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Abstract—In the context of virtualized-reality-based tele- reported on VR navigation for tele-micromanipulation [],
micromanipulation, this paper presents a visual calibraton and previous methods did not consider the crucial stage
technique for an optical microscope coupled to a CCD camera. of camera/microscope calibration in order to determine the

The accuracy and flexibility of the proposed automatic virtual . .
calibration method, based on Parallel Single-Plane propdies, correspondence between 3D world coordinates and 2-D dptica

are outlined. In contrast to standard approaches, a 3D virtal Microscope/camera coordinates.
calibration pattern is constructed using the micromanipulator A number of 3D micromanipulation approaches have been

tip with subpixel-order localization in the image frame. The jnvestigated. Systematic methods based on 3D high-poecisi
proposed procedure leads to a linear system whose solution micromanipulator position/orientation sensors to calierthe

provides directly both the intrinsic and extrinsic parameters . o . .
of the geometrical model. Computer simulations and real da relative 3D position and orientation between the tool and

have been used to test the proposed technique, and promisingth€ optical microscope/camera have been proposed. However
results have been obtained. Based on the proposed calibrati calibration accuracy is highly dependent on the accuracy of
techniques, a 3D virtual microenvironment of the workspaceis mjicromanipulator kinematics [7] and on the measurement
reconstructed through the real-time imaging of two perpendcular system used [8]. Moreover, calibration accuracy may deteri

optical microscopes. Our method provides a flexible, easyt t It of th | def i ibrati d .
use technical alternative to the classical techniques useth rate as a resuft of thermal aetormation, vibration and \&o

micromanipulation systems. positioning errors [9].
In classical camera calibration methods [10],[11] a calibr

tion pattern is used where the geometry of the 3D space is
known with high precision. At a micro scale it is difficult
to find a reliable micrometer-sized 3D calibration struetur
. INTRODUCTION containing nanomarkers that serve as well-distinguisheeft

In the field of microtechnologies, optical microscopes amrence points for the calibration of large 3D depths of field.
the key sensor device for visually based micromanipul&uch a structure must include a 3D pattern with textures
tion systems where vision feedback is required for guidanfmatching is based on correlation techniques), non-reeeti
manipulation strategies. Practical visual servoing eXampmotifs (to avoid ambiguity problems during matching) and
can be found in a large variety of constrained and variabfieatures occurring at different depths (error-prone 3mnec
operating microenvironments such as vision feedback nsitruction). Different microfabricated calibration patte can
croassembly [1], vision servoing of biological injecticasks be used: by printing arrays of black dots uniformly disttéu
[2] or microscope-assisted guided surgical interventif8js over a microscopic area [12], by using engraving techniques
Nevertheless real-time sensor feedback provided by thieabpt based on optical lithography [16],[14], or by using a water
microscope is not always sufficient. As the image of tha@rop covered with nickel filings [15]. These systems allowyve
microscope is two-dimensional, it is difficult to manip@at high-precision patterning, but lack operational flextjlsince
the microobject in the 3D space because depth of field tise calibration target must be painstakingly installemioged
small and the field of view is narrow. To improve microwith each change in magnification (modification of the optica
manipulation we have proposed a new camera/microscdpbe lens length or optical objective). Furthermore, st
calibration for three-dimensional viewpoint selectiohy#der ing the micromanipulator can lead to positional errors, and
virtual reality (VR). One major problem is the full regidien attention must be paid to thermal deformations.
of the 3D reconstructed world (virtual scene) and the 3D A promising solution is to construct 3D virtual calibra-
micromanipulator positions (real scene). Few works hawmnbetion patterns automatically, using the micromanipulatod-e

Index Terms— Camera/Microscope Calibration, Telemicroma-
nipulation, Virtual Pattern, Virtual Reality



. . . . ‘virtual' i calibration
effector positions as reference points. At the microscait e ane target plane

et al. [17] were the first to propose a 2-D automatic AFM tip
center position calibration using tapping mode AFM imaging
As extension of this method, a 3D calibration technique gisin
a glass pipette tip has been proposed by Kawajal. [18]
where the manipulator tip is calibrated to a sub-micron prde
of accuracy by illuminating it with an optical fiber. Howeyer
the accuracy and robustness of pipette tip detection iglgrea
influenced by the microscope’s lighting environment.

In this study we construct a 3D virtual target by positioning
a piezoresistive Atomic Force Microscope cantilever (&am
hereafterAFM-tip) with its tip used as end-effector and force
sensor. An optical microscope coupled to a CCD cameraFig. 1. Microscope pinhole model
used as the vision sensor. The AFM-tip is connected to the
micromanipulator and is randomly positioned within the 3D
working area of the observation frame in the microscope’s
focal plane. The successive measurements of precise 3D
positions of the AFM-tip in the current view constitutes a 1 T2 T3 Ty
virtual calibration pattern. The main contribution of tipiaper, = | T2t T2 T2 and t=| T,
which is a deeper study of the work presented in [19], is 31 T3z T33 T.
to compare the calibration algorithm and its experimental R is a rotation matrix with three degrees of freedom, tisd
evaluation with Tsai's well-known existing algorithms [10 3 translation vector also with three degrees of freedoms&he
Moreover, since only single-plane calibration methodslean six degrees of freedom are known as #xrinsic parameters
Used, we propose a modified version of Zhang’S algorltha"f the microgcope/camera 0ptica| model.
[11] which yields both intrinsic and extrinsic parametens i \we use the notatiof to denote a vector in homogenous
one computational step using the micromanipulator tip@enicoordinates, i.e. if: = [a,5]” then = [a, b, 1]7.
positions. Our method avoids the singularities in the foent By perspective projection, the relationship betwé8n M
parallel optical microscope configuration that are a featfr and the image point®)p, = [u,v,1]7 in R; is
Tsai's algorithms.

objective optical
center plane

The remainder of this paper is as follows. In Section Il U ko ftot Sk ug Xo
we present the microscope calibration framework. Sectibn | s| v | = 0 ky frot o Yo (2)
introduces the proposed 3D calibration methodology based 1 0 0 1 Z

on a modified Zhang’s algorithm combined with the virtual
pattern. Section IV provides experimental calibrationutess
applied to the 3D reconstruction of a micromanipulatiorktas
Finally, Section V discusses the virtual calibration perfo
mances compared to the main existing camera/microsc
optical calibration methods.

where s is an arbitrary scale factor anfl,; = fu + fob-

The parameters,, k,, sk, uo, vo, fu and f,, are known

as theintrinsic parameters of the microscope/camera optical
8de| and represent respectively the two projection gaiires,
ewness, the coordinates of the principal point, the aptic

tube length and the exact focal length. Taking into account

the radial lens distorsion of the microscope/camera system

Il. MICROSCOPECALIBRATION FRAMEWORK and its center as the principal point, the distorted imagetpo
A. Microscope/Camera Optical Model (B)p, = [ua,va, 1]" can be expressed as
Modern research microscopes are usually equipped with g = u+ (u—uo)(ks r2 + kg rt)
infinity-corrected objectives that avoid projecting théeime- vi = v (v —o)(kr 12+ ky 1) )

diate image directly onto the intermediate image plane.[12]

Light emerging from these objectives is focused to infirstyg wherek; andk, are the coefficients of the radial distorsion
a second lens, known as a tube lens, creates the image a@fdr* = u;, +v;, With (un,v,) the normalized distortion-free
focal plane and projects it onto the sensor plane (a CCD arrdijiage coordinates.

where a real image is formed. For the purposes of geometricallhe main constraint in the optical microscopy calibration
calibration, the microscope model is similar to the pinkolds the low depth of field of the objectives. This implies

camera model [20] as shown in Fig.1. that multiple parallel calibration planes perpendiculartiie
A 3D point in the frameR,, is defined by the coordinateoptical axis and located at varying depths cannot be applied
vector )M = [X,Y, Z]T. In Ry, the 3D point(Fo)M = in microscope calibration. Moreover, rotating the calitma
[Xo, Yo, Zo])T is defined by pattern relative to the image plane will result in a blurred
image, making accurate geometry extraction impossibfeesi
(RoO)M = R.(Rw)M + t 1) the calibration plane cannot be exactly parallel to the ienag

plane, we consider a near-parallel approximatiess ¢ = 1,
with sinx 2 x) leading to the following simplified rotation matrix



x—1y—z piezoelectric positioning stage is very precise (closed-

1 T2 T3 co —sa caf+ say loop control) with a hanometer positioning accuracy.
o1 Trea Tes | = | sa  ca  saf —cay (4)

Vertical
T31 32 33 76 Y 1 displacement

wherecx = cosx and «, 3, v represent the Euler angles. Laterat'acr;ggrm" < -

. . . . P i
Finally, the reduced parametric microscope/camera dptica et
model is

i 4
u ca —sa Ty X ;
s| v |=A] sa ca Ty Y (5)
1 -3 ¥ T, 1
Wh ere Frontal calibration
target
fi sk uo
A = 0 fo wo (6) Fig. 2. Schematic calibration target construction usingplization of the

0 0 1 AFM-tip positions.

with fi = ku(fu + fo) and fo = ku(fu + for). The o o
magnification of the microscope/camera system is defined agln order to recover the position of the AFM-tip with high
accuracy, we choose the image normalized correlation tech-

M= Job + fu . @ nigue [20] which is fast, invariant to linear radiometricatiyes
T, and can be implemented in a context of Kalman filtering
(Gaussian noise assumptions) [23] or particle filteringnéno
B. High-Accuracy Target Construction Gaussian noise assumptions) [24]. Methods such as wavelet

In addition to the optical constraint, tele-micromanigisia decomposition may be used to improve the tracking precision
systems are generally characterized by limited manimratiwith @ multi-resolution and auto-focusing approach [25}jeT
space. The use of the conventional calibration targey,( approach we adopted uses a reference template of image
printed by lithography pattern) seems impractical, sirfoe tdata M (u,v) and a test imagd(m,n). The correlation is
pattern must be manipulated within a confined space bef&@Tied out by comparing a template image to all sub-parts
and after each calibration step. As stated in the introdngti of the corresponding image region at the pixel level. The
in order to realize accurate measurements and to achié@relation represents the similarity between the patterd
good calibration results, particular care has to be taken e corresponding region. The point where the correlation
the way the calibration target is constructed, and also faches a local minimum value is considered to be the
the way the coordinates of calibration points are measurdgatching target point. As stated earlier, in order to make
Since using a conventional calibration target is not peatti the correlation insensitive to global luminosity variatsothe
in the micromanipulation case, we have chosen to carfNprmalized Correlation Coefficient [20] is used:
out the calibration pattern with the micromanipulator. The
target (AFM-tip) was mounted on the micromanipulator’s-end Youw M(u,v) - I(m+u,n+v)
effector whose position is controlled by the calibrationdule NCC = : 2 2
[4]. The role of this component is to generate successive \/| Z“’UM (u,v) - ZW’I (m +u,n +v)
positions to construct the virtual target by taking into@att  The similarity measurement is robust to partial visual obje
the various objects (microspheres and dust particles) twhigcclusions and in practice provides stable detection t®sul
constitute the manipulated scene. The generated positiasts [26]. Using the correlation approach to locate a targesimse,
be: the locationsm and n return integer values. Assuming that

« in the same plane, because of the optical constraints; the correlation surface is relatively smooth, it is possibl

« randomly positioned in the scene to guarantee the it interpolate between sample values to estimate a subpixel

dependence of the nonlinear equations involved in thecalization of the target. We propose a method using a three
calibration algorithm. dimensional paraboloid surface that fits the set of norredliz

The pattern construction procedure is as follows: correlation data points. Once the integral location is thuhe

1) the image processing module first locates the variofight neighbors on the correlation surface are also cordpute
objects present in the scene in order to fitz(m,n) a generalized equation defined by

2) the configuration-space (CS) of the manipulated scene
is then computed according to the geometry of the
obstacles and the AFM-tip ; For several image pointsn;, n;), and stacking all equations

3) finally, the calibration module generates several randqmith a minimum of six points) expressed by (9), we obtain a
positions in the CS-free (see Fig. 2). linear system

The spatial position of the AFM-tip is determined from the

position of the micromanipulator on the assumption that the Zm = b. (20)

. (8)

z=am?®+bn®+cmn+dm+en+ f. 9)



The closed-form solution of (10) can be obtained by a least-1) Recovering intrinsic parameters As stated earlierH
squares regression method using a singular value decompissefined up to a scale factor. This homography between the
tion (SVD) [27] of Z. Once the coefficients of the surfaceobject plane and the image plane can be estimated using the
are known, the maximum of the paraboloid surface functi®8D coordinates of the micromanipulator and the correspuandi
gives the optimal subpixel coordinates. This algorithm thes image points. A minimum of six points are necessary to obtain
advantage of achieving high accuracy without the need farsolution [30]. A random sampling and consensus (RANSAC)

large magnification optics. algorithm [31] is used to eliminate outlying data pointsttha
come from tracking errors and contaminate the estimation
I1l. PROPOSEDCALIBRATION METHODOLOGY process.

. ith H .
As stated before, optical principles dictate that for agitic Let h; be the:™ column inH. From (11), we have:

microscopes, the object plane must be parallel or very yearl
parallel to the image plane. However, existing methods do Al e hs J=Afn r t]. (14)

not work well with calibration patterns that are parallelte where \ is an arbitrary scalar. The matri® = A~ TA-1
CCD sensor. For example, Tsai's algorithm [10],[28] regsir represents the image of the absolute conic [32]. From only
that the calibration pattern has to be tilted at least 30e&Egr one image, we can solve both intrinsic paramejgrand f,
relative to the image plane. In the parallel case this allgori (imposing the skew constraintg = 0, and assuming, and

is singular [22]. To take this into account, the basic idetbis v, are known and located in the middle of the image and are
simplify the entire calibration model by assuming small langtherefore image points expressed R.f). ¢, From (14), we also
approximations to the pitch and yaw angles of the rotatidraver; = A A='h; andr, = A A~'h,. Consequently we
matrix. When these angles become larger, the error due to theain

linear approximation becomes more significant. On the other

hand, methods based on several planar calibration patterns rfrr=Xhl' Bh =1 (15)

like Zhang's algorithm use the concept of thlwmography
transformation[11],[29]. Single image calibration is possible,
but it reduces the number of intrinsic parameters to be dgolve
In this section, a calibration algorithm based on Zhang's
procedure [11], modified for the parallel case, is proposed f rfry=X2h] Bhy=0. a7)
optical microscope calibration.

rfry=Xhl Bhy=1 (16)

Sincer; andr, are orthonormal, we have:

A. Proposed Modification to Zhang’s Method h” B hy =hT Bh, —hl Bhy,=0. (18)

Starting from (5), an object point is related to the corre-

N ! ) Th [ati I t | ly t rametgis
sponding image point by a homograpHl defined as ese relations aflow us 1o solve only two pa gis (

and f5); in order to recover the parameterit is necessary
to add another constraint. From (11), we can introduce an
s.(Bp, =H.(FoM with H = A[r o t]. (11) additional constraint expressed as

wherer; is thei'” column of the rotation matriR. N = 1 . (19)
The homography is a linear transformation which maps the [|A=1hy||
image plane onto the world object plane, and it is clear thatafter some developments, we obtain the following expres-
the 3 x 3 matrix H is defined up to a scale factor. sion

The two projection gains are defined as follows

A=1 h 2 h 21 2 20
ko = SR and k, = dy (12) /\/( 11/f1)? + (ha1/ f2)? + h}, (20)

v _ _ whereh,;; are line-column elements of the matiX.
whered, andd, are the effective center-to-center distances Finally, the previous equation can be written as follows:
between the camera’s sensor elements in«thend v direc-
tions; N..,, is the number of sensor elements in thdirection; hi,  h3, 2 \2
Ny, is the number of pixels in a line as sampled by computer M, M,

and s, is the uncertainty image scale factor. The tefmis where M; = £ and M, = £ are the magnifications

defined as the ratio between the aspect ratio of the sensag %rocgespon ding regpectively to théan dv axes

and the aspect ratio of the frame buffer. It can be expresseé y adding this constraint to (18), we obtain a constrained

as follows system enabling us to recover the two magnification parame-
CcCD, Nys ters M, and M,, along with the scale factoh. The final
z = (CCDy> / (ny) (13) system can be expressed as follows:

whereCCD, andCCD,, are the dimensions of the sensing { hithis ooy By hsnho } { 1 ] [ 0 }
=|0|.(@2

area in they andv directions, andV,, is the number of pixels h2, —h3, h3, —hZ, h% —h3,
on the frame grabber in the direction. e h3, h3;



from a practical point of view, to rely on this assumption. In
¢From (7) the total focal length of the tube lens and th@actice, we choose a minimum @fl calibration points for

total focal length of microscope can be extracted: noise robustness evaluation, as shown in Fig. 5, 6, 7, 8, and
. The estimation of the magnification (Fig. 5) afid (Fig.
fo=Mi.for = 55.Ms.fop (23) 8) gives better results than Tsai's method. The explanation

) o ) for this lies in our assumption that the object plane and
2) Recovering extrinsic parameter@nceA is known, the i a46 plane are nearly parallel. In this case the homography
extrinsic parameters for each image can be computed. From, < -mation performs well, since the magnification &hd
(11), we have: are dominant parameters. On the other hahd(Fig. 6) and

_ T, (Fig. 7), defined as small parameters, are both estimated

= tan[(Mqh Msh Y

g _ iriha?[( thn)/(Mah)] in the same way. It will also be noticed that is better

N = )\h323 estimated using our algorithm (Fig. ), since the other angle
B 24

T, = hi/M (24) are neglected.

% _ };3:%\;? B. Tests under real experimental conditions

Our experimental setup is shown in Fig. 11. Key compo-
where M = (M, + M3)/2 and h;; is the element ol nents of the setup include the following.
located at the'" line and at thej*" column of the matrix. « Frontal microscope: Mitutoyo FS70Z with three objec-
3) Recovering distortion parameterShe strategy for es- tives mounted on a Wentworth probe station [21].
timating k; and k; is to calculate them after recovering the , ccp camera: Chugai Boyeki FC-55-11 module connected
other parameters using the techniques described abovehwhi 5 5 Sony sensor with00 by 582 sensing elements and
gives the ideal pixel coordinatés, v). Eq. (3) can be set as cell size 0f9.8 by 6.3um;

a linear system as proposed in [11] to estimateand k2., | ateral microscope: A TIMM-150 microscope with mag-
Finally, a nonlinear refinement through maximum likelihood  pification range from "0.1” to "150”. The CCD camera is
inference is done using the Levenberg-Marquardt Algorithm  jntegrated and has the following characteristic$d) by

[33] on the following nonlinear criterion: 600 sensor elements and cell size ©8 by 4.7um;
N o Frame grabber: A mvDELTA Matrix vision frame grab-
i 2 N2 ber, with 768 by 576 pixels and pixel frequency of
J m{}an[(uzm Ud) + (vlm ’Ud) ] (25)

14.750 M H z (to obtain square pixels);

« Micromanipulator: A M-111.1 from Polytec Pl with an
accuracy of0.05um and repeatability of).1um with a
piezoresistive AFM-tip effector.

i=1

Wlth Q = [kua k'm ftota )‘7 Up, Vo, kh kQ] and Wiy Vim the
real (observed) image coordinates.

V. EXPERIMENTAL RESULTS Frontal
. . Microscope p /"'4 7
Several tests have been carried out in order to measure the Y

accuracy of the proposed technique. These tests are based on /

camera/microscope simulations and experimental datanx co : b

parison with Tsai's basic technique [10],[12] is also presd et \ o I _

in order to evaluate the gain in accuracy. \ £ W 7
4-‘ \ \ i "" 3 b,

A. Noise Robustness ol "M%

The simulated camera has the following properties:= PAAPEN

384, vo = 288, image resolution768 x 576 pixels, the

microscope has an objective focal lengthfgf = 100000.m

and an optical tube focal length ¢f; = 200000um. The Fig. 11. Experimental setup.

calibration target consists of a set of 100 points randomly

positioned along the calibration plane nearly parallelie t The microscope calibration is a two-stage technique. The

CCD sensor. Gaussian noise with zero mean error @ndfirst involves generating the data for the calibration alhons

standard deviation (noise level) is added to the projecteth two controller and image processing modules. The con-

points. For each noise level, this operation is performedt@ller module generates a random sequence of end-effector

hundred times, and the average is taken as the result. positions with a precision df.1.m while avoiding obstacles
Fig. 3 represents the mean reprojection error with respect(tnicrospheres or dust particles). For each given positioa,

the noise level. It is straightforward that our algorithnves image processing module digitizes and computes the image

better results than Tsai's method. Similar results can lea sén order to obtain the subpixel position of the AFM-tip. The

in Fig. 4 for several numbers of points in the pattern. Howeveaccuracy of the subpixel estimation is 1/16 of a pixel, which

the curves tend to fuse together when considering a largiees 0.6125um in the z direction and0.3937um in the y

number of points ¥ 1000 points), but it would be unrealistic, direction.
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It can be seen from Table | that our proposed algorithm giv&s Application to 3D microenvironment reconstruction for
better results on the 3D reprojection error than Tsai's weth virtualized tele-micromanipulation
It should also be noticed that our method can estimate bot
intrinsic and extrinsic parameters from the homographyrimat
defined in (11).

hThe aim of microscope calibration is to allow faithful
registration of a 3D real-time reconstruction environmfemt
virtualized tele-micromanipulation. It formulates thertual-
ized reality of the microenvironment through two sources
C. Execution time of information: (i) from real images provided by optical

The total execution time of the calibration procedure d&Microscopy and (i) from synthetic views generated by a 3D
pends mainly on the complexity of the virtual pattern camstr M0de! of the remote microworld. The image scene is made
tion and on the execution time of the calibration algorithn{P ©f three types of objects, i.e., substrate, microspheres
Since the virtual pattern is constructed incrementallyg tff"d dust particles. The 3D reconstruction is done by the
construction time is directly proportional to the number of'ages returned from both the frontal and lateral microesop

points. The total time for one calibration poift,, is defined The main steps of 3D micro-environment reconstruction are
as the summation shown in the algorithm (1). Using our calibration algorithm

we estimate the homography for each microscdpeH for
the frontal microscope (Eq. (27)) andH for the lateral

Toor = Tap + Tas + Tic = 0.827s microscope (Eq. (28)).

(26)

where Ty, is the displacement timel;; the stabilization
time and7;. the localization time. In practice, several tests

. X ! up hyy Fhyy Epygg X
indicate that for a number of points varying between betwieen s| vp | = Fhy Elhgy  (Flpyg Y (27)
to 50, the computation time is approximately constafit,{ ~ 1 Fhgr Fhza Fhgy 1

0.8 s).



Algorithm 1 3D Microenvironment Reconstruction
1: Automatic AFM-Tip and substrate contact detection using
(28) force feedback
2: Objects localization using image processing module

) ) ) 3: End-effector (AFM-Tip) localization using image process-
Each homography gives a linear mapping between the mi- ing module

croscope image plane and its world focused plane. Combiniﬁgquire: Frontal focused plane

(27) and (28) gives a linear syste®@M = 0. The solution . rrontal virtual pattern construction
vectorM of the system is the right null-space 6fwhich can ¢ ¢, Eqch frontal pattern poirdo

be obtained from its Singular Value Decomposition [27]c8iN gy re: Free-configuration-space

image point coordinates are corrupted by noise. This peycesg. AFM-Tip image tracking using template matching

known aslinear triangulation allows the spatial position of . 54 AFM-Tip pose from micromanipulator sensors
each object in theX — Y plane as well as the localization of 4. onq for

the AFM-tip in theY — Z plane of the reference franfé, t0 4. process frontal calibration

be retrieved. Since image coordinates are corrupted bﬁnc’il-seequire: Lateral focused plane

a nonlinear refinement through maximum likelihood infeeenc, ;. | ateral virtual pattern construction

can be done using the Levenberg-Marquardt Algorithm [33],. {5, Each lateral pattern poirto

by minimizing the 2-D reprojection error starting from thg=p,q re- Free-configuration-space
initial estimate ofM. When the spheres are moved to or re;,,. AFM-Tip image tracking using template matching
moved from different locations, a regular update is perfedm .. 5ot AFM-Tip pose from micromanipulator sensors
at the image processing frequency. In order to reduce the onq for

computation time, we consider that the differentimpusitee ,c. process lateral calibration

static in the environment. The maximum computation timey. ¢ Each input framedo

including the image processing step, the 3D reconstructiqn. Microspheres tracking in frontal view

and the update of scene algorithms, is abBBll7ms on 5 AFM-Tip tracking in frontal and lateral views

a Pentium 1V-2.66 GHz CPU with 512 Mo DDRAM on a9 Get AFM-Tip pose from micromanipulator sensors

Windows 2000 platform. The 3D graphic rendering is basqdaqire:  Calibration parameters, dust localization
on the OPEN-INVENTOR C++ graphic library on a Win32,,. " pocess 3D reconstruction

platform; this library provides powerful functions for gaical  ,;.  Reconstruction algorithm update (aroudi.s)
immersion and software architecture. Once the micro-wisrld ,,. o4 for

reconstructed, we can obtain perspective views of thealirtu
scene from any viewpoint (see Fig. 12).

vr (Dhy Dhyy  Dhgg

ur, Dy Dhyy Wpgg
n _
1 (hgy  Lhgy (L pgs

Y
Z
1

Mt PRl intrinsic and extrinsic parameters of the parametric cam-
era/optical model. Both computer simulations and real data
: have been used to test the proposed technique, and confident
= results have been obtained.

Tables II-1ll present a comparison of some reference meth-
ods for optical camera/microscope calibration. It can bense
that most of them (the exception being a method presented in
[?]) use a calibration pattern combined with Tsai’'s algorithm
to estimate the parameters of an explicit camera/micrascop
model. Two main categories can be considered; methods with
a microscopic real check pattern [3][12] and methods with

Omtaeled Micmiphia: a virtual calibration pattern [17][18]. The main drawbadk o

Fig. 12. Graphical user interface (GUI) integrating thel igging (right- the first category is that in the near-parallel case thetitera
hand side) provided by the optical microscope and the reamted virtual —algorithms require a very good initial estimate of paramsgte
microenvironment (left-hand side) during real-time AFMcndimanipulation. phecause of numerical stability problems. Moreover, reddyi
small amounts of noise in the data may lead to large di-
vergence and instabilitye(g.[?][12]). Nonlinear optimization
V. DISCUSSION AND CONCLUSION algorithms should be used to achieve a stable and globally
In this paper we have developed a new 3D flexible techniqaenvergent iteration for intrinsic parameter determioraf{il2]
to calibrate an optical microscope mounted on a CCD camerdhe second category also poses a particular problem for
for virtualized-reality-based tele-micromanipulatioppéica- calibration: during construction of the virtual pattermet
tions. Our method does not require a physical calibratideature-tracking procedure is a significant source of eramd
pattern, but only a tracking of the micromanipulator pasi§ needs to be handled carefully. This has led the authors in
and its corresponding image points. The proposed caldrati17] to use several hundred calibration points to minimize
algorithm is based on Zhang’s method using single and ghrahe 3D reprojection error, thus increasing considerably th
calibration plane constraints. It provides, in one stepthbooverall execution time of the calibration procedure. Tane,

3D Recomstrocted environment AFM mampulator




to minimize the impact of the tracking stage errors, out3]
algorithm needs only 24 points to construct automaticdiby t

. ) oo [14]
virtual pattern and to achieve very good calibration result
0.234 um with a x2 objective for the 3D mean reprojection
error. Moreover, our virtual pattern does not need to have[las]
regular-spaced design, and positional outliers are autoatigt
rejected using the RANSAC procedure. Compared to [17],
similar positioning precision can be achieved for highecno
scope objectives; for example, a nominal positioning amcyr
of 1nm can be achieved with &40 microscope objective.
Nevertheless, the nonlinear least-squares error mintioizan  [17]
combination with with the RANSAC outliers rejection stage
reduces the influence of the various positioning errors. This]
fronto-parallel configuration assumption seems to be a good
compromise, since the yaw and pitch angles are very sm[qg]
and therefore roughly estimated. This assumption alsodspee
up the algorithm (0.827 ms per pattern point) and allows a
direct computation of both intrinsic (including distorsieo- |5q;
efficients) and extrinsic parameters of the camera/miosc
geometrical model. Our approach is an fast, robust, higﬂgizl]
precision alternative to classical microscope calibragtgo-
rithms [12][17].

[16]

(23]
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TABLE |

PARAMETER CALCULATION FOR DIFFERENT POSITIONS OF THE OBJEGVE AND TUBE LENS. 7%, Ty Emean, Emaz AND 0 ARE IN um, T IN m AND «

IN RADIAN .
objective x 2 objective x 20
Tube lensx 1 Tube lensx2 Tube lensx 1 Tube lensx2
Proposed [ Tsai Proposed [ Tsai Proposed |  Tsai Proposed [ Tsali
M 2.143 2.146 4.041 4.045 20.852 20.843 39.1353 39.136
Tx -554.03 -554.52 -280.84 -281.47 -72.12 -71.92 -38.53 -38.11
Ty 324.12 322.25 97.76 97.44 -28.24 -28.68 -14.95 -15.55
T, 0.14633 0.14645 0.12477 0.12463 0.104785 | 0.104744| 0.10253 | 0.10253
o 0.013 0.022 1.54E-03 | 6.66E-02 | 3.48E-06 | 2.67E-03 | 2.39E-09 | 2.56E-04
k1 -3.33E-16 | -4.43E-11| -3.3E-16 | -4.89E-13 2.77E-9 1.55E-08 | -4.29E-08 | 6.8E-11
ko 6.33E-13 / 4.63E-15 / -10.92E-12 / 5.79E-20 /
Emean 0.234 0.667 | 8.34E-03 | 521E-02 | 2.55E-03 | 3.33E-02| 7.70E-04 | 8.64E-03
o 0.156 0.274 408E-3 | 1.08E-02 | 2.54E-03 | 3.23E-02 | 4.46E-05 | 4.67E-03
Emas 1.540 1.326 0.126 0.311 2.56E-02 | 1.78E-02 | 9.49E-03 | 3.55E-03
TABLE Il

COMPARISON OF METHODS USING A REAL CALIBRATION PATTERN

Calibration Method Pattern Method Pattern 3D reprojection | Execution
size error time
Zhou et al.[12] Tsai Microfabricated square arrays 10 um 0.672um not
20x objective | available
Edwards et al.[3] Tsal with Microscopic Real check pattern| 60 x 45 mm 0.3mm not
zoom/focus estimatior available
Seyfried et al.p] Tsai Microscopic Real circular pattern 420 x 300 mm 8 nm not
available
TABLE IlI
METHODS COMPARISON USING A VIRTUAL CALIBRATION PATTERN
Calibration Method Pattern Method Positioning 3D reprojection Execution
precision error time
Proposed Modified Virtual plane with 100 nm 0.234um 0.827s
Zhang NCC Correlation and with x2 objective | per pattern point
template matching
Kawaji et al.[18] Modified Virtual with Local lllumination | 0.12 um 0.281pum not
Tsai glass pipette tip edge detection with x 10 objective available
Sitti et al.[17] Tsai Virtual pattern through 10 nm 0.330um 3s for 5um
1 pm particle tracking with x80 objective | pushing distance




