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Temporal and spatio-temporal instabilities of binary liquid films flowing down an
inclined uniformly heated plate with Soret effect are investigated by using the
Chebyshev collocation method to solve the full system of linear stability equations.
Seven dimensionless parameters, i.e. the Kapitza, Galileo, Prandtl, Lewis, Soret,
Marangoni, and Biot numbers (Ka, G, Pr, L, χ , M , B), as well as the inclination angle
(β) are used to control the flow system. In the case of pure spanwise perturbations,
thermocapillary S- and P-modes are obtained. It is found that the most dangerous
modes are stationary for positive Soret numbers (χ � 0), and oscillatory for χ < 0.
Moreover, the P-mode which is short-wave unstable for χ = 0 remains so for χ < 0,
but becomes long-wave unstable for χ > 0 and even merges with the long-wave S-
mode. In the case of streamwise perturbations, a long-wave surface mode (H-mode)
is also obtained. From the neutral curves, it is found that larger Soret numbers
make the film flow more unstable as do larger Marangoni numbers. The increase
of these parameters leads to the merging of the long-wave H- and S-modes, making
the situation long-wave unstable for any Galileo number. It also strongly influences
the short-wave P-mode which becomes the most critical for large enough Galileo
numbers. Furthermore, from the boundary curves between absolute and convective
instabilities (AI/CI) calculated for both the long-wave instability (S- and H-modes)
and the short-wave instability (P-mode), it is shown that for small Galileo numbers
the AI/CI boundary curves are determined by the long-wave instability, while for
large Galileo numbers they are determined by the short-wave instability.

1. Introduction
A liquid film flowing down an inclined plate is a typical model of simple open flows,

which not only has widespread engineering applications in materials processing,
biomedical engineering, food and chemical industries, but also is of a significant
interest in fundamental problems, such as the formation of surface waves, the
breaking of a stream into rivulets, and the transition from laminar shear flow to
complex turbulence. Since the pioneering experiment of Kapitza & Kapitza (1949),
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the mechanisms of the film instability have been extensively studied for isothermal
and heated films by theoretical linear and nonlinear approaches. Benjamin (1957)
and Yih (1963) first performed a linear stability analysis of isothermal falling films
and identified the surface wave instability through a long-wave asymptotic approach.
Lin (1969), Gjevik (1970) and Pumir, Manneville & Pomeau (1983) then performed
weakly nonlinear analyses based on long-wave evolution equations. Pumir et al. (1983)
obtained subcritical instabilities with their model, but this result was later shown as
non-physical and due to the high nonlinearity of the inertia term in the Benney
equation (Ooshida 1999; Oron & Gottlieb 2002; Scheid et al. 2005). It is now well
known that the primary instability in the isothermal film flow is always supercritical
(Thiele & Knobloch 2004). A detailed discussion on the results obtained for an
isothermal film flow can be found in the review papers of Chang (1994) and Oron,
Davis & Bankoff (1997) and in the references therein.

The absolute/convective instability for isothermal falling films has been intensively
studied by Brevdo et al. (1999). Because the model equations such as the Benney
equation (Benney 1966) and the integral boundary layer equation derived by Shkadov
(1967) were generally valid for limited regions of the parameter space, they used
the full linearized Navier–Stokes equations to investigate the characteristics of the
absolute/convective instability through the exact Briggs–Bers collision criterion. They
explored a large region of the parameter space and pointed out that the isothermal
film flow is convectively unstable, which agrees with all experiments. Considering the
convective property of such open flows, Brevdo et al. further studied the properties
of the spatially amplifying waves and found results in complete agreement with the
experiments performed by Liu, Paul & Gollub (1993). Later, by using weighted-
residual approximations (Ruyer-Quil & Manneville 2000), Ruyer-Quil & Manneville
(2002) predicted the properties of the wave packets at the linear stage and found
results in excellent agreement with the exact results of Brevdo et al. (1999) in a wide
range of Reynolds numbers.

Falling films along a uniformly heated inclined plate are not only susceptible
to the surface wave instability (H-mode) but also to two types of thermocapillary
instability (S- and P-modes) which have already been identified for purely spanwise
and streamwise perturbations by Goussis & Kelly (1990); Goussis & Kelly (1991). A
temporal stability analysis of these modes shows that the mechanisms of triggering of
S- and H-modes are respectively associated with the thermocapillary forces induced
by the modification of the basic temperature at the free surface by the surface
deformation and with the shear stress of the basic flow at the deformed free surface.
The two modes, which both require a deformable free surface, reinforce each other
and are stabilized by the hydrostatic pressure and the surface tension. Since the latter
force is more effective for the short-wavelength disturbances, the instability due to the
two modes takes the form of long waves. The P-mode of thermocapillary instability
is caused by the interaction of the basic temperature with the perturbation velocity
field, and a deformable free surface is not required in this case. When the heated film
is horizontal, the thermocapillary instabilities still can be observed as they do not
need a mean flow. The long-wave thermocapillary instability induced by the S-mode
was first found by Scriven & Sternling (1964). The study was later extended by Smith
(1966) to include the effect of gravity. The P-mode of instability was first mentioned
by Pearson (1958).

In the case of a binary liquid layer with a free surface, the thermocapillary forces
can be produced by the dependence of the surface tension on both the temperature
and the solute concentration. Therefore the thermocapillary instability may appear
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Figure 1. Schematic representation of a binary liquid film flowing down an inclined
uniformly heated plate.

due to solutal effects induced by the Soret effect. For such a binary fluid, many studies
have been performed in the horizontal situation, starting with the precursor work of
Takashima (1979) who extended Pearson’s linear stability analysis to binary mixtures,
thus showing the influence of the Soret effect on the P-mode. Joo (1995) considered
a model with a deformable free surface and showed the influence of this effect on
the instability thresholds in a binary layer with Soret effect, heated from above or
below. His model generally does not include the hydrostatic effect. Among the recent
studies, we mention the work of Podolny, Oron & Nepomnyashchy (2005, 2006) who
extensively studied the influence of the Soret effect on the S-mode, in a situation where
it is the heat flux which is imposed across the layer. Temporal and spatio-temporal
stability analyses of the uniformly heated falling film with Soret effect have, however,
not yet been performed. This is the subject of this paper. In § 2, the physical model
is described and the three-dimensional linear stability equations are derived. In § 3,
the neutral curves for both spanwise and streamwise perturbations are plotted and
they allow characterization of the temporal stability of the falling film with Soret
effect. In § 4, the spatio-temporal instabilities are investigated through the study of
their local growth rate in a moving frame. The boundary curves between absolute
and convective instabilities are then plotted and analysed in the (M, G)-plane. We
finally summarize the findings of the paper in § 5.

2. Formulation of the physical model
We consider a binary liquid film with an average thickness d flowing down a

uniformly heated plate inclined at an angle β to the horizontal under the effect of
gravity, as shown in figure 1. The ambient gas is assumed motionless with constant
temperature Ta and pressure Pa , and the plate is maintained at a constant temperature
Tw . At the free surface, the surface tension is assumed to be linearly dependent on
both the temperature T and the solute concentration C. This can be expressed by

σ = σ0 − σt (T − Ta) + σc(C − C0), (2.1)

where C0 is the concentration induced at the plate by the Soret effect in the diffusive
state, and σ0 is the value of the surface tension at Ta and C0; σt = −∂σ/∂T and



272 J. Hu, H. Ben Hadid, D. Henry and A. Mojtabi

σc = ∂σ/∂C are constant parameters which are positive for most common binary
mixtures.

In the classical Fourier and Fick laws, the heat and mass fluxes are taken
proportional to the temperature and concentration gradients respectively. In fact,
both fluxes should be linear combinations of the two gradients (de Groot & Mazur
1969). The contribution of the temperature gradient to the mass flux is called the Soret
effect, while the contribution of the concentration gradient to the heat flux is called the
Dufour effect. The Dufour effect, however, is exceedingly weak in liquids and can be
safely neglected, while the Soret effect can be significant and will be taken into account
hereafter. Therefore, in what follows, the heat flux Jh and mass flux Jm are given by

Jh = −kth∇T , Jm = −ρD(∇C + α∇T ), (2.2)

where ρ, kth, D and α are the density, the thermal conductivity, the mass diffusivity,
and the Soret coefficient of the binary mixture, respectively.

The three-dimensional equations governing the binary fluid flow in the thin film
along the plate (in the presence of the Soret effect, but without consideration of the
buoyancy effect) are given by

∇ · U = 0, (2.3a)

dU
dt

= −ρ−1∇P + ν∇2U + g, (2.3b)

dT

dt
= κ∇2T , (2.3c)

dC

dt
= D∇2C + αD∇2T . (2.3d )

Here, ∇ =(∂x, ∂y, ∂z), U = (U, V, W ) and g = (g sinβ, 0, −g cosβ) are vectors of the
gradient operator, fluid velocity and gravity acceleration, P is the fluid pressure, ν

and κ are the kinematic viscosity and the thermal diffusivity of the binary mixture.
The boundary conditions at the bottom rigid surface z = 0 express the no-slip

condition for the velocities, the prescribed conductive temperature and the mass
impermeability, respectively:

U = 0, T = Tw, ∂zC + α∂zT = 0. (2.4)

At the free surface z = H (x, y, t) the boundary conditions are, respectively, the
kinematic boundary condition, the dynamic boundary condition, the heat transfer
governed by the Newton law of cooling and the mass impermeability:

Ht + UHx + V Hy = W, (2.5a)

T · n = −Pan + 2Hcσ n + ∇sσ, (2.5b)

n · kth∇T + q(T − Ta) = 0, (2.5c)

n · kth∇C − αq(T − Ta) = 0, (2.5d )

where ∇s is the gradient vector in the tangent plane at the interface and where the
stress tensor T and mean curvature Hc are given by

T = −P I + µ(∇U + (∇U)T),

2Hc = −∇ · n;
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n is the unit outward vector normal to the interface, µ is the dynamical viscosity
of the binary mixture, q is the heat transfer coefficient describing the rate of heat
transfer from the liquid to the ambient gas phase at the constant temperature Ta .

Without disturbance of the flat free surface, the basic parallel flow is the same as
for the isothermal film. The basic solution can thus be represented by

U (z) =
ρgd2 sinβ

2µ

[
2

z

d
−

( z

d

)2
]

, (2.6a)

T (z) = Tw − q(Tw − Ta)

k + qd
z, (2.6b)

C(z) = C0 +
αq(Tw − Ta)

k + qd
z. (2.6c)

The dimensionless variables of the problem are defined through the transforma-
tions

t → d2

ν
t, [x, y, z, H ] → d[x, y, z, h], (2.7a)

U(U, V, W ) → ν

d
u(u, v, w), P → Pa +

ρν2

d2
p, (2.7b)

T → Ta + (Tw − Ta)θ, C → C0 +
σt

σc

(Tw − Ta)c. (2.7c)

This yields the dimensionless form of the governing equations

∇ · u =0, (2.8a)

du
dt

= −∇p + ∇2u + G, (2.8b)

Pr
dθ

dt
= ∇2θ, (2.8c)

Sc
dc

dt
= ∇2c + χ∇2θ, (2.8d )

where G = (G sinβ, 0, −G cosβ). And the dimensionless boundary conditions are: at
the wall z =0,

u =0, θ = 1, cz + χθz = 0; (2.9)

and at the free surface z = h(x, y, t),

ht + uhx + vhy = w, (2.10a)

T · n = 2HcΣ[1 − Ca(θ − c)]n − Ma

Pr
(∇sθ − ∇sc), (2.10b)

n · ∇θ + Biθ = 0, (2.10c)

n · ∇c − χBiθ =0, (2.10d )
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where the dimensionless stress tensor is T = −pI+
(
∇u + (∇u)T

)
, and the dimensionless

parameters of the problem

G =
gd3

ν2
, Pr=

ν

κ
, Sc=

ν

D
, L =

D

κ
, (2.11a)

χ =
ασc

σt

, Ma =
σt (Tw − Ta)d

µκ
, Bi=

qd

kth

, (2.11b)

are respectively the Galileo, Prandtl, Schmidt, Lewis, Soret, Marangoni, and Biot
numbers, Σ = σ0d/(ρν2) is the dimensionless surface tension and Ca = σt (Tw − Ta)/σ0

is the capillary number. Obviously, there is a relation L =Pr/Sc between the Lewis,
Prandtl, and Schmidt numbers, and another relation ΣCa = Ma/Pr between the
dimensionless surface tension and the capillary, Marangoni, and Prandtl numbers.
The value of σc/σt is usually of order 102 K, while the value of α ranges between
−10−2 and 10−2. Therefore, the typical value of χ varies in the range −1 <χ < 1. The
Lewis number of a liquid binary mixture is usually small and ranges between 10−4

and 10−2. For convenience, we will adopt the Kapitza number Ka, a new Marangoni
number M and a new Biot number B in our linear stability computations and analyses
(see Appendix A).

The dimensionless basic flow can be expressed as

ū(z) = G sin(β)(z − 1
2
z2), (2.12a)

p̄(z) = G cos(β)(1 − z), (2.12b)

θ̄(z) = 1 − Bi

1 + Bi
z, (2.12c)

c̄(z) =
Biχ

1 + Bi
z, (2.12d )

where G sinβ is equivalent to a Reynolds number (G sinβ =Re). Around the basic
state, the disturbed flow can be decomposed as u = ū + u′, v = v′, w = w′, p = p̄ + p′,
θ = θ̄ + θ ′, c = c̄ + c′ and h = 1 + η, and we can obtain the linearized perturbation
equations

u′
x + v′

y + w′
z = 0, (2.13a)

u′
t + ūu′

x + Dūw′ = −p′
x + ∇2u′, (2.13b)

v′
t + ūv′

x = −p′
y + ∇2v′, (2.13c)

w′
t + ūw′

x = −p′
z + ∇2w′, (2.13d )

Pr(θ ′
t + ūθ ′

x + Dθ̄w′) = ∇2θ ′, (2.13e)

Sc(c′
t + ūc′

x + Dc̄w′) = ∇2c′ + χ∇2θ ′, (2.13f )
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and linearized boundary conditions

z =0 : u′ = v′ = w′ = θ ′ = 0, (2.14a)

z =0 : c′
z + χθ ′

z = 0, (2.14b)

z =1 : ηt + ūηx − w′ = 0, (2.14c)

z =1 : u′
z + w′

x + (D2ū)η + (Ma/Pr)(θ ′
x + Dθ̄ηx − c′

x − Dc̄ηx) = 0, (2.14d )

z =1 : v′
z + w′

y + (Ma/Pr)(θ ′
y + Dθ̄ηy − c′

y − Dc̄ηy) = 0, (2.14e)

z =1 : 2w′
z − p′ − Dp̄η − Σ[1 − Ca(θ̄ − c̄)](ηxx + ηyy) = 0, (2.14f )

z =1 : θ ′
z + Biθ ′ + BiDθ̄η = 0, (2.14g)

z =1 : c′
z − χBiθ ′ − χBiDθ̄η = 0. (2.14h)

Here, D= d/dz. For most common liquids, the capillary number has very small values
(Ca � 1).

We expand the three-dimensional infinitesimal perturbations in the form of normal
modes

(u′, v′, w′, p′, θ ′, c′, η) = [û(z), v̂(z), ŵ(z), p̂(z), θ̂ (z), ĉ(z), η̂]ei(kxx+kyy−ωt), (2.15)

where kx and ky are the complex wavenumbers in the x- and y-directions, and ω is
the complex frequency. Substituting these expressions into the linearized perturbation
equations (2.13) and linearized boundary conditions (2.14), we obtain the linear
stability equations expressed in primitive variables,

ikxû + ikyv̂ + Dŵ =0, (2.16a)

−iωû + ikxūû + Dūŵ = −ikxp̂ + (D2 − k2)û, (2.16b)

−iωv̂ + ikxūv̂ = −ikyp̂ + (D2 − k2)v̂, (2.16c)

−iωŵ + ikxūŵ = −Dp̂ + (D2 − k2)ŵ, (2.16d )

Pr(−iωθ̂ + ikxūθ̂ + Dθ̄ ŵ) = (D2 − k2)θ̂ , (2.16e)

Sc(−iωĉ + ikxūĉ + Dc̄ŵ) = (D2 − k2)ĉ + χ(D2 − k2)θ̂ , (2.16f )

and the boundary conditions

û(0) = v̂(0) = ŵ(0) = θ̂ (0) = 0, (2.17a)

Dĉ(0) + χDθ̂ (0) = 0, (2.17b)

−iωη̂ + ikxū(1)η̂ − ŵ(1) = 0, (2.17c)

Dû(1) + ikxŵ(1) + D2ū(1)η̂ + ikx

Ma

Pr
[θ̂ (1) + Dθ̄ (1)η̂ − ĉ(1) − Dc̄(1)η̂] = 0, (2.17d )

Dv̂(1) + ikyŵ(1) + iky

Ma

Pr
[θ̂ (1) + Dθ̄ (1)η̂ − ĉ(1) − Dc̄(1)η̂] = 0, (2.17e)

2Dŵ(1) − p̂(1) − Dp̄(1)η̂ + Σ[1 − Ca( ¯θ(1) − c̄(1))]k2η̂ =0, (2.17f )

Dθ̂ (1) + Biθ̂(1) + BiDθ̄ (1)η̂ = 0, (2.17g)

Dĉ(1) − χBiθ̂(1) − χBiDθ̄ (1)η̂ = 0, (2.17h)
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where k2 = k2
x + k2

y . From (2.16a)–(2.16d), it can be easily shown that

2ikxDūŵ = −(D2 − k2)p̂. (2.18)

Combining (2.16d) and (2.18), we can obtain the generalized Orr–Sommerfeld equation

(D2 − k2)2ŵ = i[(ūkx − ω)(D2 − k2) − D2ūkx]ŵ. (2.19)

Finally, the full system of linear stability equations with respect to the eigenfunctions
ŵ, θ̂ and ĉ is given by

(D2 − k2)2ŵ = i[(ūkx − ω)(D2 − k2) − D2ūkx]ŵ, (2.20a)

Pr[i(ūkx − ω)θ̂ + Dθ̄ ŵ] = (D2 − k2)θ̂ , (2.20b)

Sc [i(ūkx − ω)ĉ + Dc̄ŵ] = (D2 − k2)ĉ + χ(D2 − k2)θ̂ , (2.20c)

ŵ(0) = Dŵ(0) = θ̂(0) = 0, (2.20d )

Dĉ(0) + χDθ̂ (0) = 0, (2.20e)

i[ū(1)kx − ω]η̂ − ŵ(1) = 0, (2.20f )

(D2 + k2)ŵ(1) − ikxD
2ū(1)η̂ + k2 Ma

Pr
[θ̂ (1) + Dθ̄ (1)η̂ − ĉ(1) − Dc̄(1)η̂] = 0, (2.20g)

[D2 − 3k2 − i(ū(1)kx − ω)]Dŵ(1) + [Dp̄(1) − Σ ′k2]k2η̂ = 0, (2.20h)

Dθ̂ (1) + Biθ̂ (1) + BiDθ̄ (1)η̂ = 0, (2.20i )

Dĉ(1) − χBiθ̂(1) − χBiDθ̄ (1)η̂ = 0, (2.20j )

with Σ ′ = Σ[1 − Ca(θ̄ (1) − c̄(1))].
The linear stability equations (2.20) are ordinary differential equations in terms of

ŵ, θ̂ , ĉ and η̂, and can be regarded as a two-point boundary value problem. If there
exists a non-trivial solution for the equations, a corresponding dispersion relation

D(kx, ky, ω; Ka, G, Pr, L, χ, M, B, β)= 0

should be satisfied, and we need to solve an eigenvalue problem. Because it is
impossible to find the explicit analytical dispersion relation if there is no further
simplification, the dispersion relation has to be obtained numerically. In this paper,
the pseudospectral Chebyshev method (Canuto et al. 1988) is used to discretize the
eigenvalue problem, and the QZ algorithm is used to solve the resulting general
eigenvalue problem. A mapping technique (Pearlstein & Goussis 1988) is used to map
the infinite spurious eigenvalues due to the boundary conditions (2.20d) and (2.20e)
to a specified point in the complex plane.

Note that the following temporal and spatio-temporal stability analyses of the film
flow have been performed for a fixed inclination of the plate (β = 15◦) and fixed
values of the Kapitza, Prandtl, Lewis and Biot numbers (Ka = 500, Pr = 10, L =0.01,
B = 0.02).

3. Temporal instability
When the Soret number is equal to zero, i.e. χ = 0, the problem is reduced to the

situation where the solutal Marangoni effect (induced by the variations of solute
concentration along the free surface) is not taken into account. In this case, when the
incline angle is sufficiently large and in the long-wavelength limit, it was shown that
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the flow becomes first unstable with respect to transverse waves which extract the
maximum amount of energy from the basic state (Kelly, Davis & Goussis 1986; Kelly
et al. 1989), while, for small angles of inclination, the unstable disturbance assumes
the form of longitudinal rolls (Sreenivasan & Lin 1978). Later, Goussis & Kelly
(1991) pointed out that the instability can assume the form of either long transverse
waves or short longitudinal rolls depending on which mechanism (connected to H-,
S- or P-modes) is dominant. In our case, we select a moderate incline angle, β = 15◦,
and study the influence of the solutal Marangoni effect on the destabilization of
the flow by both pure streamwise perturbations (transverse rolls) and pure spanwise
perturbations (longitudinal rolls).

Results concerning the destabilization of the flow by fully three-dimensional
perturbations could be theoretically obtained from a pure streamwise study. As
already indicated by Goussis & Kelly (1991) for χ = 0, the Squire theorem is not valid,
but a Squire transformation exists, which is also valid with solutal effects. This Squire
transformation corresponds to the relations k2 = k2

x + k2
y , k G sin(β) = kx G3d sin(β3d)

and G cos(β) = G3d cos(β3d). It gives a clear connection between the results for
three-dimensional instabilities (or oblique wave instabilities) with a wave vector of
arbitrary orientation (arbitrary values of kx and ky) and those for the streamwise
instabilities (with a wave vector k along x). In these relations, G and β are the
parameters corresponding to the streamwise instabilities, whereas G3d and β3d are
the parameters corresponding to the three-dimensional instabilities. These relations
also indicate that the results for three-dimensional instabilities correspond to results
obtained for streamwise perturbations at smaller Galileo numbers and smaller incline
angles. Although all the results can be derived from the study of the streamwise
perturbations, it would be necessary to widely vary both the inclination β and the
Galileo number G. Our choice to fix β does not allow derivation of the results for
any three-dimensional perturbations and leads us to focus on the usual streamwise
and spanwise perturbations.

3.1. Pure streamwise perturbations: ky = 0 and k = kx

The system (2.20) with k = kx becomes

(D2 − k2)2ŵ = i[(ūk − ω)(D2 − k2) − D2ūk]ŵ, (3.1a)

Pr[i(ūk − ω)θ̂ + Dθ̄ ŵ] = (D2 − k2)θ̂ , (3.1b)

Sc[i(ūk − ω)ĉ + Dc̄ŵ] = (D2 − k2)ĉ + χ(D2 − k2)θ̂ , (3.1c)

ŵ(0) = Dŵ(0) = θ̂(0) = 0, (3.1d )

Dĉ(0) + χDθ̂ (0) = 0, (3.1e)

i[ū(1)k − ω]η̂ − ŵ(1) = 0, (3.1f )

(D2 + k2)ŵ(1) − ikD2ū(1)η̂ + k2 Ma

Pr
[θ̂ (1) + Dθ̄ (1)η̂ − ĉ(1) − Dc̄(1)η̂] = 0, (3.1g)

[D2 − 3k2 − i(ū(1)k − ω)]Dŵ(1) + [Dp̄(1) − Σ ′k2]k2η̂ = 0, (3.1h)

Dθ̂ (1) + Biθ̂(1) + BiDθ̄ (1)η̂ = 0, (3.1i )

Dĉ(1) − χBiθ̂ (1) − χBiDθ̄ (1)η̂ = 0. (3.1j )

As it is not possible to find an analytical neutral relation from the linear stability
equations (3.1), we use the Chebyshev spectral collocation method to compute the
numerical dispersion relations associated with (3.1) and then obtain the neutral curves
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Figure 2. Neutral curves for the streamwise instabilities in the G–k parameter space for
different Soret numbers χ and M = 50. The upper unstable domain of the H-mode instability
and the lower unstable domain of the S-mode instability merge when χ is increased (Ka =500,
Pr = 10, L = 0.01, B = 0.02, β = 15◦). U denotes an unstable domain and S a stable one.

from them. The neutral curves of temporal instability for streamwise perturbations
are plotted in the G–k parameter space in figures 2 and 4 for M = 50 and M = 100,
respectively, and for different Soret numbers (Ka = 500, Pr= 10, L =0.01, B =0.02,
β = 15◦). We first see that larger Soret numbers make the flow system more unstable,
particularly for moderate Galileo numbers. For the situation at M = 50 (figure 2)
where only long-wave unstable regions are found, the results show that for χ =0,
two separate unstable regions appear, one below a critical Galileo number which
corresponds to the S-mode of thermocapillary instability, and the other above another
critical Galileo number which corresponds to the H-mode of surface wave instability.
On increasing the Soret number the two critical Galileo numbers approach one
another, until the merging of the two neutral curves and the connection between
the two unstable regions of S- and H-modes. Such a behaviour was observed by
Goussis & Kelly (1991) for χ = 0 and was obtained by increasing the Marangoni
number M . As usual, the long-wave approximation of Yih (1963) can be used to
obtain the critical Galileo numbers at zero wavenumber. The corresponding neutral
relation at k = 0 is given by

(G sinβ)2 − 5

2
G cosβ +

15

64

(3χBi + 12χ + 16)MaBi

Pr(1 + Bi)2
= 0 (3.2)

or

(G sin β)2 − 5

2
G cosβ +

15

64

(3χBG1/3 + 12χ + 16)MBG2/3

(1 + BG1/3)2
= 0, (3.3)

the detailed derivation being given in Appendix B. Note that the relation (3.3) is
independent of the Kapitza, Prandtl, and Lewis numbers. From figure 3, where, in the
long-wave limit (3.3), the critical Galileo number Gc is plotted as a function of χ for
different Marangoni numbers M , we see that above a cutoff positive Soret number
the film flow is always long-wave unstable for any Galileo number G. The cutoff
Soret number decreases with the increase of the Marangoni number, and it is already
negative for M = 60, indicating that the long-wave instability exists at χ = 0 for all
Galileo numbers in this case. The same observation can be made for larger Marangoni
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Figure 3. Critical Galileo number Gc as a function of the Soret number χ for the streamwise
instabilities in the long-wave limit (3.3) for different Marangoni numbers. The arrows indicate
the unstable side of the curves. It is shown that above a certain value of χ the situation is
long-wave unstable for any Galileo number (Ka= 500, Pr = 10, L = 0.01, B = 0.02, β = 15◦);
relation (3.3) is independent of Ka, Pr, and L.

numbers as shown by the neutral curves obtained for M = 100 (figure 4a). Note that
for this value of M , the neutral curve for the P-mode of thermocapillary instability
can be detected, and appears to be very sensitive to the influence of the Soret effect
with a strong decrease of the critical Galileo number (minimum value of G on the
neutral curve) (figure 4b). To characterize the general influence of χ on the different
modes, we can say that the positive values of χ chosen increase the Marangoni effect
in conjunction with the Marangoni number M . This influence is explicitly shown in
the relation (3.3) for the long-wave limit case. Concerning particularly the P-mode, the
evolution with χ does not significantly change the critical wavenumber k associated
with the critical G. This is consistent with the study of Hu, Ben Hadid & Henry
(2007) concerning the Poiseuille–Rayleigh–Bénard flow, where it is shown that the
usual decrease of the critical wavenumber with the increase of the Soret number
(which is also observed in the Marangoni–Bénard situation) is inhibited when the
throughflow is applied.

Finally, by using the lubrication theory, a three-dimensional long-wave evolution
equation for the dimensionless thickness of the film h can be derived as

ht + Reh2hx + ε
[

2
15

Re2h6hx

]
x

− ε∇ ·
[

1
3
Re cotβh3∇h

]

+ ε 1
3
Γ ∇ · [h3∇∇2h] + ε

1

2

Ma

Pr
∇ ·

[
(16 + 12χ + 3χBih)Bih2∇h

16(1 + Bih)2

]
+ O(ε2) = 0, (3.4)

where ∇ = (∂x, ∂y), Γ = ε2Σ ′ and ε is the ratio of the average thickness of the thin
film d and the characteristic long wavelength λ. If we do the linear stability analysis
from this long-wave evolution equation (3.4), the neutral relation (3.2) derived for
k → 0 can be recovered.

3.2. Pure spanwise perturbations: kx = 0 and k = ky

From the Squire transformation mentioned at the beginning of the section, we can
show that the results for the inclined film subjected to spanwise perturbations (kx = 0)
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Figure 4. Neutral curves for the streamwise instabilities in the G–k parameter space for
different Soret numbers χ and M =100: (a) neutral curves for the merged H- and S-modes;
(b) neutral curves for the P-mode (Ka = 500, Pr = 10, L = 0.01, B = 0.02, β = 15◦).

correspond to the results obtained for streamwise perturbations at β = 0 and with
G =G3d cos(β3d) (3d referring here to the spanwise perturbations in the inclined film).
The results for spanwise perturbations in the inclined film are thus identical to those
obtained in a horizontal layer when the hydrostatic effect connected to G is taken
into account in the model of the horizontal layer, and bearing in mind that the
hydrostatic effect in the inclined film is connected to G3d cos(β3d), i.e. is modified by
the inclination of the film. In any case, for these situations, there is no mean flow, and
the instability is of thermocapillary origin with no preferred direction of propagation.
The system (2.20) with kx = 0 becomes

(D2 − k2)2ŵ = −iω(D2 − k2)ŵ, (3.5a)

(D2 − k2)θ̂ = Pr[−iωθ̂ + Dθ̄ ŵ], (3.5b)

(D2 − k2)ĉ + χ(D2 − k2)θ̂ = Sc[−iωĉ + Dc̄ŵ], (3.5c)

ŵ(0) = Dŵ(0) = θ̂(0) = 0, (3.5d )

Dĉ(0) + χDθ̂ (0) = 0, (3.5e)

iωη̂ + ŵ(1) = 0, (3.5f )

(D2 + k2)ŵ(1) + k2 Ma

Pr
[θ̂ (1) + Dθ̄ (1)η̂ − ĉ(1) − Dc̄(1)η̂] = 0, (3.5g)

[D2 − 3k2 + iω]Dŵ(1) + [Dp̄(1) − Σ ′k2]k2η̂ = 0, (3.5h)

Dθ̂ (1) + Biθ̂ (1) + BiDθ̄ (1)η̂ = 0, (3.5i )

Dĉ(1) − χBiθ̂ (1) − χBiDθ̄ (1)η̂ = 0. (3.5j )

Moreover, if we assume that the marginal state is stationary, i.e. ω = 0, the system (3.5)
yields an analytical solution. From the stability equations (3.5a), (3.5b) and (3.5c), we
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can obtain the general form of the solutions:

ŵ = 2[A2 + kB1 + 2kB2z] cosh(kz) + 2[B2 + kA1 + 2kA2z] sinh(kz), (3.6a)

θ̂ = − PrBi

1 + Bi

{
[A0 + A1z + A2z

2] cosh(kz) + [B0 + B1z + B2z
2] sinh(kz)

}
(3.6b)

ĉ =
ScBiχ

1 + Bi

{
[(LA0 + A′

0) + (L + 1)A1z + (L + 1)A2z
2] cosh(kz)

+ [(LB0 + B ′
0) + (L + 1)B1z + (L + 1)B2z

2] sinh(kz)
}

. (3.6c)

The neutral curve is then formulated as

Sc

(
F1

M∗ − F2

)(
G cosβ + Σ ′k2

)
=F3, (3.7)

where

M∗ =
BiMa

1 + Bi
,

F1 = 8Lk2(sinh k cosh k − k)(Bi sinh k + k cosh k) sinh k,

F2 = [Biχ cosh k + (L + χ + Lχ)k sinh k] (sinh3 k − k3 cosh k)

+χk
[
Bi(k2 + k sinh k cosh k − 2 sinh2 k) + (k cosh k − sinh k)2

]
,

F3 = 8(χ + 1)k6 sinh k cosh k.

In the limit k → 0, (3.7) can be reduced to[
16L(Bi + 1)

3M∗ −
(

Bi

24
+

1

9

)
χ

]
ScG cosβ = 8 (χ + 1) (3.8)

or [
16(B G1/3 + 1)2

3MB G2/3
−

(
B G1/3

24
+

1

9

)
Scχ

]
G cosβ = 8 (χ + 1). (3.9)

If we impose Bi= 0, (3.8) reduces to equation (28) given by Joo (1995). Furthermore,
when χ = 0, i.e. without considering the Soret effect, (3.7) and (3.8) reduce to equations
(16) and (17) of Goussis & Kelly (1991). And similarly to the case χ = 0, (3.8) shows
that G → ∞ when β → 90◦, indicating that the layer is unstable for all G in this limit.

Using the formulation (3.7), we first plot the neutral curves of temporal instability
in the G–k parameter space for different small Soret numbers χ and for M =50
(Ka = 500, Pr =10, L =0.01, B =0.02, β = 15◦) (figure 5). As already known from the
previous studies for χ =0 (Goussis & Kelly 1991), the long-wave unstable region in
figure 5(a) corresponds to the S-mode of thermocapillary instability, while the unstable
region in figure 5(b) corresponds to the P-mode of thermocapillary instability. It is,
first, interesting to note that on increasing the Soret number χ , the unstable regions
for both modes become larger. Then, for the P-mode, the evolution of the neutral
curve for positive Soret numbers leads to the appearance of a long-wave instability
above a critical Galileo number Gc which decreases as χ is increased. Finally, for a
large enough Soret number, the S-mode and P-mode neutral curves will merge at zero
wavenumber, and above this cutoff positive Soret number, the film flow will always
be long-wave unstable for any Galileo number G. This can be easily verified from
figure 6 where, in the long-wave limit (3.9), the critical Galileo number Gc for the
stationary spanwise instabilities is plotted as a function of χ for different Marangoni
numbers (solid lines). The cutoff Soret number is also found to decrease with the
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Figure 5. Neutral curves for the stationary spanwise instabilities in the G–k parameter space
for different Soret numbers χ and M = 50: (a) neutral curves for the long-wave S-mode;
(b) neutral curves for the P-mode, which merge with the curves of the S-mode for χ =0.004
(Ka= 500, Pr =10, L =0.01, B = 0.02, β =15◦).
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Figure 6. Critical Galileo number Gc as a function of the Soret number χ for the spanwise
stationary (solid lines) and oscillatory (dashed lines) instabilities in the long-wave limit for
different Marangoni numbers. The arrows indicate the unstable side of the curves. The dotted
line represents χ = 0. It is shown that above a certain value of χ the situation is long-wave
unstable with respect to the stationary instabilities for any Galileo number, and that the
oscillatory modes are more unstable than the stationary modes for negative values of χ
(Ka= 500, Pr =10, L =0.01, B = 0.02, β =15◦).

increase of the Marangoni number: its value which is about 0.0154 for M = 30
decreases to 0.00373 for M = 50. This effect seems similar to what was observed for
streamwise perturbations with the connection between the two unstable regions of
S- and H-modes. Nevertheless, we can note that for those long-wave instabilities,
the results for spanwise perturbations are much more sensitive to the influence of
the Soret effect than those for streamwise perturbations (the values of χ necessary
to clearly affect the results are about 0.1 in the second case, and less than 0.01 in
the first case). Moreover, the decrease of the wavenumber of the P-mode from finite
values towards zero when χ is increased from zero is similar to what has already been
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ωr ωi

0.0000000000 0.0000000000
0.0000000000 −0.0123966400
0.0000000000 −0.0459176405
0.0000000000 −0.0956284934
0.0000000000 −0.1255543009
0.0000000000 −0.1602111422
0.0000000000 −0.2505393668
0.0000000000 −0.3592242951
0.0000000000 −0.4876022552
0.0000000000 −0.6356464550

Table 1. Most unstable eigenvalues for a state belonging to the neutral curve for the
stationary spanwise instability: k =2, G =17.861614664, χ = 0.002, and M = 50 (Ka= 500,
Pr = 10, L = 0.01, B = 0.02, β = 15◦).

observed in Marangoni–Bénard and Rayleigh–Bénard situations for small values of
the Lewis number.

In order to prove that the neutral curve for ω = 0 really corresponds to the most
dangerous mode, one possibility is to compute the first eigenvalues with the largest
imaginary parts for states belonging to the neutral curve and to verify that ω =0
is the most unstable eigenvalue. An example of this verification is shown in table 1
for the set of parameters, k = 2.0, G =17.861614664, χ =0.002, M = 50, Ka = 500,
Pr = 10, L =0.01, B =0.02, and β = 15◦ which satisfy relation (3.7) of the neutral
curve. In this way, we have proved that, for χ � 0, the neutral curves obtained for
ω =0 correspond to the most dangerous mode, or, in other words, that, for χ � 0, the
real neutral curves for the spanwise perturbations correspond to stationary modes.

In the horizontal situation (but without the hydrostatic effect), Joo (1995) showed
that for combined destabilizing thermal Marangoni effect and stabilizing solutal
Marangoni effect, long-wave oscillatory instabilities can be obtained which are
preferred to the long-wave stationary instabilities. In a similar situation, but with
a fixed heat flux across the layer, it has also been revealed by Podolny et al. (2005,
2006) that there is a negative value of the Soret number below which a long-wave
oscillatory instability is obtained for positive Marangoni numbers. In our case of
spanwise instabilities in an inclined film, which is similar to the horizontal case (see
our remarks above), a long-wave oscillatory mode is also found for negative Soret
numbers. The corresponding neutral curves in the G–k parameter space are plotted
in figure 7 for M =50 and different Soret numbers χ . We see that there exists a
critical Galileo number in the long-wave limit, below which the flow is unstable
with respect to the long-wave oscillatory instability, and this critical Galileo number
decreases as the absolute value of the Soret number increases. The value of the
critical Galileo number can be obtained from a relation easily derived from (3.3).
As already indicated, the case of spanwise perturbations can be obtained from the
case of streamwise perturbations by putting kx =0 in the Squire relations, which gives
β = 0 and G =G3d cos(β3d) (3d referring here to the spanwise perturbations). This
leads to a relation similar to (3.3) but without the first term G sinβ , valid for the
spanwise perturbations in the long-wave limit.

For the set of parameters, k = 0.02, χ = −0.04, G =2.058, M =50, Ka =500, Pr= 10,
L = 0.01, B = 0.02 and β = 15◦, corresponding to a state on the neutral curve obtained
for χ = −0.04, the first eigenvalues with largest imaginary parts have been computed
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ωr ωi

−0.00001259 0.00000000
0.00001259 0.00000000
0.00000000 −0.00986486
0.00000000 −0.03947761
0.00000000 −0.08882613
0.00000000 −0.15791398
0.00000000 −0.24673555
0.00000000 −0.25204745
0.00000000 −0.35530571
0.00000000 −0.48361103

Table 2. Most unstable eigenvalues for a state belonging to the neutral curve for the oscillatory
long-wave spanwise instability: k = 0.02, G =2.058, χ = −0.04, and M = 50 (Ka =500, Pr = 10,
L =0.01, B = 0.02, β = 15◦).
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Figure 7. Neutral curves for the oscillatory spanwise long-wave instabilities in the G–k para-
meter space for different Soret numbers χ and M = 50 (Ka= 500, Pr = 10, L = 0.01, B = 0.02,
β =15◦).

and are presented in table 2. We verify that for this state at χ = −0.04 the oscillatory
instability is the most dangerous mode. In fact, as shown in figure 6 where, in
the long-wave limit, the critical Galileo numbers for both stationary and oscillatory
instabilities are plotted as a function of χ , the oscillatory mode is more unstable
than the stationary mode for negative χ; when χ = 0, the critical Galileo numbers
for both instabilities are identical as the relation (3.3) (without the first term) for
the oscillatory instability is exactly the same as the relation (3.9) for the stationary
instability. This result is in good agreement with the results of Goussis & Kelly (1991)
obtained without the Soret effect.

Apart from this oscillatory long-wave instability, there also exists an oscillatory
short-wave instability for negative Soret numbers. This instability was not mentioned
by Joo (1995), but appears in the usual evolution of the stationary short-wave P-mode
instability (see figure 5) for stabilizing solutal effect (negative χ), as it occurs in the
classical Marangoni–Bénard and Rayleigh–Bénard situations. The neutral curves for
this short-wave oscillatory mode are plotted in the G–k parameter space in figure 8 for



Linear stability of a binary heated falling film 285

k k

G

0 1 2 3 4
20

25

30

35

40

χ = –0.1
–0.2
–0.3

(a) (b)

U

S

0 1 2 3 4 5

10

20

30

40

50

M = 50
75
100

U

S

Figure 8. Neutral curves for the oscillatory spanwise short-wave instabilities in the G–k
parameter space: (a) neutral curves for different Soret numbers χ and M =50; (b) neutral
curves for different Marangoni numbers M and χ = −0.2 (Ka= 500, Pr = 10, L = 0.01, B = 0.02,
β = 15◦).

different Soret numbers at M = 50 and different Marangoni numbers at χ = −0.2. We
see that the critical Galileo number decreases slowly with the increase of the absolute
value of the Soret number, while it decreases much faster with the increase of the
Marangoni number. The corresponding critical wavenumber does not vary much and
remains around 2, close to the value for the stationary P-mode instability at χ = 0,
similarly to what is found in the classical Marangoni–Bénard and Rayleigh–Bénard
situations. Owing to the invariance of the basic flow in the spanwise direction, both
long-wave and short-wave oscillatory instabilities are associated with two unstable
modes with opposite frequencies, i.e. corresponding to right- and left-travelling
waves.

4. Absolute and convective instability
Before we consider the spatio-temporal instability of the binary liquid film flow,

let us recall the basic concepts of the absolute/convective instability theory (AI/CI)
which originated from plasma physics (Briggs 1964; Bers 1973). A good introduction
to this theory can be found in Huerre & Monkewitz (1985, 1990) who first applied such
a spatio-temporal stability analysis to spatially developing flows. They analytically
investigated the absolute/convective nature of the instability through the asymptotic
response of the Green function at large time. Furthermore, they indicated that
periodic forcing on the boundary can be spatially amplified only when the system is
convectively unstable.

Basically, when an amplifying wave packet is convected away from its local position,
the wave packet is said to be convectively unstable. If, otherwise, the amplification
can be observed locally, the wave packet is said to be absolutely unstable. Generally,
the absolute/convective nature of the instability is determined by the sign of the
absolute growth rate ω0i =Im[ω(k0)] defined at the saddle point k0 of the dispersion
relation, i.e. when (dω/dk)|k0

= 0. In these expressions, k is a complex wavenumber
and ω is a complex frequency. If the absolute growth rate ω0i is greater than zero
(lower than zero), the flow is said to be absolutely (convectively) unstable. But it
should be noted that the saddle point k0 used to identify AI/CI must satisfy the
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Briggs–Bers collision criterion, i.e. the saddle point must be a pinch point produced
by two distinct spatial branches of solutions of the dispersion relation, k±

n (ω), coming,
respectively, from the upper and lower half-k-planes, and commonly referred to as
upstream and downstream branches. In this paper the saddle points have all been
found to satisfy the collision criterion. The processes of identification of the pinch
points are not shown here, but they are presented in detail in Brevdo et al. (1999) for
isothermal falling films.

From the above definitions, the boundary between absolute and convective
instability is determined by a zero absolute growth rate, i.e. ω0i = 0. But, when
we select a set of parameters, the absolute growth rate may be far from zero or may
even not exist at all. In order to determine the parameters whose absolute growth rate
is near zero, it is necessary to study the response of the flow to a localized disturbance
along an arbitrary fixed spatio-temporal ray, V = x/t , as t → ∞. This is equivalent to
analysing how the response evolves in a reference frame moving at velocity V . If we
introduce the Doppler-shifted frequency ωv =ω − V k and use kv = k, the dispersion
relation in the moving coordinate system will be

Dv(k
v, ωv) = D(kv, ωv + V kv) = 0. (4.1)

As dωv/dkv = 0, the saddle point k̃ will occur at

D(k̃, ω̃) = 0 and
dω

dk
(k̃, ω̃) = V, (4.2)

and the local (absolute) growth rate in the moving frame is thus obtained at kv
0 = k̃

through

ωv
0 = ω̃ − V k̃. (4.3)

Here also, the saddle point k̃ obtained from (4.2) must verify the Briggs–Bers collision
criterion mentioned above. The saddle points in this paper are obtained numerically
by Newton-type iterations (Deissler 1987; Yin et al. 2000).

Of course the absolute growth rate in the laboratory frame is just the local growth
rate for V = 0. Thus, through studying the effect of the dimensionless parameters
on the local growth rates in the moving frame, we can obtain a set of parameters
whose absolute growth rate is near zero. The boundary curve between absolute and
convective instability can then be determined by a continuation procedure.

Note that we will focus our spatio-temporal study on the streamwise instabilities.
The spanwise instabilities (which are not affected by the basic flow velocity), as
suggested by the AI/CI boundary curves of the Poiseuille–Rayleigh–Bénard flow in
binary fluids (Hu et al. 2007), should determine a direct absolute transition when
they are stationary whereas they should first trigger a convective behaviour above the
critical values of the parameters (such as Marangoni and Soret numbers) when they
are oscillatory.

4.1. Long-wave spatio-temporal instability of S- and H-modes

We first consider the long-wave instability triggered by streamwise perturbations
associated with S- and H-modes. In this case, the growth rate ωv

0i will be calculated
as a function of the ray velocity V in the streamwise direction x for different sets
of parameters. As already indicated at the end of § 2, the parameters Ka, Pr, L, B ,
and β will be supposed fixed (Ka =500, Pr= 10, L =0.01, B = 0.02, and β = 15◦),
and the other parameters G, M , and χ will be allowed to vary. The evolution of
ωv

0i with V is first shown for χ = 0 (without the Soret effect) and M = 100 and
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Figure 9. (a) Growth rate ωv
0i as a function of the ray velocity V and (b) loci of the unstable

contributing saddle points in the k-plane, for the streamwise long-wave instability (merged S-
and H-modes) and for different Galileo numbers G, χ = 0, and M = 100. In (b), Vr and Vl

refer to the right and left boundaries of the unstable ray domains (Ka= 500, Pr =10, L = 0.01,
B = 0.02, β = 15◦).
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Figure 10. Growth rate ωv
0i as a function of the ray velocity V for the streamwise long-wave

instability (merged S- and H-modes) and for different Marangoni numbers M , χ = 0, and
G = 2 (Ka = 500, Pr = 10, L = 0.01, B = 0.02, β = 15◦).

for different Galileo numbers G in figure 9(a). We see that owing to an increased
inertial effect, larger Galileo numbers make the flow more unstable in the moving
frame with larger downstream velocities. The corresponding loci of the unstable
saddle points in the complex k-plane are plotted in figure 9(b). From the temporal
instability analysis, we know that the long-wave streamwise instability consists of S-
and H-modes which merge for large Marangoni or Soret numbers. Moreover, the case
chosen here corresponds to a situation where the two modes have already merged
(see figure 4a). From figure 9(b), we learn that a unique group of saddle points, which
evolves with the Galileo number, contributes to the spatio-temporal instability of S-
and H-modes. This indicates that from the spatio-temporal point of view, the S- and
H-modes belong to a single spatio-temporal mode.

For fixed G (G =2), the evolution of ωv
0i with V is given for different M (χ = 0)

and for different χ (M = 100) in figures 10 and 11, respectively. From the two figures,
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Figure 11. Growth rate ωv
0i as a function of the ray velocity V for the streamwise long-wave

instability (merged S- and H-modes) and for different Soret numbers χ , M = 100, and G = 2
(Ka= 500, Pr =10, L =0.01, B = 0.02, β =15◦).

G

M

0 2 4 6 8 10
100

150

200

250

300

350

AI

CI

χ = 0
0.1
0.2

Figure 12. AI/CI boundary curves in the M–G parameter space for the streamwise long-wave
instability (merged S- and H-modes) and for different Soret numbers χ (Ka= 500, Pr = 10,
L =0.01, B = 0.02, β = 15◦).

it is found that larger Marangoni and Soret numbers make the flow more unstable
and, at constant inertial effect (constant G), increase the range of unstable rays. A
combination of smaller Galileo numbers and larger Marangoni and Soret numbers
is thus needed in order to find the zone of absolute instability for this long-wave
instability. However, the set of parameters used to plot the curve at M = 200 in
figure 10 can be used to determine the boundary between absolute and convective
instability. The AI/CI boundary curves thus obtained are plotted in the (M, G)-plane
for different values of χ in figure 12. It is found that, as expected, larger Marangoni
and Soret numbers and smaller Galileo numbers favour the transition to absolute
instability. When the Galileo number is small (G < 2), the Marangoni number at the
AI/CI boundary curve increases very fast with the increase of the Galileo number,
while, when the Galileo number is large (G > 4), the boundary curve is nearly a
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Figure 13. Growth rate ωv
0i as a function of the ray velocity V for the streamwise short-wave

thermocapillary instability (P-mode) and for different Galileo numbers G, χ = 0, and M = 100
(Ka = 500, Pr = 10, L = 0.01, B = 0.02, β = 15◦).

straight line, which means that the Marangoni number is linearly dependent on the
Galileo number at the AI/CI transition point in this range of G. In the range chosen
(0 � χ � 0.2), the influence of the Soret number χ on this AI/CI transition remains
moderate and this influence is quite uniform over the whole domain of G.

4.2. Short-wave spatio-temporal instability of the P-mode

Concerning the P-modes, the temporal instability analysis has shown that a long-wave
instability exists for χ > 0 in the case of spanwise perturbations, but that only a short-
wave instability occurs in the case of streamwise perturbations. For this short-wave
instability, we perform a similar analysis as in the previous subsection, and thus plot
the growth rate ωv

0i as a function of the ray velocity V for different Galileo numbers
G (χ = 0, M =100), Marangoni numbers M (χ =0, G = 15) and Soret numbers χ

(G = 15, M =100), respectively in figures 13, 14 and 15. From these figures, we first
see that larger Galileo, Marangoni and Soret numbers make the flow more unstable.
Moreover, larger Galileo numbers correspond to larger downstream velocities, and
larger Marangoni and Soret numbers increase the range of unstable rays. Thus, as
for the long-wave instability in the previous subsection, a combination of smaller
Galileo numbers and larger Marangoni and Soret numbers is needed to find the zone
of absolute instability.

The AI/CI boundary curves obtained for the P-mode are plotted in the (M, G)-
plane for different values of χ in figure 16. We see that the increase of the Soret
number χ favours the transition to absolute instability. The boundary curves present
a local minimum Marangoni number at moderate Galileo number, which decreases
as χ is increased. Moreover the behaviour at small Galileo numbers is much changed
by the Soret effect: for χ = 0 (without Soret effect), the Marangoni number on the
boundary curve goes to infinity as G decreases to zero whereas for χ = 0.1, the
Marangoni number reaches a finite value for G = 0 and the flow is thus absolutely
unstable above this value. Finally, for χ = 0.2, the boundary curve passes through a
maximum value before decreasing to a still smaller value at G =0. Note that this
value at G =0 is smaller than the local minimum found at finite Galileo numbers.
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Figure 14. Growth rate ωv
0i as a function of the ray velocity V for the streamwise short-wave

thermocapillary instability (P-mode) and for different Marangoni numbers M , χ = 0, and
G =15 (Ka = 500, Pr = 10, L = 0.01, B = 0.02, β = 15◦).
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Figure 15. Growth rate ωv
0i as a function of the ray velocity V for the streamwise short-wave

thermocapillary instability (P-mode) and for different Soret numbers χ , M = 100, and G =15
(Ka= 500, Pr =10, L =0.01, B = 0.02, β =15◦).

4.3. Critical curves and AI/CI boundary curves for the streamwise instabilities

The true AI/CI boundary for the streamwise instabilities can only be obtained by
considering the boundary curves for both the long-wave and short-wave instabilities.
These boundary curves (dotted lines) are plotted together in the (M, G)-plane in
figure 17 for two different Soret numbers: χ =0 and χ = 0.1. We see that, for the two
values of χ , the AI/CI boundary curve for the long-wave instability intersects the curve
for the short-wave instability. The real AI/CI boundary will thus be determined by
the curve (solid line) corresponding to the smallest Marangoni numbers. We see that
for small Galileo numbers the AI/CI transition is due to the long-wave instability (S-
and H-modes), while for large Galileo numbers it is due to the short-wave instability
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Figure 16. AI/CI boundary curves in the M–G parameter space for the streamwise short-wave
thermocapillary instability (P-mode) and for different Soret numbers χ (Ka= 500, Pr = 10,
L = 0.01, B = 0.02, β = 15◦).
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Figure 17. AI/CI boundary curves (dotted lines) and critical curves (dashed lines) in the M–G
parameter space for both the long-wave (LW) and short-wave (SW) streamwise instabilities:
(a) χ = 0; (b) χ = 0.1. Solid lines are used to indicate the real boundary curves and the real
critical curves (Ka= 500, Pr = 10, L = 0.01, B = 0.02, β = 15◦).

(P-mode). The critical curves (dashed lines) which show the boundary between the
stable and unstable regions are also plotted in the (M, G)-plane in figure 17 for
the streamwise instabilities. For χ = 0, i.e. without Soret effect (figure 17a), this
stable/unstable boundary is determined by the critical curve associated with the long-
wave instability. But, for χ =0.1, owing to the strong influence of χ on the P-mode
of instability (figure 4b), the critical curve associated with this short-wave instability
now intersects the curve associated with the long-wave instability. And the real critical
curve (minimum critical Marangoni values, shown as a solid line) indicates that the
destabilization of the film is still due to the long-wave instability for small G, but
beyond about G =6 is now due to the short-wave instability.
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Figure 18. Growth rate ωv
0i as a function of the ray velocity V for both long-wave (LW) and

short-wave (SW) streamwise instabilities and for χ = 0 and M = 245: (a) G = 2.8; (b) G = 4.
The branches of saddle points which determine the properties of the spatio-temporal instability
are indicated by solid lines (Ka = 500, Pr = 10, L = 0.01, B = 0.02, β = 15◦).

4.4. Saddle-point bifurcations

In Brevdo et al. (1999) on isothermal falling films, a wave packet analysis is conducted
based on both the Briggs–Bers collision criterion and the saddle-point approach. This
analysis has revealed that, in the case R( = ρ2gh3 sin β/(2µ2)) = 200 and β = 4.6◦, there
are bifurcations of the saddle point contributing to the spatio-temporal instability,
the ray velocity V being viewed as a bifurcation parameter. Such bifurcations also
exist in our problem for parameter values near the intersection of the long-wave
and short-wave AI/CI boundary curves. This is shown in figure 18 for two sets of
parameters corresponding to χ = 0, M = 245 and two values of G, G =2.8 and G =4.
In this figure, the growth rates ωv

0i of both long-wave and short-wave instabilities are
plotted as a function of the ray velocity V . For both values of G, the short-wave
instability has a larger maximal growth rate, but occurs in a smaller interval of
unstable rays. Moreover, the two unstable saddle-point branches intersect. According
to the Briggs–Bers collision criterion (the process is not shown here, but is similar to
what is done in Brevdo et al. 1999), the properties of the spatio-temporal instability
are determined by the branches with the largest local growth rate, and these branches
are denoted as solid curves in the figure.

For G =2.8 (figure 18a), the two saddle-point branches intersect at two different
ray velocities. In this case, on increasing V , two saddle-point bifurcations are found
at the left and right boundaries of the unstable ray domain for the short-wave
instability, which correspond to a first transition from the unstable long-wave branch
to two unstable short-wave and long-wave branches, and then a back transition to
the unstable long-wave branch. The intersection points also determine two abrupt
changes in the properties of the dominant spatio-temporal instability such as the local
oscillatory frequency, spatial amplification rate and spatial wavenumber (change from
long-wave to short-wave, and back to long-wave). For G =4 (figure 18b), the two
saddle-point branches only intersect at one unstable ray velocity, determining one
abrupt change in the properties of the dominant spatio-temporal instability (from
short-wave to long-wave). In this case, on increasing V , two saddle-point bifurcations
are still found, but they are now at the left boundary of the unstable ray domain
for the long-wave instability and at the right boundary of the unstable ray domain
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for the short-wave instability. For both values of G, the absolute growth rate in the
laboratory frame (given by the local growth rate at V = 0) is greater than zero, which
means that the two situations are absolutely unstable. More precisely, the situation at
G = 2.8 is absolutely unstable owing to the long-wave instability, whereas the situation
at G = 4 is absolutely unstable owing to the short-wave instability.

5. Conclusion
In this paper, temporal and spatio-temporal instability analyses have been

performed for a binary liquid film with Soret effect flowing down an inclined heated
plate. A fixed inclination of the plate (β =15◦) and fixed values of the Kapitza,
Prandtl, Lewis, and Biot numbers (Ka, Pr, L, B) have been chosen, which lead to
three variable parameters, the Galileo, Marangoni, and Soret numbers (G, M , χ).
Although a Squire transformation exists for this situation, which allows a derivation
of the results for any orientation of the perturbation wavenumber from the results
obtained for streamwise perturbations, it has been shown that this requires knowledge
of the results for all the smaller inclination angles and Galileo numbers. For a fixed
inclination angle, this is thus not possible, and we have chosen to derive the stability
results for spanwise and streamwise perturbations.

The case of spanwise perturbations in a film on an inclined plate is similar to
the perturbations in a horizontal layer where the hydrostatic effect is taken into
account, but with an hydrostatic effect proportional to cosβ in the case of the
inclined film. In this case, we have shown that stationary (oscillatory) thermocapillary
S- and P-modes are the most dangerous for positive (negative) Soret numbers χ .
Moreover, the P-mode which is short-wave unstable for χ = 0 remains so for χ < 0,
but becomes long-wave unstable for χ > 0 and even merges with the long-wave S-
mode. This situation is absolutely unstable with respect to the stationary instabilities
and convectively unstable with respect to the oscillatory instabilities above the critical
values of the parameters.

In the case of streamwise perturbations, it has been shown that larger Soret
numbers as well as larger Marangoni numbers make the film flow more unstable.
The increase of these parameters leads to the merging of the long-wave surface mode
(H-mode) and the long-wave thermocapillary S-mode, so that the situation becomes
long-wave unstable for any Galileo number. It also strongly influences the short-wave
thermocapillary P-mode which becomes the most critical for enough large Galileo
numbers for χ =0.1. From the spatio-temporal point of view, it is found that the S-
and H-modes should belong to the same mode, because the same branch of saddle
points contributes to the spatio-temporal local growth of these modes in the moving
frame. Thus, there exist two AI/CI boundary curves determined by the long-wave
thermocapillary instability of the merged S- and H-modes and by the short-wave
thermocapillary instability of the P-mode. The two AI/CI boundary curves in the
M–G parameter space intersect each other, and it is found that for small Galileo
numbers the AI/CI transition is determined by the long-wave instability, while for
large Galileo numbers it is determined by the short-wave instability. Furthermore,
this intersection induces a bifurcation of the saddle points contributing to the spatio-
temporal instability, similarly to what was found by Brevdo et al. (1999) for the
isothermal film.

This work was originally funded by a grant from LMFA and IMFT (J. H.). This
work is also supported by the National Natural Science Foundation of China (Grants
No. 10676005, No. 10676004, No. 10676120 and No. 10702011).
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Galileo number G =
gd3

ν2

Prandtl number Pr =
ν

κ

Schmidt number Sc=
ν

D

Lewis number L =
D

κ

Soret number χ =
ασc

σt

Marangoni number Ma=
σt (Tw − Ta)d

µκ

Biot number Bi =
qd

kth

Dimensionless surface tension Σ =
σ0d

ρν2

Capillary number Ca=
σt (Tw − Ta)

σ0

Table 3. Definition of the dimensionless parameters which appear in the governing equations
(2.8) and the associated boundary conditions (2.9)–(2.10).

Appendix A. Dimensionless parameters
In the governing equations (2.8) and the corresponding boundary conditions (2.9)–

(2.10), there are nine dimensionless parameters which are recalled in table 3, and two
relations L =Pr/Sc and Σ Ca =Ma/Pr. Obviously, the Galileo, Marangoni and Biot
numbers and the dimensionless surface tension are dependent on the film thickness
d . In order that the film thickness only appears in the Galileo number, we adopt
the Kapitza number Ka = σ0/ρν4/3g1/3 to replace the dimensionless surface tension
Σ and define new dimensionless parameters for the Marangoni and Biot numbers:

Ka =ΣG−1/3, B = BiG−1/3, M =
Ma

Pr
G−1/3. (A 1)

Consequently, the relation Σ Ca =Ma/Pr becomes Ca = M/Ka. The new dimension-
less system can also be translated into the original one through the three relations:

Σ = Ka G1/3, Bi= B G1/3, Ma = M PrG1/3. (A 2)

Finally, we only need to fix seven independent dimensionless parameters such as the
Kapitza, Galileo, Prandtl, Lewis, Soret, Marangoni, and Biot numbers (Ka, G, Pr, L,
χ , M , B) as well as the inclination angle (β).

Appendix B. Long-wave approximation (Yih 1963) for the streamwise
instabilities

By using ŵ = −ikf , θ̂ = g, ĉ = h and c = ω/k, the linear stability equations (3.1) can
be changed to

(D2 − k2)2f = ik[(ū − c)(D2 − k2) − D2ū]f, (B 1a)

(D2 − k2)g = ikPr[(ū − c)g − Dθ̄f ], (B 1b)

(D2 − k2)h + χ(D2 − k2)g = ikSc [(ū − c)h − Dc̄f ] , (B 1c)
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f (0) = Df (0) = g(0) = 0, (B 1d )

Dh(0) + χDg(0) = 0, (B 1e)

(D2 + k2)f (1) − D2ū(1)

ū(1) − c
f (1) + ik

Ma

Pr
[g(1) − h(1)] − ik

Ma

Pr

Dθ̄ (1) − Dc̄(1)

ū(1) − c
f (1) = 0,

(B 1f )

[D2 − 3k2 − ik(ū(1) − c)]Df (1) − i[Dp̄(1) − Σ ′k2]k

ū(1) − c
f (1) = 0, (B 1g)

Dg(1) + Bi g(1) − BiDθ̄ (1)

ū(1) − c
f (1) = 0, (B 1h)

Dh(1) − χBi g(1) +
χBi Dθ̄ (1)

ū(1) − c
f (1) = 0. (B 1i )

The zero-order approximation with respect to the wavenumber k is given by

f ′′′′ = 0, g′′ =0, h′′ = 0, (B 2a–c)

f (0) = f ′(0) = g(0) = 0, h′(0) + χg′(0) = 0, (B 2d, e)

f ′′(1) − D2ū(1)

ū(1) − c
f (1) = 0, f ′′′(1) = 0, (B 2f, g)

g′(1) + Bi g(1) − Bi Dθ̄ (1)

ū(1) − c
f (1) = 0, (B 2h)

h′(1) − χBi g(1) +
χBi Dθ̄ (1)

ū(1) − c
f (1) = 0. (B 2i)

The solution of (B 2) can then be expressed as

f0 = z2, (B 3a)

g0 =
Bi

1 + Bi

2Dθ̄ (1)

D2ū(1)
z =

2Bi2

(1 + Bi)2Re
z, (B 3b)

h0 = − χBi

1 + Bi

2Dθ̄ (1)

D2ū(1)
z + H = − 2χBi2

(1 + Bi)2Re
z + H, (B 3c)

c0 = ū(1) − 1
2
D2ū(1) = Re, (B 3d )

where H will be determined from (B 4c) of the first-order approximation:

H =
7

8

χBi2

(1 + Bi)2Re
− χBi

2(1 + Bi)Re
.

The first-order approximation is then given by

f ′′′′ = ik[(ū − c0)f
′′
0 − D2ūf0], (B 4a)

g′′ = ikPr[(ū − c0)g0 − Dθ̄f0], (B 4b)

h′′ + χg′′ = ikSc [(ū − c0)h0 − Dc̄f0] , (B 4c)

f (0) = f ′(0) = g(0) = 0, (B 4d )
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h′(0) + χg′(0) = 0, (B 4e)

f ′′(1) − D2ū(1)

ū(1) − c
f (1) + ik

Ma

Pr
[g0(1) − h0(1)] − ik

Ma

Pr

Dθ̄ (1) − Dc̄(1)

ū(1) − c0

f0(1) = 0, (B 4f )

f ′′′(1) − ik(ū(1) − c0)f
′
0(1) − i[Dp̄(1) − Σ ′k2]k

ū(1) − c0

f0(1) = 0, (B 4g)

g′(1) + Bi g(1) − Bi Dθ(1)

ū(1) − c
f (1) = 0, (B 4h)

h′(1) − χBig(1) +
χBiDθ(1)

ū(1) − c
f (1) = 0. (B 4i )

If we put f = f0 + f1 and substitute ū, c0, f0, g0 and h0 into (B 4a) and (B 4g), we
obtain

f ′′′′
1 = 2ikRe(z − 1), (B 5a)

f ′′′
1 (1) = ik

(
2 cotβ − Re + 2

Σ ′

Re
k2

)
. (B 5b)

From (B 5), we further obtain

f ′′′
1 = ikRe(z − 1)2 + ik

(
2 cot β − Re + 2

Σ ′

Re
k2

)
, (B 6a)

f ′′
1 =

1

3
ikRe(z − 1)3 + ik

(
2 cotβ − Re + 2

Σ ′

Re
k2

)
z + I, (B 6b)

f1 =
1

60
ikRe(z − 1)5 +

1

6
ik

(
2 cotβ − Re + 2

Σ ′

Re
k2

)
z3 +

I

2
z2 + Jz + K. (B 6c)

From (B 4d), we obtain J = − 1
12

ikRe and K = 1
60

ikRe. Equation (B 4f) can be written
as

f ′′
1 (1) − D2ū(1)

ū(1) − c0

f1(1) − D2ū(1)

(ū(1) − c)2
∆cf0(1) + ik

Ma

Pr
[g0(1) − h0(1)]

− ik
Ma

Pr

Dθ̄ (1) − Dc̄(1)

ū(1) − c0

f0(1) = 0, (B 7)

and, using (B 6), we can deduce that

∆c = ik

[
2

15
Re2 − 1

3
Re cot β − 1

3
Σ ′k2 +

(3χBi + 12χ + 16)Ma Bi

32Pr(1 + Bi)2

]
,

c = c0 + ∆c =G sinβ

+ ik

[
2

15
(G sinβ)2 − 1

3
G cosβ − 1

3
Σ ′k2 +

(3χBi + 12χ + 16)MaBi

32Pr(1 + Bi)2

]
.
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