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Visual perception for walking machines needs to handle more degrees of freedom than
for wheeled robots. For humanoids, four or six legged robots, camera motion is a 6-
D one instead of 3-D or planar motions. Classical 3-D reconstruction methods cannot
be applied directly because explicit sensor motion is needed. In this paper, we propose
an algorithm for 3-D reconstruction of an unstructured environment using a motion-
free uncalibrated single camera. Computer vision techniques are employed to obtain an
incremental geometrical reconstruction of the environment and therefore using vision
as a sensor for robots control tasks like navigation, obstacle avoidance, manipulation,
tracking, etc. and 3-D model acquisition. The main contribution is that the off-line 3-D
reconstruction problem is considered as a points trajectories search through the video
stream. The algorithm takes into account the temporal aspect of the sequence of images
in order to have an analytical expression of the geometrical locus of the points trajecto-
ries through the sequence of images. The approach is a generalization of the Desargues
Theorem applied to multiple views taken from nearby viewpoints. Experiments on both
synthetic and real image sequences show the simplicity and the efficiency of the proposed
method. The method presented is that paper provides an alternative technical solution,
easy to use, flexible in the context of robotic applications and can significantly improve
the 3-D estimation accuracy.

Keywords: Computer Vision, Multi-views 3-D Reconstruction, Desargues Theorem, Im-
ages Sequence Analysis.

1. Introduction

3-D reconstruction from images is one of the main issues in computer vision. The
use of video sensors provides both texture information at fine horizontal and vertical
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resolution, and 3-D environment structure estimation from camera motion, which
in turn enables navigation and obstacle avoidance in humanoids applications.

Basically, two main approaches have been investigated to solve the problem of
structure from motion : short range motion-based methods and long range motion-
based ones. In the first category, images are considered at distant time instants and
a large camera displacement is generally performed to obtain accurate results. The
images can be taken two by two to obtain the so-called Stereovision Approach1,2

where the fundamental matrix can be used to constrain the matching and to make
a projective reconstruction from disparity maps, three by three for the Trifocal
Approach3, and finally four by four for the Quadrifocal Approach4. These matching
tensor techniques are essentially equivalent to implicit 3-D reconstruction methods
and have two main drawbacks : the calibration procedure, which determines the
intrinsic parameters of the sensor and its pose and orientation, and the inter-frame
correspondence or features matching stage. If the first one can be solved5, the second
one is an ill-posed problem because hypothesis are made about the 3-D structure of
the scene to help the inter-frame matching and it can only be solved using heuristic
non linear optimization6.

In the second category of reconstruction algorithms, images are considered at
video rate (about 20-25 frames per second). Known techniques are Optical Flow7

where the inter-frame apparent motion is estimated and sometimes combined with
a measure of the camera velocity, Factorization-based Reconstruction8,9 for which
all the tracked image features are stacked in a matrix and solved by singular
value decomposition to recover both motion and structure matrices, Filter-design
Approach10,11,12,13 where both structure and motion are estimated if the 3-D rel-
ative velocity between the scene and the camera is assumed constant over time,
and finally Hybrid Approach14,15 based on the use of the camera velocity estimate
from odometry informations in the 3-D reconstruction process while relying on the
tracking of 2-D sparse image features which is often called Simultaneous Local-
ization and Mapping (SLAM). When there is no available odometric information,
some approaches2,13,16 are mainly based on 3D visual odometry, and use dense fea-
ture maps to get the position of the camera mounted on humanoid robots H-7 and
HRP-2. It is important to notice that for these methods, the matching stage is less
critical since the distance between two successive viewpoints is very small assuming
image acquisition at video rate. But the 3-D reconstruction stage is also a global
optimization problem mainly carried out on the re-projection error known as Bun-
dle Adjustment17,18, and a drift can appear from the accumulation of error during
acquisition time.

The proposed method in this paper, is based on the generalization of the De-
sargues Theorem19 using reference planes in an cluttered indoor environment. The
algorithm takes into account the temporal aspect of the video stream in order to
have an analytical expression of the geometrical locus of the points trajectories in
a common reference plane through the sequence. Concerning plane-based 3-D re-
construction, one can quote the work of 20,21,22 where a plane has to be known
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to estimate the motion and to constrain the 3-D reconstruction. Similar researches
have been carried out by 23 using the Desargues theorem. Although a non linear
optimization is used in our method to solve the 3-D reconstruction, the knowledge
of an analytical form of the trajectories and of some temporal invariants, allows to
simplify the matching stage24. Therefore the reconstruction quality is improved and
above all, local minima, which are a major problem in global optimization methods,
can be avoided.

The remainder of this paper is organized as follows. First we recall the geo-
metrical model of image formation and the Desargues theorem used in this paper.
In second we present the generalization of the Desargues Theorem for multi-view-
based sparse 3-D reconstruction. In third we give the simulations and experimental
results. We finally present the conclusion upon our work and further researches.

2. Preliminaries

2.1. The camera model

For the processing of the input images, the real camera have to be represented by a
mathematical model. For that purpose and using the high quality of modern cam-
eras, the imaging model considered here is the perspective projection model or pin-
hole camera model. From a mathematical point of view, the perspective projection5

is represented by the projection matrix P of size 3 × 4 which makes corresponding
to 3-D points in homogeneous coordinates X̃ = [X,Y, Z, 1]T the 2-D image points
x̃ = [u, v, 1]T :

λx̃ = PX̃ = K[R T ]X̃ (1)

The (3× 4) projection matrix P encapsulates the extrinsic parameters (camera
position as (3 × 1) vector T and orientation as (3 × 3) orthogonal matrix R) and
the intrinsic parameters in (3 × 3) matrix K by considering that only the focal
length f is unknown. The principal point x 0 = [x0, y0]T is assumed to have the
same coordinates as the image centre. It is also assumed square pixels, zero skew
and no distortions which is quite realistic for modern video cameras.

2.2. The Desargues configuration

The 3-D reconstruction algorithm presented in this paper is based on a geometrical
construction using the Desargues theorem which is on the basis of the projective
geometry. By considering the Fig. 1, it states that19 :

Theorem 1. Let [A,B, C] and [A1, B1, C1] be two triangles in the (projective)
plane. The lines (AA1), (BB1) and (CC1) intersect in a single point if and only if
the intersections of corresponding sides (AB, A1B1), (BC, B1C1), (CA, C1A1) lie
on a single line ∆.
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Fig. 1. Two triangles in Desargues configuration.
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Fig. 2. Two triangles in Desargues configuration in the 3-D case.

The theorem has a clear self duality and express the duality principle of the
projective geometry. This theorem, often used in 2D configuration, is also true in
the 3-D case. Let the scene be composed with three camera represented by their
image planes and their optical centers C1, C2 and C3, and a reference plane Π (see
Fig. 2).

Let M be a 3-D point in the observed scene. The projections of the camera opti-
cal centers Ci for i = 1, . . . , 3 through M on the reference plane Π give respectively
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the points M i
Π for i = 1, . . . , 3. The two triangles [C1, C2, C3] and [M1

Π, M2
Π,M3

Π]
are in a Desargues configuration :

• The lines (CiM
i
Π) for i = 1, . . . , 3 have for intersection the point M .

• The couples of lines (CiCj) et (M i
ΠM j

Π) for i, j = 1, . . . , 3 and i 6= j intersect
respectively in e1, e2 and e3 which lie on the same line ∆ on the reference
plane Π.

Starting from that minimum configuration the next section describes the main
step of the geometrical construction to find out the 3-D coordinates of the unknown
point M for three views of the scene.

2.3. 3-D reconstruction for three views

As we said previously, the two triangles [C1, C2, C3] and [TrM ] are in a Desargues
configuration through M . Let Pi and Pj be two points which not belong to the
reference plane Π (see Fig. 3). Let [Tri] and [Trj ] be another triangles in the plane
Π constructed like [TrM ] but through the reference points Pi and Pj .

By construction, the triangles [C1, C2, C3], [Tri] and [Trj ] are in a Desargues
configuration through Pi and Pj . It is easy to show that the triangles [TrM ], [Tri]
and [Trj ] are also in a Desargues configuration (see Fig. 2) because their correspond-
ing sides intersections lie on the same line ∆ (contained in Π). The intersection point
of the lines joining the corresponding vertices of the triangles [TrM ] and [Tri] is Oi

and for [TrM ] and [Trj ] it is Oj .
But the points Oi and Oj are also the intersections between the 3-D lines (MPi)

and (MPj) with the reference plane Π. Therefore the points Oi and Oj are invari-
ant compare to the positions and orientations of the cameras referenced by their
optical centers Ci for i = 1, . . . , 3 since all triangles of the scene are in Desargues
configuration.

Following that property, the two triangles [Tri] and [Trj ] are also in a Desargues
configuration and their vertices intersect in O, and that point is the intersection of
the 3-D line (reference line) (PiPj) with the reference plane Π. One more constraint
is that by construction, O, Oi and Oj belong to the same line (see Fig. 3).

In conclusion, the 3-D coordinates of the unknown point M can be found out
from the knowledge of the positions of the invariant points Oi and Oj in a reference
plane Π and from two reference points (Pi and Pj).

3. Generalization : images sequence of N views

The previous case (three views configuration) can be applied to N multiple views.
In this paper, images are considered at video rate therefore, the image flow can be
considered as continuous in time. In the presence of a reference plane (here Π), the
well-known linear plane-to-plane projective transformation can be used. The plane
detection can be carried out by the algorithm proposed by 25.
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Fig. 3. Desargues configurations for the 3-D reconstruction of M .

Starting from the projection matrix of the perspective camera model (e.g. Eq.
(1)), the 3-D points contained in the reference plane, for Z = 0 in the world reference
coordinate system, it is possible to define the plane-to-plane (image plane to scene
plane) transformation by its homography matrix H. The homography matrix can
be estimated using the proposed algorithm of 26.

The homographic trajectory x̃h(t) = [uh(t), vh(t), 1]T of the point to reconstruct
M̃ = [X,Y, Z, 1]T is obtained by applying the inverse homography transformation
to the image point trajectory :

λh(t)




uh(t)
vh(t)

1


 = H−1PM̃ =




1 0 α1(t) 0
0 1 α2(t) 0
0 0 α3(t) 1


 M̃ (2)

where the three parameters α1(t), α2(t) and α3(t) are rational functions of the
rotation matrix elements R and the translation vector T . λh(t) is an arbitrary scale
factor due to the use of homogenous coordinates, and t is the time variable.

It is important to see that the focal length has been simplified, reducing the
number of unknowns and permitting focus and de-focus during the image sequence
acquisition. The homographic trajectories of image points corresponding to the 3-D
points projected on the reference plane Π, are displayed in Fig. 4.

As we said previously, two 3-D reference points called P i = [Xi, Yi, Zi]T and
P j = [Xj , Yj , Zj ]T have to be known (eg. Fig. 3) to make the euclidean 3-D
reconstruction possible. Their homographic trajectories are respectively x i(t) =
[ui(t), vi(t)]T and x j(t) = [uj(t), vj(t)]T . The point M to be reconstructed is on the
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X

Y

O i

Oj

O

xh(t)

x i(t) x j(t)

Fig. 4. Three points homographic configuration. It is important to notice that the three points Ox

are invariants and aligned on the Desargues plane configuration.

3-D lines passing through the 3-D reference point Pi (or Pj) as it is shown in Fig.
3 and can be retrieved using the parametric equation of the 3-D lines (Pi, Oi) and
(Pj , Oj) :





X = Xi + λi(u0i −Xi) = Xj + λj(u0j −Xj)
Y = Yi + λi(v0i − Yi) = Yj + λj(v0j − Yj)
Z = Zi(1− λi) = Zj(1− λj)

(3)

The point with the coordinates O i = [u0i, v0i]T is the intersection point between
the 3-D line (M, Pi) and the plane Z = 0 (called Π). In the same manner, Oj =
[u0j , v0j ]T is the intersection point between the 3-D line (M, Pj) and the plane
Z = 0. The Desargues configuration gives Oi and Oj to be invariant beside the
camera motion. It can be seen that these two invariant points are only function of
the 3-D coordinates of the two reference points (Pi and Pj) and the point M to be
estimated :





u0i =
XiZ −XZi

Z − Zi
, v0i =

YiZ − Y Zi

Z − Zi

u0j =
XjZ −XZj

Z − Zj
, v0j =

YjZ − Y Zj

Z − Zj

(4)

Therefore, in a first time, the following proposition can be stated :

Proposition 1. If the homographic coordinates of Oi = [u0i, v0i]T and Oj =
[u0j , v0j ]T are known, it is possible to estimate the 3-D coordinates of M since it
is the intersection of the 3-D lines (Pi, Oi) and (Pj , Oj) transformed in the homo-
graphic plane.
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A first estimation of the invariant points Oi and Oj over the N images of the
sequence can be obtained by calculating the intersections of the lines (Mi, Oi) and
(Mj , Oj) projected in the homographic plane (see Fig. 4) :




vh(1)− vi(1) ui(1)− uh(1)
...

...
vh(N)− vi(N) ui(N)− uh(N)







u0i

v0i


 =




vh(1)ui(1)− uh(1)vi(1)
...

vh(N)ui(N)− uh(N)vi(N)


 (5)




vh(1)− vj(1) uj(1)− uh(1)
...

...
vh(N)− vj(N) uj(N)− uh(N)







u0j

v0j


 =




vh(1)uj(1)− uh(1)vj(1)
...

vh(N)uj(N)− uh(N)vj(N)


 (6)

By using Eq. (2) and by injecting in it Eq. (3), the homographic trajectory of
M becomes :





uh(t) =
ui(t)(1− λi) + λi

u0i

α3(t)Zi+1

1− λi
α3(t)Zi

α3(t)Zi+1

vh(t) =
vi(t)(1− λi) + λi

v0i

α3(t)Zi+1

1− λi
α3(t)Zi

α3(t)Zi+1

(7)

This couple of equations is still dependent to the temporal variable α3(t). The
two reference points Pi and Pj can be used to eliminate it. Setting back to the 3-D
world, the parametric equation of the 3-D line (Pi, Pj) can be considered in the
same manner as Eq. (3). The intersection point between the line (Pi, Pj) and the
plane Z = 0 (see Fig. 3) is O .

Since all parameters of the parametric equation of the 3-D line (Pi, Pj) are
known, they can be injected in Eq. (2) and after some simple algebraic manipula-
tions it is possible to express α1(t), α2(t) and α3(t) as functions of the homographic
trajectories x i(t) = [ui(t), vi(t)]T , x j(t) = [uj(t), vj(t)]T , the 3-D reference points
Pi, Pj and the parameters of the 3-D line (Pi, Pj).

Finally a new time-dependant homographic trajectory of the point M to re-
construct can be obtained using the new formulations of α1(t), α2(t) and α3(t) in
Eq. (7). From that point, three other geometrical constraints have to be taken into
account as depicted in Fig. 4 :

• the point xh(t) = [uh(t), vh(t)]T , homographic trajectory of M , is the in-
tersection of the 2D lines {(Oi, xi(t))∧ (Oj , xj(t))}, with ∧ the intersection
operator;

• the point Oi is the intersection between the 2D lines {(xh(t), xi(t))∧(xh(t+
∆t), xi(t + ∆t))} for two views taken at the instant time t and t + ∆t;

• and by the Desargues configuration, the points Oi, Oj and O are aligned.
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Using those intersection and alignment constraints into Eq. (7), one get the final
analytical homographic trajectory xh(t) = [uh(t), vh(t)]T of M as rational functions
of x i(t), x j(t) and Oj coordinates.

From the different homographic trajectories, two points are randomly selected
and used to have a first estimation of the coordinates of the two points Oi and
Oj using Eq. (5) and (6). Then the residuals are calculated using Eq. (8) in the
following non linear criterion traducing the geometric distance from an estimated
point ˆxh(t) to a curve point xh(t) over N images of the sequence :

J(uh(t), vh(t)) =
N−1∑
t=0

(uh(t)− ˆuh(t))2 + (vh(t)− ˆvh(t))2 (8)

with [ ˆuh(t), ˆvh(t)]T the estimate of [uh(t), vh(t)]T . From the LMeds estimator27,
the robust estimations of the points Oi et Oj can be obtained. The last step is to
estimate the value of λi or λj , to obtain the 3-D euclidean coordinates of M . After
some manipulations of Eq. (3), one obtains the following equation to get the value
of λi :

λi =
Zj(u0j − u0i)

Zi(u0j −Xj) + Zj(Xi − u0i)
(9)

Therefore using λi, u0i and v0i in Eq. (3) we can get the 3-D coordinates of the
unknown point M .

3.1. The 3-D reconstruction algorithm

The 3-D reconstruction algorithm developed in this paper can be summarized as
follows :

(1) For each image of the sequence,

• Extract point features like corners or SIFT points using the algorithms
presented in 28,29.

• Match the feature points from image motion30 between two frames of the
sequence of images.

• Calculate the homography matrix H using characteristic points in the
reference plane.

• Transform each tracked feature points using the homography through the
sequence to get the homographic trajectories.

(2) For each tracked feature point,

• Make m random draws on the homographic trajectories of xi(t), xj(t) and
xh(t) to get a first estimate of Ôi and Ôj by solving Eq. (5) and (6) for
each draw using for example a Singular Value Decomposition31.
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• Calculate the residual (Eq. (8)) and use the LMeds estimation algorithm
to get Oimin and Ojmin .

• Calculate λi (or λj) using Eq. (9).
• Estimate the 3-D coordinates of M using Eq. (3).

3.2. Singularities on camera motion and scene configuration

Some singularities can appear in the case of particular camera motions and scene
structures :

• If the camera motion is too weak compare to the dimension of the scene, there
will not have enough random draws for robust estimation stage and the invariant
points Oi and Oj will not be accurately estimated.

• If one of the reference point is on the same height (Zi = Z) as the the point to
estimate, the corresponding invariant point (Oi or Oj) will be rejected to infinity
and will give numerical instabilities. The solution is to select a reconstructed
3-D point as a new reference point to estimate the current unknown 3-D point.

3.3. Inter-frame features matching

The method proposed by24 uses Desargues configuration and properties to help
the matching process. Indeed, as we stated before, the point xh(t), homographic
trajectory of M , is the intersection of the 2D lines (Oi, xi(t)) and (Oj , xj(t)) where
Oi = (Pi, M) ∧Π and Oj = (Pj , M) ∧Π in the 3-D scene.
Therefore, the matching process can be considered as the search of the points pairs
Oi, Oj through the sequence which satisfy :





(xh(m), xi(m)) ∧ (xh(n), xi(n)) = Oi

∀m,n

(xh(m), xj(m)) ∧ (xh(n), xj(n)) = Oj

(10)

The matching algorithm extracts the xh(t) subsets that satisfy Eq. (10) by using
a vote method where every point in the reference plane votes for a triplet (θ, Hi, Hj)
using a multi-resolution approach. θ is the angle between the horizontal and the
line containing the points O, Oi and Oj (see Fig. 4), and Hi, Hj are the euclidean
distances from Oi, Oj to the horizontal line passing through O 24. The triplet having
the highest votes can be considered as subsets of corresponding points.

4. Simulations and Experimental Results

We present in this section the simulations and experimental results for the pro-
posed 3-D reconstruction algorithm using the Desargues Theorem Generalization.
Moreover the following hypothesis have to be considered : six known 3-D points are
always visible during the sequence, four coplanar points to calculate the plane-to-
plane homography and two known 3-D points, not contained in the reference plane,
used as reference points.
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4.1. Experiments on synthetic image sequences

A 3-D scene has been created with six known 3-D points and 100 unknown 3-D
points randomly distributed in a cube of size 400× 400× 200. The experiments on
synthetic images have been carried out using Matlab32 version 7.0.1. An example
of the camera motion is shown in Fig. 4.1.a. using the image point trajectories. The
camera is moving freely keeping the scene in its field of view. The 2-D homographic
trajectories corresponding to three selected points are presented in Fig. 4.1.b. .
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The algorithm has been run on the image sequence for several levels of noise
and the euclidean distances between 3-D real points and estimated ones are shown
in Fig. 5.
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Fig. 5. Euclidean distance (in mm) between 3-D real points and estimated 3-D points for four
levels of noise, from left to right and top to bottom : 2, 3, 4 and 5 pixels for the standard deviation
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These simulations confirm the robustness of the proposed algorithm compared to
noise level. The outliers are automatically rejected using using the LMeds estimation
scheme. Nevertheless, bad estimations are still appearing, due to the configuration
singularities as explained in Section 3.2.

4.2. Experiments on real image sequences

The first experimental system is composed of a digital camera Nikon D1. The Se-
quence 1 contains 147 images. The motion is complex enough with translations and
rotations but stays planar. 174 feature points have been detected on the first image
of the video (see Fig. 6.a.) using a combination of Harris corners and SIFT features.

a. Detected interest points b. Tracked reference points
on the first image

Fig. 6. Images of the 3-D scene presented in Sequence 1

Table 1. gives the 3-D estimations of the three points randomly selected in the
scene.

Table 1. Real and estimated coordinates
of the three points in the scene of Se-
quence 1.

Real point Estimated point
(in mm) (in mm)

X1 -28 -39.03
Y1 171 169.58
Z1 192 191.41

X2 187 191.48
Y2 -50 -48.27
Z2 97 97.96

X3 -62 -58.08
Y3 102 117.76
Z3 80 76.13

Let us point out that the reconstructed dimensions are correct but some coor-
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Fig. 7. Cloud of 3-D reconstructed points of the scene of Sequence 1. Legend : ’♦’ = known
coplanar points, ’◦’ = 3-D reference points, ’×’ = reconstructed points

dinates suffer from a lack of precision. The problem can be explained by the focus
of the camera where some image regions become blur and the tracking algorithm
is disrupted. Therefore the tracking window slides to a neighbor point while frame
to frame SIFT descriptors are still good. Therefore the feature points trajectories
become less precise through the sequence. On the other hand, if an estimated point
is on the height as the reference point, a singularity can appear as stated in section
3.2.

Although a drift appears from the features tracking, geometrical constraints like
coplanarity of the reconstructed shapes are still preserved.

Three other video sequences have be used to test the proposed algorithm. Two
sequences have been filmed by a digital camera JVC KY-F1030U giving 7 images
per seconds with a 1280 by 960 pixels of resolution. There are 166 images in the
Sequence 2 and Sequence 3 is composed by 200 images. The scenes in the two last
sequences are identical to Sequence 1 (coplanar points, reference points and same
geometrical structures), but the objects in it and the camera motion are changing.

A large number of feature points (about 1000 for Sequence 2 and 500 for Se-
quence 3) have been detected on the first image of each video (see Fig. 8.a. and
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Fig. 10.a.). Then the feature points have been tracked through image stream(about
330 points on the whole Sequence 2 and about 150 points on Sequence 3). The
trajectories of the reference points have been superimposed to the first image of
each sequence (see Fig. 8.b. and Fig. 10.b.).

a. Detected interest points b. Tracked reference points
on the first image

Fig. 8. Images of the scene used in Sequence 2
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Fig. 9. Sets of reconstructed 3-D points for the scene of Sequence 2. Legend : ’♦’ = known coplanar
points, ’◦’ = 3-D reference points, ’×’ = reconstructed points

Fig. 9 and 11 shows the cloud of 3-D points obtained with our 3-D reconstruc-
tion algorithm for four different viewpoints of the reconstructed scene. The different
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a. Detected interest points b. Tracked reference points
on the first image

Fig. 10. Images of the scene used in Sequence 3
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Fig. 11. Sets of reconstructed 3-D points for the scene of Sequence 3. Legend : ’♦’ = known
coplanar points, ’◦’ = 3-D reference points, ’×’ = reconstructed points.

objects of the scene and the dimensions have been well estimated. The coplanarity
constraint is well preserved, as it is possible to see for the CD box or the electronic
board. Taken as a whole, the 3-D positions of the sets associated to the various
objects of the scene are well reconstructed and only the points in a singular config-
uration (same height or far from the reference points) are not well estimated.

In Sequence 3, the number of tracked points is less important, but the camera
motion is more complex than the one in the second sequence. That last point insure
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a good convergence of the algorithm and therefore a good 3-D reconstruction of the
scene.

The last video, Sequence 4, has been filmed by a hand-waved digital camcorder
JVC GR-DZ7E in PAL format ie. image resolution of 720 by 576 pixels at 25
frames per second. There are 1500 images (see Fig. 12 for samples) of a free walk
in a corridor. Tracking of feature points has been made over all the images and
then the video has been sub-sampled to keep only frames every 5 images for 3D
reconstruction.

Fig. 12. Some key images from the video Sequence 4

The video Sequence 4 has been divided in three parts in order to propagate
3D points for an incremental 3D reconstruction. In each part, only the strongest
feature points have been kept to have a sparse reliable reconstruction, which gives
a total number of 730 points. The 3-D positions of the feature sets associated to
the various objects of the scene are well reconstructed despite the low resolution of
the video frames. The camera motion is totally free, which is suitable for humanoid
robots purposes like works performed by Thompson et al.2 and Ozawa et al.16 on
H-7 and HRP-2 robots. The reconstruction results as well as camera positions are
shown in Fig. 13. One can notice the euclidean structure of the seen is preserved
and the camera path is quite precisely reconstructed.

Table 2. gives the reconstruction times over the four sequences using a Pentium
4 3.2Ghz with 1 GB of RAM with Matlab version 7.0.1.
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Fig. 13. Sets of reconstructed 3-D points for the scene of Sequence 4 with 8 key camera viewpoints.
Legend : ’◦’ = 3-D reference points, ’×’ = reconstructed points, vertical rectangular shapes are
used for homographies calculation and the large rectangular shape is the ground

Table 2. Reconstruction time for each images sequence.

Sequence 1 Sequence 2 Sequence 3 Sequence 4

Nb. of points 174 1000 500 730
Nb. of images 147 166 200 300

Global time of reconstruction 5 min. 33 min. 9 min. 21 min.
Average time per point 6.5 sec. 7.7 sec. 3.42 sec. 5.37 sec.

Min. time per point 0.39 sec. 0.015 sec. 0.015 sec 0.015 sec.
Max. time per point 9.9 sec. 25.2 sec. 11.6 sec. 19.3 sec.

One can notice that the reconstruction time is increasing with the number of
tracked points. This is mainly due to the robust estimation stage (not optimized),
since the number of random subsets to be selected increases with the number of
available feature points through the sequence. Moreover the use of Matlab routines
increases greatly the computation time.

5. Conclusion and Further Research

We have described in this paper an original algorithm to get a sparse 3-D geometrical
model of a scene from a video stream taken by a mobile monocular camera. The
algorithm uses a generalization of the Desargues Theorem in the case of N multiple
views taken at video rate. The temporal aspect of the video stream has been taken
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into account in order to have an analytical expression of the geometrical locus of
the image primitives through the video frames. The only constraint is to know some
reference plane and two 3-D points for the first two images of the sequence. Then the
estimated 3-D points can be used as new reference points and the environment can
be reconstructed incrementally. Results on both simulated data and real videos are
very encouraging and show the robustness and efficiency of the proposed algorithm.

Our approach can be used to construct an off-line 3D map for robots self-
localization in an indoor environnement. It is important to notice that the com-
putation time will be better using C/C++ code instead of Matlab routines.

Current work is devoted to the inter-frame matching stage as introduced in
section 3.3. Since an analytical expression of the trajectories is available, further
researches could be made in the sense of dense matching using time-filtering tech-
niques to get a better visual aspect and more precise estimations of the reconstructed
scene. Shape generation and texture-mapping techniques can also be used since the
camera motion is known in order to get a more realistic 3-D model of the scene to
introduce obstacle learning and avoidance.
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