametric microscope/camera optical
model is

s

24 u
v
1

35 = A

24 cα −sα Tx

sα cα Ty

−β γ Tz

3524 X
Y
1

35 (5)

where

A =




f1 sk u0

0 f2 v0

0 0 1


 (6)

with f1 = ku(ftl + fob) and f2 = kv(ftl + fob). The
magnification of the microscope/camera system is defined as

M =
fob + ftl

Tz

. (7)

B. High-Accuracy Target Construction

In addition to the optical constraint, tele-micromanipulation
systems are generally characterized by limited manipulation
space. The use of the conventional calibration target (e.g.,
printed by lithography pattern) seems impractical, since the
pattern must be manipulated within a confined space before
and after each calibration step. As stated in the introduction,
in order to realize accurate measurements and to achieve
good calibration results, particular care has to be taken in
the way the calibration target is constructed, and also in
the way the coordinates of calibration points are measured.
Since using a conventional calibration target is not practical
in the micromanipulation case, we have chosen to carry
out the calibration pattern with the micromanipulator. The
target (AFM-tip) was mounted on the micromanipulator’s end-
effector whose position is controlled by the calibration module
[4]. The role of this component is to generate successive
positions to construct the virtual target by taking into account
the various objects (microspheres and dust particles) which
constitute the manipulated scene. The generated positionsmust
be:

• in the same plane, because of the optical constraints;
• randomly positioned in the scene to guarantee the in-

dependence of the nonlinear equations involved in the
calibration algorithm.

The pattern construction procedure is as follows:
1) the image processing module first locates the various

objects present in the scene ;
2) the configuration-space (CS) of the manipulated scene

is then computed according to the geometry of the
obstacles and the AFM-tip ;

3) finally, the calibration module generates several random
positions in the CS-free (see Fig. 2).

The spatial position of the AFM-tip is determined from the
position of the micromanipulator on the assumption that the

x−y−z piezoelectric positioning stage is very precise (closed-
loop control) with a nanometer positioning accuracy.

Fig. 2. Schematic calibration target construction using localization of the
AFM-tip positions.

In order to recover the position of the AFM-tip with high
accuracy, we choose the image normalized correlation tech-
nique [20] which is fast, invariant to linear radiometric changes
and can be implemented in a context of Kalman filtering
(Gaussian noise assumptions) [23] or particle filtering (non-
Gaussian noise assumptions) [24]. Methods such as wavelet
decomposition may be used to improve the tracking precision
with a multi-resolution and auto-focusing approach [25]. The
approach we adopted uses a reference template of image
data M(u, v) and a test imageI(m, n). The correlation is
carried out by comparing a template image to all sub-parts
of the corresponding image region at the pixel level. The
correlation represents the similarity between the patternand
the corresponding region. The point where the correlation
reaches a local minimum value is considered to be the
matching target point. As stated earlier, in order to make
the correlation insensitive to global luminosity variations the
Normalized Correlation Coefficient [20] is used:

NCC =

∑
u,v M(u, v) · I(m + u, n + v)

√
|
∑

u,v M2(u, v) ·
∑

u,v I2(m + u, n + v)|
. (8)

The similarity measurement is robust to partial visual object
occlusions and in practice provides stable detection results
[26]. Using the correlation approach to locate a target instance,
the locationsm and n return integer values. Assuming that
the correlation surface is relatively smooth, it is possible
to interpolate between sample values to estimate a subpixel
localization of the target. We propose a method using a three-
dimensional paraboloid surface that fits the set of normalized
correlation data points. Once the integral location is found, the
eight neighbors on the correlation surface are also computed
in order to fitz(m, n) a generalized equation defined by

z = a.m2 + b.n2 + c.m.n + d.m + e.n + f. (9)

For several image points(mi, ni), and stacking all equations
(with a minimum of six points) expressed by (9), we obtain a
linear system

Zm = b. (10)
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The closed-form solution of (10) can be obtained by a least-
squares regression method using a singular value decomposi-
tion (SVD) [27] of Z. Once the coefficients of the surface
are known, the maximum of the paraboloid surface function
gives the optimal subpixel coordinates. This algorithm hasthe
advantage of achieving high accuracy without the need for
large magnification optics.

III. PROPOSEDCALIBRATION METHODOLOGY

As stated before, optical principles dictate that for optical
microscopes, the object plane must be parallel or very nearly
parallel to the image plane. However, existing methods do
not work well with calibration patterns that are parallel tothe
CCD sensor. For example, Tsai’s algorithm [10],[28] requires
that the calibration pattern has to be tilted at least 30 degrees
relative to the image plane. In the parallel case this algorithm
is singular [22]. To take this into account, the basic idea isto
simplify the entire calibration model by assuming small angle
approximations to the pitch and yaw angles of the rotation
matrix. When these angles become larger, the error due to the
linear approximation becomes more significant. On the other
hand, methods based on several planar calibration patterns
like Zhang’s algorithm use the concept of theHomography
transformation[11],[29]. Single image calibration is possible,
but it reduces the number of intrinsic parameters to be solved.
In this section, a calibration algorithm based on Zhang’s
procedure [11], modified for the parallel case, is proposed for
optical microscope calibration.

A. Proposed Modification to Zhang’s Method

Starting from (5), an object point is related to the corre-
sponding image point by a homographyH, defined as

s.(Ri)p̃u = H.(Rw)M̃ with H = A
[

r1 r2 t
]
. (11)

whereri is the ith column of the rotation matrixR.
The homography is a linear transformation which maps the

image plane onto the world object plane, and it is clear that
the 3 × 3 matrix H is defined up to a scale factor.

The two projection gains are defined as follows

ku =
sx.Nfx

dx.Ncx
and kv = dy (12)

wheredx anddy are the effective center-to-center distances
between the camera’s sensor elements in theu and v direc-
tions;Ncx is the number of sensor elements in theu direction;
Nfx is the number of pixels in a line as sampled by computer
and sx is the uncertainty image scale factor. The termsx is
defined as the ratio between the aspect ratio of the sensing area
and the aspect ratio of the frame buffer. It can be expressed
as follows

sx =

(
CCDx

CCDy

) /(
Nfx

Nfy

)
(13)

whereCCDx andCCDy are the dimensions of the sensing
area in theu andv directions, andNfy is the number of pixels
on the frame grabber in thev direction.

1) Recovering intrinsic parameters :As stated earlier,H
is defined up to a scale factor. This homography between the
object plane and the image plane can be estimated using the
3D coordinates of the micromanipulator and the corresponding
image points. A minimum of six points are necessary to obtain
a solution [30]. A random sampling and consensus (RANSAC)
algorithm [31] is used to eliminate outlying data points that
come from tracking errors and contaminate the estimation
process.

Let hi be theith column inH. From (11), we have:

λ
[

h1 h2 h3

]
= A

[
r1 r2 t

]
. (14)

whereλ is an arbitrary scalar. The matrixB = A
−T

A
−1

represents the image of the absolute conic [32]. From only
one image, we can solve both intrinsic parametersf1 andf2

(imposing the skew constraintssk = 0, and assumingu0 and
v0 are known and located in the middle of the image and are
therefore image points expressed in (Rr)). ¿From (14), we also
have r1 = λ A

−1h1 and r2 = λ A
−1h2. Consequently we

obtain

rT
1 r1 = λ2 hT

1 B h1 = 1 (15)

rT
2 r2 = λ2 hT

2 B h2 = 1 (16)

rT
1 r2 = λ2 hT

1 B h2 = 0. (17)

Sincer1 and r2 are orthonormal, we have:

hT
1 B h2 = hT

1 B h1 − hT
2 B h2 = 0. (18)

These relations allow us to solve only two parameters (f1

and f2); in order to recover the parameterλ it is necessary
to add another constraint. From (11), we can introduce an
additional constraint expressed as

λ =
1

||A−1h1||
. (19)

After some developments, we obtain the following expres-
sion

λ = 1/
√

(h11/f1)2 + (h21/f2)2 + h2
31 (20)

wherehij are line-column elements of the matrixH.
Finally, the previous equation can be written as follows:

h2
11

M1
2 +

h2
21

M2
2 + h2

31λ
2 = 1 (21)

where M1 = f1

λ
and M2 = f2

λ
are the magnifications

corresponding respectively to theu andv axes.
By adding this constraint to (18), we obtain a constrained

system enabling us to recover the two magnification parame-
ters M1 and M2, along with the scale factorλ. The final
system can be expressed as follows:24 h11h12 h21h22 h31h32

h2
11 − h2

12 h2
21 − h2

22 h2
31 − h2

32
h2
11 h2

21 h2
31

35264 1
M1

2

1
M2

2

λ2

375 =

24 0

0

1

35 . (22)
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¿From (7) the total focal length of the tube lens and the
total focal length of microscope can be extracted:

ftl = M1.fob = sx.M2.fob (23)

2) Recovering extrinsic parameters:OnceA is known, the
extrinsic parameters for each image can be computed. From
(11), we have:

α = arctan[(M1h21)/(M2h11)]
β = −λh31

γ = λh32

Tx = h13/M1

Ty = h12/M2

Tz = fob
M+1

M

(24)

whereM = (M1 + M2)/2 and hij is the element ofH
located at theith line and at thejth column of the matrix.

3) Recovering distortion parameters:The strategy for es-
timating k1 and k2 is to calculate them after recovering the
other parameters using the techniques described above, which
gives the ideal pixel coordinates(u, v). Eq. (3) can be set as
a linear system as proposed in [11] to estimatek1 and k2.
Finally, a nonlinear refinement through maximum likelihood
inference is done using the Levenberg-Marquardt Algorithm
[33] on the following nonlinear criterion:

J = min
Ω

N∑

i=1

[(uim − ud)
2 + (vim − vd)

2] (25)

with Ω = [ku, kv, ftot, λ, u0, v0, k1, k2] and uim, vim the
real (observed) image coordinates.

IV. EXPERIMENTAL RESULTS

Several tests have been carried out in order to measure the
accuracy of the proposed technique. These tests are based on
camera/microscope simulations and experimental data. A com-
parison with Tsai’s basic technique [10],[12] is also presented
in order to evaluate the gain in accuracy.

A. Noise Robustness

The simulated camera has the following properties:u0 =
384, v0 = 288, image resolution768 × 576 pixels, the
microscope has an objective focal length offob = 100000µm
and an optical tube focal length offtl = 200000µm. The
calibration target consists of a set of 100 points randomly
positioned along the calibration plane nearly parallel to the
CCD sensor. Gaussian noise with zero mean error andσ
standard deviation (noise level) is added to the projected
points. For each noise level, this operation is performed a
hundred times, and the average is taken as the result.

Fig. 3 represents the mean reprojection error with respect to
the noise level. It is straightforward that our algorithm gives
better results than Tsai’s method. Similar results can be seen
in Fig. 4 for several numbers of points in the pattern. However,
the curves tend to fuse together when considering a large
number of points (> 1000 points), but it would be unrealistic,

from a practical point of view, to rely on this assumption. In
practice, we choose a minimum of24 calibration points for
noise robustness evaluation, as shown in Fig. 5, 6, 7, 8, and
. The estimation of the magnification (Fig. 5) andTz (Fig.
8) gives better results than Tsai’s method. The explanation
for this lies in our assumption that the object plane and
image plane are nearly parallel. In this case the homography
transformation performs well, since the magnification andTz

are dominant parameters. On the other hand,Tx (Fig. 6) and
Ty (Fig. 7), defined as small parameters, are both estimated
in the same way. It will also be noticed thatα is better
estimated using our algorithm (Fig. ), since the other angles
are neglected.

B. Tests under real experimental conditions

Our experimental setup is shown in Fig. 11. Key compo-
nents of the setup include the following.

• Frontal microscope: Mitutoyo FS70Z with three objec-
tives mounted on a Wentworth probe station [21].

• CCD camera: Chugai Boyeki FC-55-II module connected
to a Sony sensor with500 by 582 sensing elements and
cell size of9.8 by 6.3µm;

• Lateral microscope: A TIMM-150 microscope with mag-
nification range from ”0.1” to ”150”. The CCD camera is
integrated and has the following characteristics:540 by
600 sensor elements and cell size of7.3 by 4.7µm;

• Frame grabber: A mvDELTA Matrix vision frame grab-
ber, with 768 by 576 pixels and pixel frequency of
14.750 MHz (to obtain square pixels);

• Micromanipulator: A M-111.1 from Polytec PI with an
accuracy of0.05µm and repeatability of0.1µm with a
piezoresistive AFM-tip effector.

Fig. 11. Experimental setup.

The microscope calibration is a two-stage technique. The
first involves generating the data for the calibration algorithms
via two controller and image processing modules. The con-
troller module generates a random sequence of end-effector
positions with a precision of0.1µm while avoiding obstacles
(microspheres or dust particles). For each given position,the
image processing module digitizes and computes the image
in order to obtain the subpixel position of the AFM-tip. The
accuracy of the subpixel estimation is 1/16 of a pixel, which
gives 0.6125µm in the x direction and0.3937µm in the y
direction.
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Fig. 3. Mean reprojection error with respect to noise
level.
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number of pattern points.
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Fig. 6. Relative error onTx with respect to noise
level.
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level.
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Fig. 10. Relative error onf1 with respect to noise level.

It can be seen from Table I that our proposed algorithm gives
better results on the 3D reprojection error than Tsai’s method.
It should also be noticed that our method can estimate both
intrinsic and extrinsic parameters from the homography matrix
defined in (11).

C. Execution time

The total execution time of the calibration procedure de-
pends mainly on the complexity of the virtual pattern construc-
tion and on the execution time of the calibration algorithm.
Since the virtual pattern is constructed incrementally, the
construction time is directly proportional to the number of
points. The total time for one calibration pointTtot is defined
as the summation

Ttot = Tdp + Tds + Tlc = 0.827s (26)

where Tdp is the displacement time,Tds the stabilization
time andTlc the localization time. In practice, several tests
indicate that for a number of points varying between between6
to 50, the computation time is approximately constant (Ttot ≃
0.8 s).

D. Application to 3D microenvironment reconstruction for
virtualized tele-micromanipulation

The aim of microscope calibration is to allow faithful
registration of a 3D real-time reconstruction environmentfor
virtualized tele-micromanipulation. It formulates the virtual-
ized reality of the microenvironment through two sources
of information: (i) from real images provided by optical
microscopy and (ii) from synthetic views generated by a 3D
model of the remote microworld. The image scene is made
up of three types of objects, i.e., substrate, microspheres
and dust particles. The 3D reconstruction is done by the
images returned from both the frontal and lateral microscopes.
The main steps of 3D micro-environment reconstruction are
shown in the algorithm (1). Using our calibration algorithm,
we estimate the homography for each microscope:(F )

H for
the frontal microscope (Eq. (27)) and(L)

H for the lateral
microscope (Eq. (28)).

s

24 uF

vF

1

35 =

24 (F )h11
(F )h12

(F )h13
(F )h21

(F )h22
(F )h23

(F )h31
(F )h32

(F )h33

3524 X
Y
1

35 (27)
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η

24 uL

vL

1

35 =

24 (L)h11
(L)h12

(L)h13
(L)h21

(L)h22
(L)h23

(L)h31
(L)h32

(L)h33

3524 Y
Z
1

35 (28)

Each homography gives a linear mapping between the mi-
croscope image plane and its world focused plane. Combining
(27) and (28) gives a linear systemCM̃ = 0. The solution
vectorM̃ of the system is the right null-space ofC which can
be obtained from its Singular Value Decomposition [27], since
image point coordinates are corrupted by noise. This process,
known aslinear triangulation, allows the spatial position of
each object in theX − Y plane as well as the localization of
the AFM-tip in theY −Z plane of the reference frameRw to
be retrieved. Since image coordinates are corrupted by noise,
a nonlinear refinement through maximum likelihood inference
can be done using the Levenberg-Marquardt Algorithm [33]
by minimizing the 2-D reprojection error starting from the
initial estimate ofM̃. When the spheres are moved to or re-
moved from different locations, a regular update is performed
at the image processing frequency. In order to reduce the
computation time, we consider that the different impurities are
static in the environment. The maximum computation time,
including the image processing step, the 3D reconstruction
and the update of scene algorithms, is about95.17ms on
a Pentium IV-2.66 GHz CPU with 512 Mo DDRAM on a
Windows 2000 platform. The 3D graphic rendering is based
on the OPEN-INVENTOR C++ graphic library on a Win32
platform; this library provides powerful functions for graphical
immersion and software architecture. Once the micro-worldis
reconstructed, we can obtain perspective views of the virtual
scene from any viewpoint (see Fig. 12).

Fig. 12. Graphical user interface (GUI) integrating the real imaging (right-
hand side) provided by the optical microscope and the reconstructed virtual
microenvironment (left-hand side) during real-time AFM micromanipulation.

V. D ISCUSSION AND CONCLUSION

In this paper we have developed a new 3D flexible technique
to calibrate an optical microscope mounted on a CCD camera
for virtualized-reality-based tele-micromanipulation applica-
tions. Our method does not require a physical calibration
pattern, but only a tracking of the micromanipulator positions
and its corresponding image points. The proposed calibration
algorithm is based on Zhang’s method using single and parallel
calibration plane constraints. It provides, in one step, both

Algorithm 1 3D Microenvironment Reconstruction
1: Automatic AFM-Tip and substrate contact detection using

force feedback
2: Objects localization using image processing module
3: End-effector (AFM-Tip) localization using image process-

ing module
Require: Frontal focused plane

4: Frontal virtual pattern construction
5: for Each frontal pattern pointdo

Ensure: Free-configuration-space
6: AFM-Tip image tracking using template matching
7: Get AFM-Tip pose from micromanipulator sensors
8: end for
9: Process frontal calibration

Require: Lateral focused plane
10: Lateral virtual pattern construction
11: for Each lateral pattern pointdo
Ensure: Free-configuration-space
12: AFM-Tip image tracking using template matching
13: Get AFM-Tip pose from micromanipulator sensors
14: end for
15: Process lateral calibration
16: for Each input framedo
17: Microspheres tracking in frontal view
18: AFM-Tip tracking in frontal and lateral views
19: Get AFM-Tip pose from micromanipulator sensors
Require: Calibration parameters, dust localization
20: Process 3D reconstruction
21: Reconstruction algorithm update (around95ms)
22: end for

intrinsic and extrinsic parameters of the parametric cam-
era/optical model. Both computer simulations and real data
have been used to test the proposed technique, and confident
results have been obtained.

Tables II-III present a comparison of some reference meth-
ods for optical camera/microscope calibration. It can be seen
that most of them (the exception being a method presented in
[?]) use a calibration pattern combined with Tsai’s algorithm
to estimate the parameters of an explicit camera/microscope
model. Two main categories can be considered; methods with
a microscopic real check pattern [3][?][12] and methods with
a virtual calibration pattern [17][18]. The main drawback of
the first category is that in the near-parallel case the iterative
algorithms require a very good initial estimate of parameters,
because of numerical stability problems. Moreover, relatively
small amounts of noise in the data may lead to large di-
vergence and instability (e.g.[?][12]). Nonlinear optimization
algorithms should be used to achieve a stable and globally
convergent iteration for intrinsic parameter determination [12]
. The second category also poses a particular problem for
calibration: during construction of the virtual pattern, the
feature-tracking procedure is a significant source of errors and
needs to be handled carefully. This has led the authors in
[17] to use several hundred calibration points to minimize
the 3D reprojection error, thus increasing considerably the
overall execution time of the calibration procedure. Therefore,
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to minimize the impact of the tracking stage errors, our
algorithm needs only 24 points to construct automatically the
virtual pattern and to achieve very good calibration results:
0.234µm with a ×2 objective for the 3D mean reprojection
error. Moreover, our virtual pattern does not need to have a
regular-spaced design, and positional outliers are automatically
rejected using the RANSAC procedure. Compared to [17],
similar positioning precision can be achieved for higher micro-
scope objectives; for example, a nominal positioning accuracy
of 1nm can be achieved with a×40 microscope objective.
Nevertheless, the nonlinear least-squares error minimization in
combination with with the RANSAC outliers rejection stage
reduces the influence of the various positioning errors. The
fronto-parallel configuration assumption seems to be a good
compromise, since the yaw and pitch angles are very small
and therefore roughly estimated. This assumption also speeds
up the algorithm (0.827 ms per pattern point) and allows a
direct computation of both intrinsic (including distorsion co-
efficients) and extrinsic parameters of the camera/microscope
geometrical model. Our approach is an fast, robust, high-
precision alternative to classical microscope calibration algo-
rithms [12][17].
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TABLE I

PARAMETER CALCULATION FOR DIFFERENT POSITIONS OF THE OBJECTIVE AND TUBE LENS. Tx , Ty ,Emean, Emax AND σ ARE IN µm, Tz IN m AND α

IN RADIAN .

objective×2 objective×20

Tube lens×1 Tube lens×2 Tube lens×1 Tube lens×2

Proposed Tsai Proposed Tsai Proposed Tsai Proposed Tsai

M 2.143 2.146 4.041 4.045 20.852 20.843 39.1353 39.136
Tx -554.03 -554.52 -280.84 -281.47 -72.12 -71.92 -38.53 -38.11
Ty 324.12 322.25 97.76 97.44 -28.24 -28.68 -14.95 -15.55
Tz 0.14633 0.14645 0.12477 0.12463 0.104785 0.104744 0.10253 0.10253
α 0.013 0.022 1.54E-03 6.66E-02 3.48E-06 2.67E-03 2.39E-09 2.56E-04
k1 -3.33E-16 -4.43E-11 -3.3E-16 -4.89E-13 2.77E-9 1.55E-08 -4.29E-08 6.8E-11
k2 6.33E-13 / 4.63E-15 / -10.92E-12 / 5.79E-20 /

Emean 0.234 0.667 8.34E-03 5.21E-02 2.55E-03 3.33E-02 7.70E-04 8.64E-03
σ 0.156 0.274 4.08E-3 1.08E-02 2.54E-03 3.23E-02 4.46E-05 4.67E-03

Emax 1.540 1.326 0.126 0.311 2.56E-02 1.78E-02 9.49E-03 3.55E-03

TABLE II

COMPARISON OF METHODS USING A REAL CALIBRATION PATTERN

Calibration Method Pattern Method Pattern 3D reprojection Execution
size error time

Zhou et al.[12] Tsai Microfabricated square arrays 10 µm 0.672µm not
20× objective available

Edwards et al.[3] Tsai with Microscopic Real check pattern 60 × 45 mm 0.3 mm not
zoom/focus estimation available

Seyfried et al.[?] Tsai Microscopic Real circular pattern 420× 300 mm 8 nm not
available

TABLE III

METHODS COMPARISON USING A VIRTUAL CALIBRATION PATTERN

Calibration Method Pattern Method Positioning 3D reprojection Execution
precision error time

Proposed Modified Virtual plane with 100 nm 0.234µm 0.827s
Zhang NCC Correlation and with ×2 objective per pattern point

template matching
Kawaji et al.[18] Modified Virtual with Local Illumination 0.12µm 0.281µm not

Tsai glass pipette tip edge detection with ×10 objective available
Sitti et al.[17] Tsai Virtual pattern through 10 nm 0.330µm 3s for 5µm

1 µm particle tracking with ×80 objective pushing distance


