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Abstract. Let Fq be a finite field with q elements, ψ a non-zero element
of Fq, and n an integer ≥ 3 prime to q. The aim of this article is to
show that the zeta function of the projective variety over Fq defined by
Xψ : xn1 + · · · + xnn − nψx1 . . . xn = 0 has, when n is prime and Xψ is
non singular (i.e. when ψn 6= 1), an explicit decomposition in factors
coming from affine varieties of odd dimension ≤ n − 4 which are of
hypergeometric type. The method we use consists in counting separately
the number of points of Xψ and of some varieties of the preceding type
and then compare them. This article answers, at least when n is prime,
a question asked by D. Wan in his article “Mirror Symmetry for Zeta
Functions”.

1. Introduction

Let n be an integer ≥ 3 and Fq a finite field of characteristic p ∤ n. We

consider the family of hypersurfaces of Pn−1
Fq

defined by

Xψ : xn1 + · · ·+ xnn − nψx1 . . . xn = 0, (Dwork family)

where ψ ∈ Fq is a non-zero parameter. We will make the assumption that

Xψ is non-singular, i.e. that ψn 6= 1. We denote by |Xψ(Fqr)| the number of

points of Xψ over an extension Fqr of degree r of Fq; the zeta function of Xψ

is defined by

ZXψ/Fq(t) = exp

(+∞∑

r=1

|Xψ(Fqr)|
tr

r

)
.

When q ≡ 1 mod n (see [10, Theorem 7.2 page 174]) and when n is

prime (see [6, Theorem 9.5 page 179]), it is possible to show that the zeta

function of Xψ takes the form

ZXψ/Fq(t) =

(
Q(t, ψ)R(qρtρ, ψ)

)(−1)n−1

(1 − t)(1 − qt) . . . (1 − qn−2t)
,

where ρ is the order of q in (Z/nZ)×.

In this formula, Q(t, ψ) is a polynomial with integer coefficients of degree

n − 1. As proved by D. Wan (see [10, §7, Eq. (14), page 173]), this factor
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comes from the zeta function of the quotient Yψ of Xψ ⊗ Fqρ by the group

{(ζ1, . . . , ζn) ∈ Fqρ | ζ
n
i = 1, ζ1 . . . ζn = 1} (Wan calls Yψ a “singular mirror”

of Xψ):

ZYψ/Fq(t) =
Q(t, ψ)(−1)n−1

(1 − t)(1 − qt) . . . (1 − qn−2t)
.

A simple equation of Yψ is (y1 + · · ·+ yn)
n = (nψ)ny1 . . . yn.

The factor R(t, ψ) is a polynomial with integer coefficients of degree

(n− 1)n + (−1)n(n− 1)

n
− (n− 1)

whose roots have absolute values q−(n−4)/2. We are interested in describing

the factorisation of R; two approaches are possible: either predict, from

a theoretical point of view, the existence of a factorisation of R, or look

for explicit varieties with factors in their zeta functions appearing in R.

Concerning the first approach, we refer to [8]. The second approach is raised

by Wan in [10, §7, page 175] who mentions that it has been solved for n = 3,

n = 4 (Dwork) and n = 5 (Candelas, de la Ossa, and Rodriguez Villegas);

a recent article of Katz [7] also talks about the subject from a different

angle1.

The aim of this article is to handle the case where n is a prime number

≥ 5 by using only properties of Gauss sums; the fact that n is prime allows to

restrict to the case q ≡ 1 mod n in view of Haessig’s result [6, Theorem 9.5,

page 179] that, when n is prime,

R(qt, ψ) = RXψ/Fqρ (q
ρtρ, ψ)1/ρ,

where ρ is the order of q in (Z/nZ)×. More precisely, if we define NR(qr)

by R(t, ψ) = exp
(∑+∞

r=1 NR(qr) t
r

r

)
, we will show the following result (Theo-

rem 5.10 page 18).

Theorem. Let n be a prime number ≥ 5 such that q ≡ 1 mod n. We can

write

(1.1) NR(qr) = q
n−5

2 N1(q
r) + q

n−7
2 N3(q

r) + · · · +Nn−4(q
r),

where each Nd(q
r) is a sum of some |Hd,i(q

r)| − (q − 1)l−1qd+1−l, the Hd,i

being varieties of Ad+2
Fq

of hypergeometric type of odd dimension equal to d

with 1 ≤ d ≤ n− 4 (their equations are explicitly given in §5.3 page 16).

This equality in terms of number of points translates into a factorisation

of the polynomial R in terms of the zeta function of the preceding Hd,i(q
r).

1His results are in terms of traces of the Frobenius of the toric hypersurfaces x1 . . . xn =
λy1 . . . ym over a hypergeometric sheave.
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This article is organised as follows. In §2, we recall the formulas concern-

ing Gauss and Jacobi sums we will need in the rest of the article. In §3, we

compute, in terms of Gauss sums, the number of points of some varieties

of hypergeometric type thanks to a method similar to the one Koblitz used

in [9]. In §4, we recall the formula for the number of points of Xψ, and in

§5, we compare this formula with those from §3. Finally, in §6, we detail

the cases n = 5 (already treated by Candelas, de la Ossa, and Rodriguez

Villegas in [4]) and n = 7. The assumptions that n is prime and that q ≡ 1

mod n will only be used starting from §5 and §4.2 respectively.

Let us mention to finish that our method does not give a geometric link

between Xψ and the varieties of hypergeometric type we consider.

2. Gauss and Jacobi sums formulas

In all this §2, Fq will be a finite field with q elements.

Let Ω be an algebraically closed field of characteristic zero, G a finite

abelian group and Ĝ = Hom(G,Ω∗) its character group. Let us recall the

following orthogonality formula:

(2.1)
1

|G|

∑

ϕ∈Ĝ

ϕ(g) =

{
1 if g = e,

0 if g 6= e,

where e is the neutral element of G. In the following, we will use this formula

when G = Fq or G = F∗
q .

Let us now fix a non-trivial additive character ϕ : Fq → Ω∗.

Proposition 2.1 (Orthogonality formula).

(2.2)
1

q

∑

a∈Fq

ϕ(ax) =

{
1 if x = 0,

0 if x 6= 0.

Proof. This results from Formula (2.1) above and the fact that every addi-

tive character is of the form x 7→ ϕ(ax) for some a ∈ Fq. �

Definition 2.2 (Gauss sums). If χ : F∗
q → Ω∗ is a multiplicative character,

let G(ϕ, χ) be the Gauss sum

G(ϕ, χ) =
∑

x∈F∗

q

ϕ(x)χ(x).

If 1 is the trivial character of F∗
q , we have G(ϕ, 1) = −1.

Proposition 2.3 (Reflection formula). If χ is a non-trivial character of F∗
q ,

(2.3) G(ϕ, χ)G(ϕ, χ−1) = χ(−1)q.
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Proof. Let us recall the proof of this simple property (see also [2, Theo-

rem 1.1.4 (a), page 10]). We have

G(ϕ, χ)G(ϕ, χ−1) =
∑

x,y∈F∗

q

ϕ(x+ y)χ(x
y
).

Making the change of variable x = yz, we obtain

G(ϕ, χ)G(ϕ, χ−1) =
∑

y,z∈F∗

q

ϕ(y(1 + z))χ(z)

= χ(−1)(q − 1) +
∑

z∈F
∗

q , z 6=−1

(∑

y∈F∗

q

ϕ(y(1 + z))

)
χ(z).

We conclude by making the change of variable y′ = y(1 + z) and by using

an orthogonality formula. �

Proposition 2.4 (Multiplication formula). Let d ≥ 1 be an integer dividing

q − 1. If η is a character of F∗
q ,

(2.4)
G(ϕ, ηd)∏

χd=1
G(ϕ, ηχ)

=
η(d)d∏

χd=1

χ 6=1

G(ϕ, χ)
.

Proof. This seemingly simple formula does not seem to admit an elementary

proof; we refer the reader to [2, Theorem 11.3.5 page 355] for additional

details. �

Definition 2.5 (Jacobi sums). If (χ1, . . . , χr) is a finite sequence of char-

acters of F∗
q , we define

J(χ1, . . . , χr) =
∑

x1,...,xr∈F
∗

q

x1+···+xr=1

χ1(x1) . . . χr(xr).

Proposition 2.6 (Link with Gauss sums). If χ1, . . . , χr are characters of

F∗
q not all trivial,

(2.5) J(χ1, . . . , χr) =






1

q

G(ϕ, χ1) . . . G(ϕ, χr)

G(ϕ, χ1 . . . χr)
if χ1 . . . χr = 1,

G(ϕ, χ1) . . . G(ϕ, χr)

G(ϕ, χ1 . . . χr)
if χ1 . . . χr 6= 1.

Proof. Let us briefly recall the proof (see also [2, Theorem 10.3.1, page 302]).

The additive convolution of the functions χ1, . . . , χr is defined by

(χ1 ∗ · · · ∗ χr)(a) =
∑

x1+···+xr=a
xi∈F

∗

q

χ1(x1) . . . χr(xr).

It is equal to (χ1 . . . χr)(a)J(χ1 . . . χr) when a 6= 0. To compute the value

when a = 0, we notice that the sum of (χ1 ∗ · · · ∗ χr)(a) over a ∈ Fq is
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0 since at least one of the χi is non trivial. Thus, (χ1 ∗ · · · ∗ χr)(0) is 0 if

χ1 . . . χr 6= 1 and is −(q − 1)J(χ1, . . . , χr) if χ1 . . . χr = 1. Moreover,
r∏

i=1

G(ϕ, χi) =
∑

a∈Fq

ϕ(a)(χ1 ∗ · · · ∗ χr)(a),

and so
r∏

i=1

G(ϕ, χi) = J(χ1, . . . , χr) ×

{
G(ϕ, χ1 . . . χn) if χ1 . . . χr 6= 1,

G(ϕ, 1) − (q − 1) if χ1 . . . χr = 1,

which shows the result. �

Proposition 2.7 (Fourier inversion formula). For every map f : F∗
q → Ω,

(2.6) ∀x ∈ F∗
q , f(x) =

1

q − 1

∑

η∈bF∗

q

(∑

y∈F∗

q

f(y)η−1(y)

)
η(x).

Proof. It is a direct consequence of the orthogonality formulas for the char-

acters of the abelian group F∗
q . �

Corollary 2.8. If x ∈ F∗
q ,

(2.7) ϕ(x) =
1

q − 1

∑

η∈bF∗

q

G(ϕ, η−1)η(x).

3. Number of points of some varieties of hypergeometric type

In all of §3, n will be an integer ≥ 2 and Fq a finite field with q elements.

3.1. Computation of the number of points. We consider here some

affine varieties of hypergeometric type for which we compute the number of

points by using Gauss sums and taking inspiration from Koblitz [9, §5].

Theorem 3.1. Let k ≥ l ≥ 2 be two integers and λ ∈ F∗
q a parameter; we

denote by Hλ ⊂ Ak+1 the affine variety defined by
{
yn = xα1

1 . . . xαkk (1 − x1)
β1 . . . (1 − xl−1)

βl−1(1 − xl − · · · − xk)
βl

λx1 . . . xl = 1

where αi and βi are integers ≥ 1. The number of points of Hλ over Fq is

|Hλ(Fq)| = (q − 1)l−1qk−l +
∑

χn=1

χ 6=1

1

q − 1

∑

η

Nλ,χ,η η(λ),

where

Nλ,χ,η =
1

qν
G(ϕ, χα1η) . . . G(ϕ, χαlη)G(ϕ, χβ1) . . . G(ϕ, χβl)G(ϕ, χαl+1 ) . . .G(ϕ, χαk )

G(ϕ, χα1+β1η) . . . G(ϕ, χαl−1+βl−1η)G(ϕ, χαl+···+αk+βlη)
,

with ν denoting the number of trivial characters among those appearing in

the denominator (namely, χαj+βjη for 1 ≤ j ≤ l − 1 and χαl+···+αk+βlη).
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Proof. To simplify, we shall write yn = Q(x1, . . . , xk) for the first equation

defining Hλ. We have

|Hλ(Fq)| =
∑

x∈F
k
q , y∈Fq

yn=Q(x)
λx1...xl=1

1 =
∑

x∈F
k
q

λx1...xl=1

∑

y∈Fq

yn=Q(x)

1,

with

|{y ∈ Fq | y
n = z}| =

{
1 if z = 0,

1 +
∑
χn=1

χ 6=1

χ(z) if z 6= 0,

and thus

|Hλ(Fq)| =
∑

x∈F
k
q

λx1...xl=1
Q(x)=0

1 +
∑

x∈F
k
q

λx1...xl=1
Q(x)6=0

(
1 +

∑

χn=1

χ 6=1

χ(Q(x))

)

=
∑

x∈F
k
q

λx1...xl=1

1 +
∑

x∈F
k
q

λx1...xl=1
Q(x)6=0

∑

χn=1

χ 6=1

χ(Q(x))

= (q − 1)l−1qk−l +
∑

χn=1

χ 6=1

∑

x∈F
k
q

λx1...xl=1
Q(x)6=0

χ(Q(x))

= (q − 1)l−1qk−l +
∑

χn=1

χ 6=1

∑

x∈F
k
q

Q(x)6=0

χ(Q(x))δλx1...xl,1,

where δz,z′ is the Kronecker delta (= 1 if z = z′ and = 0 otherwise). Because

∀z, z′ ∈ F∗
q , δz,z′ =

1

q − 1

∑

η∈bF∗

q

η( z
z′

),

we may write

|Hλ(Fq)| = (q − 1)l−1qk−l

+
∑

χn=1

χ 6=1

1

q − 1

∑

η∈bF∗

q

( ∑

x∈F
k
q

Q(x)6=0

χ(Q(x))η(x1 . . . xl)

)
η(λ).

Let us compute Nλ,χ,η =
∑

Q(x)6=0 χ(Q(x))η(x1 . . . xl). As αi and βi are > 0,

Nλ,χ,η =
∑

(x1,...,xk)∈(F∗

q )k

∀i≤l−1, xi 6=1
xl+···+xk 6=1

(χα1η)(x1)χ
β1(1 − x1) . . . (χ

αl−1η)(xl−1)

χβl−1(1 − xl−1)(χ
αlη)(xl)χ

αl+1(xl+1) . . . χ
αk(xk)

χβl(1 − xl − · · · − xk).

We recognize a product of Jacobi sums:

Nλ,χ,η = J(χα1η, χβ1) . . . J(χαl−1η, χβl−1)J(χαlη, χαl+1, . . . , χαk , χβl).
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By using Formula (2.5) page 4, we deduce that

Nλ,χ,η =
1

qν
G(ϕ, χα1η) . . . G(ϕ, χαlη)G(ϕ, χβ1 ) . . . G(ϕ, χβl)G(ϕ, χαl+1 ) . . .G(ϕ, χαk )

G(ϕ, χα1+β1η) . . . G(ϕ, χαl−1+βl−1η)G(ϕ, χαl+···+αk+βlη)
,

with ν as defined in the theorem. �

Notations. Let Nλ,χ,η be as in the previous theorem; we define

Nλ,χ =
1

q − 1

∑

η∈bF∗

q

Nλ,χ,η η(λ) and Nλ =
∑

χn=1

χ 6=1

Nλ,χ,η.

Corollary 3.2. Assume that n is odd, that none of the elements of the

sequence (β1, . . . , βl, αl+1, . . . , αk) are divisible by n and that, for 1 ≤ b ≤

n−1, the number of terms of the sequence ≡ b mod n is equal to the number

of terms ≡ −b mod n (this implies that k is even). When these conditions

are met, we say we have complete pairing. In this case,

Nλ,χ,η = q
k
2
−ν G(ϕ, χα1η) . . .G(ϕ, χαlη)

G(ϕ, χα1+β1η) . . .G(ϕ, χαl−1+βl−1η)G(ϕ, χαl+···+αk+βlη)
,

where ν is the number of trivial characters appearing in the denominator.

Proof. This is an immediate consequence of the reflection formula (2.3):

G(ϕ, χβ1) . . .G(ϕ, χβl)G(ϕ, χαl+1) . . . G(ϕ, χαk) = q
k
2 .

(Let us note that, because χ 6= 1 and because each αi and βj are 6≡ 0

mod n, the characters appearing are all non trivial, and so the reflection

formula applies with χ(−1) = 1 as n is odd.) �

3.2. Link with some hypergeometric hypersurfaces. Assume that n

is odd and that α1 + β1 ≡ 0 mod n. In that case, Hλ has the same number

of points as the hypersurface of Ak defined by

yn = xα2
2 . . . xαkk (1 − x2)

β2 . . . (1 − xl−1)
βl−1

· (1 − xl − · · · − xk)
βl+1(1 − λx2 . . . xl)

β1

without the points where x2 . . . xl = 0. We recover in this way a hypersurface

of the same type as in [4, §11.1] when n = 5 (see also example 6.1 page 19).

4. Number of points of the dwork hypersurfaces

In all this §4, n denotes an integer ≥ 3 and our aim is to compute

the number of points of Xψ and then organise it into an appropriate form

to relate it to the number of points of varieties of hypergeometric type

considered in §3.

To compute the number of points of Xψ in terms of Gauss sums, it is

possible to use a method close to the one A. Weil used in [11] for the diagonal
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case ψ = 0; this is done for example in [9, Theorem 2, page 13] and [10, §3].

After recalling this computation in §4.2, we will organise the terms in the

same way as Candelas, de la Ossa and Rodriguez-Villegas did for the case

n = 5 in [3, §9] and [4, §11], namely (see Theorem 4.10):

|Xψ(Fq)| = 1 + q + · · ·+ qn−2 +Nmirror +
∑

Ns.

In §5, we will explain how each Ns is related to a Nλ = |Hλ(Fq)| − (q −

1)l−1qk−l from §3 (here, λ = 1
ψn

).

4.1. Preliminaries. The aim of this §4.1 is to set a certain number of

notations useful in what follows. The groups Z/nZ, (Z/nZ)× and Sn act

on each (s1, . . . , sn) ∈ (Z/nZ)n satisfying s1 + · · · + sn = 0 in the following

way:

∀j ∈ Z/nZ, j · (s1, . . . , sn) = (s1 + j, . . . , sn + j);

∀k ∈ (Z/nZ)×, k × (s1, . . . , sn) = (ks1, . . . , ksn);

∀σ ∈ Sn,
σ(s1, . . . , sn) = (sσ−1(1), . . . , sσ−1(n)).

Definition 4.1. Consider an s = (s1, . . . , sn) ∈ (Z/nZ)n such that s1 +

· · ·+ sn = 0; we denote by

a) [s] = [s1, . . . , sn] the class of (s1, . . . , sn) mod the action of Z/nZ;

b) 〈s〉 = 〈s1, . . . , sn〉 the class of (s1, . . . , sn) mod the simultaneous ac-

tions of Z/nZ and Sn;

c) s the class of (s1, . . . , sn) mod the simultaneous actions of Z/nZ, Sn

and (Z/nZ)×;

d) γs the number of permutations of (s1, . . . , sn).

Remarks 4.2.

a) The number γs only depends on s, not on the choice of s.

b) If all the si are equal, then γs = 1.

c) If 〈s〉 = 〈0, 1, 2, . . . , n − 1〉, then γs = n! but the number of permu-

tations of [s] is n!/n = (n − 1)! (the 1/n comes from the fact that

adding the same number to each coordinate amounts to a circular

permutation).

The following lemma, which we will only use later (see Lemma 5.2),

shows that, when n is prime, the number γs of permutations of (s1, . . . , sn)

is almost always the same as the number of permutations of [s1, . . . , sn].

Lemma 4.3. Assume that n is prime. If 〈s1, . . . , sn〉 6= 〈0, 1, 2, . . . , n− 1〉,

then γs is equal to the number of permutations of [s1, . . . , sn].
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Proof. If there exists j ∈ Z/nZ non zero such that (s1 + j, . . . , sn + j) is a

permutation of (s1, . . . , sn), then {s1, . . . , sn} is a nonempty subset of Z/nZ

stable by x 7→ x + j and thus equal to Z/nZ as n is prime. Consequently,

〈s〉 = 〈0, 1, 2, . . . , n− 1〉. �

Remark 4.4. This proof shows that, when 〈s〉 6= 〈0, 1, . . . , n− 1〉, the only

j ∈ Z/nZ such that there exists σ ∈ Sn satisfying σs = s+ j is j = 0.

4.2. Formula for the number of points of Xψ. The aim of this §4.2 is

to prove Theorem 4.5 below, stated in a slightly different form by Koblitz in

[9, §3]. From now on, we resume using the notations and assumptions of the

introduction: Fq is a finite field, n an integer ≥ 3 such that q ≡ 1 mod n,

ψ ∈ Fq is a non-zero parameter (but we don’t yet suppose that ψn 6= 1) and

Xψ is the hypersurface of Pn−1
Fq

given by xn1 + · · ·+ xnn − nψx1 . . . xn = 0.

Theorem 4.5 (Koblitz). We have

|Xψ(Fq)| = 1 + q + · · · + qn−2

+
1

q − 1

∑

[s]

∑

η∈bF∗

q

1

qδ

( n∏

i=1

G(ϕ, χ−siη−1)

)
G(ϕ, ηn)η( 1

(−nψ)n
),

where δ = 0 if one of the χsiη is trivial and δ = 1 otherwise.

Proof. For the sake of completeness, and because it would be just as long to

deduce our formula from Koblitz’, we will recall the proof given in [9, §3].

Let f(x) = xn1 + · · · + xnn − nψx1 . . . xn and set

νq(Xψ) = |{x ∈ Fnq | f(x) = 0}|;

ν∗q (Xψ) = |{x ∈ (F∗
q )
n | f(x) = 0}|.

As the product x1 . . . xn is zero when one of the xi is zero, we have νq(Xψ)−

ν∗q (Xψ) = νq(X0) − ν∗q (X0), i.e.

νq(Xψ) = νq(X0) + ν∗q (Xψ) − ν∗q (X0).

The computation of νq(X0) is classical and goes back to A. Weil, also we

will not recall it (see [11] or [2, Theorem 10.4.2, page 304]). By using For-

mula (2.5) to express everything in terms of Gauss sums and by doing the

change of variable χi 7→ χ−1
i , here is what we find:

(4.1) νq(X0) = qn−1 +
q − 1

q

∑

χni =1, χi 6=1

χ1...χn=1

( n∏

i=1

G(ϕ, χ−1
i )

)
.

We now need to compute ν∗q (Xψ) and ν∗q (X0). Both computations rely on the

same method, the only difference being that, when ψ = 0, the polynomial
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f(x) is a sum of n monomials instead of n + 1 which slightly changes the

result. We will only give the details for ν∗q (Xψ) when ψ 6= 0.

The orthogonality formula (2.2) page 3 for additive characters shows

that

ν∗q (Xψ) =
1

q

∑

a∈Fq

∑

x∈(F∗

q )n

ϕ(af(x))

=
(q − 1)n

q
+

1

q

∑

a∈F∗

q

∑

x∈(F∗

q )n

( n∏

i=1

ϕ(axni )

)
ϕ(−nψax1 . . . xn).

We now express each ϕ(. . .) in terms of Gauss sums thanks to Formula (2.7)

page 5:

ν∗q (Xψ) =
(q − 1)n

q

+
1

q

∑

η1,...,ηn+1∈bF∗

q

(n+1∏

i=1

G(ϕ, η−1
i )

)(
1

q − 1

∑

a∈F∗

q

(η1 . . . ηn+1)(a)

)

n∏

i=1

(
1

q − 1

∑

xi∈F∗

q

(ηni ηn+1)(xi)

)
ηn+1(−nψ).

Using orthogonality formulas, the sums over a and the xi are all non-zero

(equal to q − 1) if and only if

{
η1 . . . ηnηn+1 = 1

∀i ∈ [[1;n]], ηni ηn+1 = 1
i.e. ∃η ∈ F̂∗

q ,






ηi = χiη

χni = 1 and χ1 . . . χn = 1

ηn+1 = η−n

The character η defined in this way is not unique; indeed, if η′ and χ′
i are also

solutions of the system, there exists χ satisfying χn = 1 such that η′ = χ−1η

and χ′
i = χχi for all i. This means that if R is a representative set of the

n-uples (χ1, . . . , χn) of characters mod the (χ, . . . , χ) satisfying χni = 1 and

χ1 . . . χn = 1 with χn = 1, the map (χ1, . . . , χn, η) 7→ (χ1η, . . . , χnη, η
−n)

is a one-to-one map of R × F̂∗
q onto the set of (n + 1)-uples (η1, . . . , ηn+1)

satisfying the preceding conditions. From this, it results that, if χ is a mul-

tiplicative character of order n,

ν∗q (Xψ) =
(q − 1)n

q
(4.2)

+
1

q

∑

[s]

∑

η∈bF∗

q

( n∏

i=1

G(ϕ, χ−siη−1)

)
G(ϕ, ηn)η( 1

(−nψ)n
).
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This ends the computation of ν∗q (Xψ). By a similar method, we find

(4.3) ν∗q (X0) =
(q − 1)n

q
+
q − 1

q

∑

χni =1

χ1...χn=1

( n∏

i=1

G(ϕ, χ−1
i )

)
.

From (4.1) and (4.3), we obtain

νq(X0) − ν∗q (X0) = qn−1 −
(q − 1)n

q
−
q − 1

q

∑

χni =1

χ1...χn=1

∃i, χi=1

( n∏

i=1

G(ϕ, χ−1
i )

)
,

= qn−1 −
(q − 1)n

q

−
q − 1

q

∑

(χ1,...,χn) mod {(χ,...,χ)}
χni =1, χ1...χn=1

∃i, χi=1

∑

η∈bF∗

q

ηn=1

( n∏

i=1

G(ϕ, (χiη)
−1)

)
,

Writing χi = χsi where χ is, as above, a character of order n, we transform

the first sum into a sum over the [s] such that ∃i, si = 0; finally, we combine

the terms of this sum with those satisfying ηn = 1 in Formula (4.2) above

for ν∗q (Xψ). As G(ϕ, 1) = −1, we have, with δ as defined in the theorem,

νq(Xψ) = ν∗q (Xψ) + νq(X0) − ν∗q (X0)

= qn−1 +
∑

[s]

∑

η∈bF∗

q

1

qδ

( n∏

i=1

G(ϕ, χ−siη−1)

)
G(ϕ, ηn)η( 1

(−nψ)n
).

By counting the number of zeros in the projective space instead of the affine

space, we obtain the announced formula. �

4.3. Reorganisation of the terms. We keep the assumptions and nota-

tions of §4.2 and suppose that n is odd. The aim of this §4.3 is to write the

formula obtained for |Xψ(Fq)| in Theorem 4.5 in terms of some coefficients

β(s1,...,sn),χ,η which we now define.

Definition 4.6. Let us consider (s1, . . . , sn) ∈ (Z/nZ)n such that s1 + · · ·+

sn = 0. If χ is a multiplicative character of F∗
q of order n and if η is a

character of F∗
q , we set

(4.4) β(s1,...,sn),χ,η = q
n+1

2
−z−δ G(ϕ, η)G(ϕ, χη) . . .G(ϕ, χn−1η)

G(ϕ, χs1η) . . .G(ϕ, χsnη)
,

where z denotes the number of trivial characters in the finite sequence

(χs1η, . . . , χsnη) and where δ = 0 if z 6= 0 and δ = 1 if z = 0 (this is

the same δ as in Theorem 4.5).
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Proposition 4.7. With the above assumptions, we have

1

qδ

( n∏

i=1

G(ϕ, χ−siη−1)

)
G(ϕ, ηn)η( 1

(−nψ)n
) = β(s1,...,sn),χ,η η(

1
ψn

).

Proof. Invoking the reflection formula (2.3), we obtain
n∏

i=1

G(ϕ, χ−siη−1) = qn−z
η(−1)n

G(ϕ, χs1η) . . .G(ϕ, χsnη)
,

and, using the multiplication formula (2.4), we get, as n is odd,

G(ϕ, ηn) =
η(n)n

q
n−1

2

G(ϕ, η)G(ϕ, χη) . . .G(ϕ, χn−1η).

With these two formulas, we deduce at once the result. �

The coefficients β defined above satisfy the following three compatibility

relations respective to the actions of the groups Z/nZ, Sn and (Z/nZ)×.

Lemma 4.8. With the same notations and assumptions as the preceding

definition,

∀σ ∈ Sn, β(sσ(1),...,sσ(n)),χ,η = β(s1,...,sn),χ,η;(4.5)

∀j ∈ Z, β(s1+j,...,sn+j),χ,η = β(s1,...,sn),χ,χjη;(4.6)

∀k ∈ (Z/nZ)×, β(ks1,...,ksn),χ,η = β(s1,...,sn),χk,η.(4.7)

Proof. Formula (4.5) results immediately from the definition of β. As for

(4.6) and (4.7), we note that the product G(ϕ, η)G(ϕ, χη) . . .G(ϕ, χn−1η)

in Formula (4.4) stays the same if we change η into χjη or if we change χ

into χk with k prime to n. �

Proposition 4.9. Under the same assumptions as above, the following

quantities only depend on 〈s〉 (as well as on the choice of χ) and of s re-

spectively and not on the choice of the representative (s1, . . . , sn):

N〈s〉,χ =
1

q − 1

∑

η∈bF∗

q

β(s1,...,sn),χ,η η(
1
ψn

);

Ns = γs
∑

〈s′〉∈s

N〈s′〉,χ.

Proof. For N[s],χ, we just use Formula (4.6) and the fact that η 7→ χjη

is a one-to-one map of F̂∗
q onto itself when j ∈ Z/nZ. For Ns, we use

Formula (4.7) and the fact that χ 7→ χk is a one-to-one map of {χ ∈ F̂∗
q |

χn = 1} onto itself if k ∈ (Z/nZ)×. �

We deduce the following result.
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Theorem 4.10. Under the preceding assumptions, we have

|Xψ(Fq)| = 1 + q + · · · + qn−2 +
∑

s

Ns.

Remark 4.11. As we will see in §4.4 below, N0 = Nmirror and, when Xψ is

non-singular (i.e. when ψn 6= 1), N(0,1,2,...,n−1) = 0.

4.4. Identification of some of the factors. We keep the assumptions

and notations of §4.3. Let us recall that Yψ denotes the “singular mirror” of

Xψ, as specified in the introduction, and we write Nmirror = |Yψ(Fq)| − (1 +

q + · · ·+ qn−2).

Theorem 4.12 (Wan). N0 = Nmirror.

Proof. See [10, §4]; note that the result is not known when q 6≡ 1 mod n,

unless n is prime (see [6]). �

Let us recall that, in this §4, the only assumption we make on ψ is that

ψ 6= 0.

Lemma 4.13. We have

N〈0,1,2,...,n−1〉,χ =

{
0 if ψn 6= 1,

q
n−1

2 if ψn = 1,

and so the term N(0,1,2,...,n−1) = (n− 1)!N〈0,1,2,...,n−1〉,χ does not contribute to

the zeta function ZXψ/Fq(t) when ψn 6= 1 and contributes as (1−q
n−1

2 t)−(n−1)!

when ψn = 1.

Proof. When 〈s1, . . . , sn〉 = 〈0, 1, . . . , n− 1〉, we have

G(ϕ, χs1η) . . .G(ϕ, χsnη) = G(ϕ, η)G(ϕ, χη) . . .G(ϕ, χn−1η).

Moreover, the number z of trivial characters in the sequence (η, χη, . . . ,

χn−1η) is equal to 1 − δ with the notations of Definition 4.6 page 11, and

thus

β(0,1,...,n−1),χ,η = q
n−1

2 .

Consequently,

N〈0,1,2,...,n−2,n−1〉,χ =
q
n−1

2

q − 1

∑

η∈bF∗

q

η( 1
ψn

),

and we conclude by using an orthogonality formula. �

Remark 4.14. A similar result was given by Candelas, de la Ossa and

Rodriguez-Villegas when q = p and n = 5 (see [3, §9.3]).



14 P. GOUTET

5. Link between the number of points

In all this §5, we will assume that the integer n is a prime ≥ 5 and

that q ≡ 1 mod n. We will only add the assumption that ψn = 1 in Theo-

rem 5.10.

The aim of this section is to show (in §5.4) the Formula (1.1) of the

introduction. More precisely, we shall show, in Theorem 5.7, that each Ns

(with s 6= 0)2 appearing in Theorem 4.10 is equal, up to a multiplicative

integer constant and a power of q, to a term of the form

(5.1) Nλ =
∑

χn=1

χ 6=1

Nλ,χ =
∑

χn=1

χ 6=1

1

q − 1

∑

η∈bF∗

q

Nλ,χ,η η(λ),

where λ = 1
ψn

and Nλ,χ,η is given by Corollary 3.2 page 7.

The crucial point is, starting from a given s, to find the integers αi and

βj which appear. For that, we define in §5.2 integers vi and wi from which

we then define the integers αi and βj in §5.3. But before this, we start by a

divisibility result useful for the main result.

5.1. A divisibility result. The aim of this §5.1 is to show that the integer

γs (from Definition 4.1 page 8) is divisible by

Ks = |{k ∈ (Z/nZ)× | [ks1, . . . , ksn] is a permutation of [s1, . . . , sn]}|.

This result is crucial in Theorem 5.7 to be sure that the quotient γs/Ks is

an integer. Note that Ks only depends on s, not on the choice of s.

Definition 5.1. Given s ∈ (Z/nZ)n such that s1+ · · ·+sn = 0, we consider

the following subgroups of Sn:

S ′
s = {σ ∈ Sn | σs = s};

Ss = {σ ∈ Sn | [σs] = [s]};

Ss = {σ ∈ Sn | [σs] ∈ (Z/nZ)× · [s]}.

Let us note that, with these notations, [Sn : S ′
s] is the number γs of

permutations of (s1, . . . , sn) whereas [Sn : Ss] is the number of permutations

of [s1, . . . , sn].

Lemma 5.2. When s 6= 0, the integer Ks divides [Sn : Ss]. Hence, when

additionally 〈s〉 6= 〈0, 1, 2, . . . , n− 1〉, Ks divides γs = [Sn : S ′
s] = [Sn : Ss].

2Let us note that there does not exist any s 6= 0 when n = 3; this explains the
assumption that n ≥ 5.
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Proof. We remark that

Ks =
|Ss|

|Ss|
· |{k ∈ (Z/nZ)× | [ks] = [s]}|.

As [s] 6= [0, . . . , 0], we have |{k ∈ (Z/nZ)× | [ks] = [s]}| = 1 and so

[Sn : Ss] = [Sn : Ss] ·Ks.

When furthermore 〈s〉 6= 〈0, 1, 2, . . . , n − 1〉, we have γs = [Sn : Ss] by

Lemma 4.3 page 8, hence the result. �

5.2. Transformation of the β coefficients. In order to relate Ns to a

certain N1/ψn in §5.3, we must first change the formula giving β(s1,...,sn),χ,η.

Notations. Consider (s1, . . . , sn) ∈ (Z/nZ)n such that s1 + · · · + sn = 0.

For each b ∈ Z/nZ, define k(b) = |{i | si = b}|. We have

∑

b∈Z/nZ

k(b)b = 0 and
∑

b∈Z/nZ

k(b) = n.

We also set n′ = |{b ∈ Z/nZ | k(b) 6= 0}| and m = n− n′.

Remarks 5.3.

a) The integer n′ satisfies 1 ≤ n′ ≤ n and we have n′ = 1 if and only if

[s] = [0, . . . , 0] and n′ = n if and only if 〈s〉 = 〈0, 1, . . . , n− 1〉.

b) As n is prime, the integer n′ is 6= 2. Indeed, if k1b1 + k2b2 = 0 with

k1, k2 ≥ 1 and k1 + k2 = n, then k1 6≡ 0 mod n and k1(b1 − b2) = 0,

hence b1 = b2.

c) As n is odd, the integer n′ is 6= n − 1. Indeed, let s1, . . . , sn−1 be

distinct elements of Z/nZ and denote by sn the element of Z/nZ not

appearing in this sequence; as n is odd, we have s1 + · · ·+ sn = 0, and

so 2s1 + · · ·+ sn−1 = s1 − sn 6= 0.

d) Thus, if 〈s〉 6= 〈0, 1, . . . , n− 1〉, then m ≥ 2 and if, moreover, [s] 6= [0],

then 2 ≤ m ≤ n− 3.

Theorem 5.4. With the preceding notations,

β(s1,...,sn),χ,η = q
n−1

2
−ν

∏
b∈Z/nZ, k(b)=0

G(ϕ, χbη)

∏
b∈Z/nZ, k(b)6=0

G(ϕ, χbη)k(b)−1
,

where ν = 0 unless there exists b such that χbη = 1 and k(b) 6= 0, in which

case ν = k(b) − 1.
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Proof. From the definition of β(s1,...,sn),χ,η (Definition 4.6 page 11), we have

β(s1,...,sn),χ,η = q
n+1

2
−z−δ

∏
b∈Z/nZ

G(ϕ, χbη)

∏
b∈Z/nZ

G(ϕ, χbη)k(b)

= q
n+1

2
−z−δ

∏
k(b)=0

G(ϕ, χbη)

∏
k(b)6=0

G(ϕ, χbη)k(b)−1
.

We now have to show that z + δ = 1 + ν. Recall that z is the number of

trivial characters in the finite sequence (χs1η, . . . , χsnη) and that δ = 0 if

z 6= 0 and δ = 1 if z = 0. When z = 0, δ = 1 and ν = 0 hence z+ δ = 1+ ν.

When z 6= 0, there exists a unique b ∈ Z/nZ such that η = χ−b; we thus

have z = k(b), δ = 0 and ν = k(b) − 1, hence z + δ = 1 + ν. �

Remark 5.5. Let (v1, . . . , vm) be an enumeration of the b ∈ Z/nZ such

that k(b) = 0 and let (w1, . . . , wm) be an enumeration of the b ∈ Z/nZ

such that k(b) ≥ 2, each repeated with multiplicity k(b) − 1. The formula

of Theorem 5.4 can be rewritten as

(5.2) β(s1,...,sn),χ,η = q
n−1

2
−ν G(ϕ, χv1η) . . . G(ϕ, χvmη)

G(ϕ, χw1η) . . . G(ϕ, χwmη)
,

where ν is the number of trivial characters appearing in the denominator.

Lemma 5.6. With the notations of the preceding remark,

v1 + · · ·+ vm ≡ w1 + · · ·+ wm mod n.

Proof. This identity can be rewritten as
∑

k(b)=0

b =
∑

k(b)≥1

(k(b) − 1)b i.e.
∑

b

b =
∑

b

k(b)b.

We conclude by noting that
∑

b∈Z/nZ
k(b)b = 0 and that, because n is odd,∑

b∈Z/nZ
b = 0. �

5.3. Link with the hypergeometric varieties. We now establish the

link between Xψ and the varieties of hypergeometric type from §3.

Theorem 5.7. Let s be distinct from the class of (0, 1, . . . , n − 1) and of

(0, . . . , 0). If s is a representative of s, assume that there exists two sequences

(v1, . . . , vm) and (w1, . . . , wm) of elements of Z/nZ as in Remark 5.5 and

an even integer m′ ≤ m− 2 such that

∀i ∈ [[1; m
′

2
]], w2i−1 − v2i−1 ≡ −(w2i − v2i) mod n.
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We consider the affine variety H1/ψn of dimension 2m−m′ − 3 given by





yn = xv11 . . . xvmm x
vm′+1−wm′+1

m+1 . . . x
vm−2−wm−2

2m−m′−2 (1 − x1)
w1−v1 . . .

(1 − xm−1)
wm−1−vm−1(1 − xm − · · · − x2m−m′−2)

vm−1−wm−1

x1 . . . xm = ψn

(In this formula, we replace the exponents by their representatives in [[1;n]].)

It is a variety of the form considered in Corollary 3.2 page 7 and we have,

using the notations of §3,

Ns =
γs
Ks

q
n+1

2
− 2m−m′

2 N1/ψn where γs/Ks ∈ N by Lemma 5.2.

Proof. As s is distinct from the class of (0, 1, . . . , n − 1), we have m ≥ 2

(see Remark 5.3.d page 15). The variety we consider is the one introduced

in Theorem 3.1 page 5 with l = m, k = 2m−m′ − 2 and

α1 = v1, . . . , αm = vm;

αm+1 = vm′+1 − wm′+1, . . . , α2m−m′−2 = vm−2 − wm−2;

β1 = w1 − v1, . . . , βm−1 = wm−1 − vm−1, βm = vm−1 − wm−1.

According to the pairing assumption on the vi and wi and to Lemma 5.6,

we have

vm′+1 + · · ·+ vm = wm′+1 + · · · + wm in Z/nZ,

and thus, αm + αm+1 + · · ·+ α2m−m′−2 + βm ≡ wm mod n. Moreover,

α1 + β1 ≡ w1 mod n, . . . , αm−1 + βm−1 ≡ wm−1 mod n;

β1 + β2 ≡ 0 mod n, . . . , βm′−1 + βm′ ≡ 0 mod n;

αm+1 + βm′+1 ≡ 0 mod n, . . . , α2m−m′−2 + βm−2 ≡ 0 mod n;

βm−1 + βm ≡ 0 mod n.

The last three lines show that we have complete pairing (in the sense

of Corollary 3.2 page 7) of the sequence (β1, . . . , βm, αm+1, . . . , α2m−m′−2);

these elements are 6≡ 0 mod n as vi 6≡ wi mod n, and so

N1/ψn,χ,η = q
2m−m′

−2
2

−ν G(ϕ, χv1η) . . .G(ϕ, χvmη)

G(ϕ, χw1η) . . .G(ϕ, χwmη)
.

Hence, by comparing with Formula (5.2) page 16,

β(s1,...,sn),χ,η = q
n+1

2
− 2m−m′

2 N1/ψn,χ,η.

Multiplying this equality by 1
q−1

η( 1
ψn

) and summing over η ∈ F̂∗
q , we get

N〈s〉,χ = q
n+1

2
− 2m−m′

2 N1/ψn,χ.
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We now sum over k ∈ [[1;n−1]] the preceding formula where χ is remplaced

by χk. Noting that N〈s〉,χk = N〈ks〉,χ (see Formula (4.7) page 12), we obtain

n−1∑

k=1

N〈ks〉,χ = q
n+1

2
− 2m−m′

2 N1/ψn .

The left hand side is equal to Ks

∑
〈s′〉∈sN〈s′〉,χ i.e. to Ks

γs
Ns. As [s] 6= [0],

Lemma 5.2 page 14 shows that γs/Ks is an integer. The result is hence

proved. �

Remark 5.8. When m′ = m − 2, we have vm−1 − wm−1 = wm − vm by

Lemma 5.6 page 16 and the equation of the variety simplifies greatly:

H1/ψn :

{
yn = xv11 . . . xvmm (1 − x1)

w1−v1 . . . (1 − xm)wm−vm

x1 . . . xm = ψn

5.4. Conclusion. We are now capable of showing Formula (1.1) of the in-

troduction. We begin by a result giving a lower bound on the number of

pairings which will enable us to show that the dimension of the hypergeo-

metric varieties is always ≤ n− 4.

Proposition 5.9. Let s be distinct from the class of (0, 1, . . . , n−1) and of

(0, . . . , 0) and let s be a representative of s. We can choose two sequences

(v1, . . . , vm) and (w1, . . . , wm) satisfying the assumptions of Remark 5.5

page 16 such that we have the pairing

∀i ∈ [[1; 2m−n+1
2

]], w2i−1 − v2i−1 ≡ −(w2i − v2i) mod n.

Proof. Let (v1, . . . , vm) and (w1, . . . , wm) be sequences as in Remark 5.5. By

Theorem 1.2 of [1, page 126], it is possible to permute (w1, . . . , wm) so that

the vi − wi are pairwise distinct. Define V as the subset {vi − wi} of Z/nZ

(it has m elements) and µ as the number of opposite pairs contained in V ;

we have

2µ = |V ∩ (−V )| = 2m− |V ∪ (−V )| ≥ 2m− (n− 1).

As 2µ is the maximal number of pairings, this ends the proof. �

Theorem 5.10. If ψn 6= 1, we can write

|Xψ(Fq)| = 1 + q + · · · + qn−2 +Nmirror

+ q
n−3

2 N1 + q
n−5

2 N3 + · · ·+ qNn−4,

where each Nd is a sum of terms of the form |Hλ(Fq)| − (q − 1)l−1qd+1−l

where αi and βj are obtained from each s as described in §5.3 and where

each Hλ ⊂ Ad+2 is a variety of hypergeometric type of odd dimension equal

to d with 1 ≤ d ≤ n− 4 (here, λ = 1/ψn) as considered in §3.1.
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Proof. We saw in Theorem 4.10 page 13 that, if ψ 6= 0 and q ≡ 1 mod n,

we could write

|Xψ(Fq)| = 1 + q + · · ·+ qn−2 +N0 +
∑

s 6=0

Ns.

In Theorem 4.12, we recalled Wan’s result showing that N0 = Nmirror and in

Lemma 4.13, we showed that the term corresponding to (0, 1, 2, . . . , n− 1)

was zero when ψn 6= 1.

Let us now consider s distinct from the class of (0, . . . , 0) and of (0, 1, 2,

. . . , n−1). Let m′ be the greatest even integer ≤ m−2 such that there exists

two sequences (v1, . . . , vm) and (w1, . . . , wm) as in Remark 5.5 verifying

∀i ∈ [[1; m
′

2
]], w2i−1 − v2i−1 ≡ −(w2i − v2i) mod n.

By Proposition 5.9, we have m′ ≥ 2m− n+ 1 (note that, by Remark 5.3.d

page 15, m + 3 ≤ n, hence m − 2 ≥ 2m − n + 1). The dimension d =

2m−m′−3 of the corresponding variety of hypergeometric type considered

in Theorem 5.7 page 16 thus satisfies 1 ≤ d ≤ n− 4.

Moreover, we have q
n+1

2
− 2m−m′

2 = q
n−d−2

2 , and so, as d varies between 1

and n − 4, these powers of q take the values q
n−3

2 , . . . , q respectively and

all these values are obtained; indeed, if we consider an integer m such that

2 ≤ m = d+1 ≤ n−3 and define s = (0, . . . , 0, 1, n−1, 2, n−2, . . . , n−m−1
2

,

n− n−m−1
2

), then w = (0, . . . , 0) and v = (n−m+1
2

, n− n−m+1
2

, . . . , n−1
2
, n+1

2
)

each consist of m elements and we have m′ = m − 2 with the notations of

Theorem 5.7. �

6. Examples

To illustrate the methods we have just presented in this paper, let’s detail

explicitly the cases n = 5 and n = 7; these examples are given in terms of

the hypersurfaces of hypergeometric type from §3.2.

Example 6.1 (n = 5). Let’s recover the results announced by Candelas, de

la Ossa and Rodriguez-Villegas in [4] in the non-singular and non-diagonal

case (see [5] for a complete treatment of the n = 5 case). We are interested

in the factorisation of the zeta function of the quintic Mψ : x5
1 + · · · +

x5
5 − 5ψx1 . . . x5 = 0 when ψ 6= 0 and ψ5 6= 1. We list all the classes

(s1, . . . , s5) 6= (0, 0, 0, 0, 0) and 6= (0, 1, 2, 3, 4) (following the notations from

§§4.1, 5.1, 5.2 and 5.3):

s γs Ks m m′ d

(0, 0, 0, 1, 4) 20 2 2 0 1
(0, 0, 1, 1, 3) 30 2 2 0 1
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Using the method described above, we obtain the following table (the hyper-

geometric hypersurfaces are all of the form y5 = xv1(1− x)v2(1− 1
ψ5x)

5−v2).

s v1 v2 w1 w2 equation

(0, 0, 0, 1, 4) 2 3 0 0 y5 = x2(1 − x)3(1 − 1
ψ5x)

2

(0, 0, 1, 1, 3) 2 4 0 1 y5 = x2(1 − x)4(1 − 1
ψ5x)

We find the same equations as those given in [4, §11.1]:

Aψ : y5 = x2(1 − x)3(1 − 1
ψ5x)

2 and Bψ : y5 = x2(1 − x)4(1 − 1
ψ5x).

We set NAψ = |Aψ(Fq)| − q and NBψ = |Bψ(Fq)| − q (these number of points

are affine). We have, when ψ 6= 0, ψ5 6= 1 and q ≡ 1 mod 5:

|Mψ(Fq)| = 1 + q + q2 + q3 +Nmirror + 10qNAψ + 15qNBψ .

Example 6.2 (n = 7). We use the preceding results to find the factorisation

of the zeta function of the septic Sψ : x7
1 + · · ·+x7

7 −7ψx1 . . . x7 = 0. We list

the (s1, . . . , s7) 6= (0, . . . , 0) and 6= (0, 1, 2, 3, 4, 5, 6) (following the notations

from §§4.1, 5.1, 5.2 and 5.3):

s γs Ks m m′ d

(0, 0, 0, 1, 2, 5, 6) 840 2 2 0 1
(0, 0, 1, 1, 3, 4, 5) 1260 2 2 0 1
(0, 0, 1, 1, 2, 4, 6) 1260 2 2 0 1

(0, 0, 0, 0, 1, 2, 4) 210 3 3 0 3
(0, 0, 0, 1, 1, 2, 3) 420 1 3 0 3
(0, 0, 1, 1, 3, 3, 6) 630 3 3 0 3

(0, 0, 0, 0, 0, 1, 6) 42 2 4 2 3
(0, 0, 0, 0, 1, 1, 5) 105 1 4 2 3
(0, 0, 0, 1, 1, 1, 4) 140 2 4 2 3
(0, 0, 0, 1, 1, 6, 6) 210 2 4 2 3

The result is that, when ψ 6= 0, ψ7 6= 1 and q ≡ 1 mod 7, the number of

points takes the form

|Sψ(Fq)| = 1 + q + q2 + q3 + q4 + q5 +Nmirror + q2N1 + qN3,

where the terms corresponding to curves of A2 can be written as

N1 = 420Nc1 + 630Nc2 + 630Nc3,

and those corresponding to threefold hypersurfaces of A4 can be written as

N3 = 70Nt1 + 420Nt2 + 210Nt3 + 21Nt′1
+ 105Nt′2

+ 70Nt′3
+ 105Nt′4

,

where the various terms are defined in the following table (the corresponding

number of points are in the affine space).



FACTORISATION OF THE ZETA FUNCTIONS OF DWORK HYPERSURFACES 21

equation of the hypersurface nb. of pts.

y7 = x3(1 − x)4(1 − 1
ψ7x)

3 q +Nc1

y7 = x2(1 − x)6(1 − 1
ψ7x) q +Nc2

y7 = x3(1 − x)5(1 − 1
ψ7x)

2 q +Nc3

y7 = x3
1x

5
2x

3
3(1 − x1)

4(1 − x2 − x3)
6(1 − 1

ψ7x1x2) q3 +Nt1

y7 = x4
1x

5
2x

4
3(1 − x1)

3(1 − x2 − x3)
6(1 − 1

ψ7x1x2) q3 +Nt2

y7 = x2
1x

4
2x

4
3(1 − x1)

6(1 − x2 − x3)
5(1 − 1

ψ7x1x2)
2 q3 +Nt3

y7 = x2
1x

5
2x

3
3(1 − x1)

5(1 − x2)
2(1 − x3)

4(1 − 1
ψ7x1x2x3)

3 q3 +Nt′1

y7 = x3
1x

3
2x

2
3(1 − x1)

4(1 − x2)
4(1 − x3)

6(1 − 1
ψ7x1x2x3) q3 +Nt′2

y7 = x3
1x

5
2x

2
3(1 − x1)

4(1 − x2)
3(1 − x3)

6(1 − 1
ψ7x1x2x3) q3 +Nt′3

y7 = x3
1x

5
2x

2
3(1 − x1)

4(1 − x2)
3(1 − x3)

4(1 − 1
ψ7x1x2x3)

3 q3 +Nt′4

Let’s justify for example the equation corresponding to [0, 0, 0, 0, 0, 1, 6].

We have {v1, v2, v3, v4} = {2, 3, 4, 5} and w1 = w2 = w3 = w4 = 0. Let’s

take, for example, v1 = 2, v2 = 5, v3 = 3 and v4 = 4 so that w1 − v1 =

−(w2 − v2) and w3 − v3 = −(w4 − v4). For this choice, we have m = 4,

m′ = m− 2 = 2 and the equation we obtain is

y7 = x2
1x

5
2x

3
3(1 − x1)

5(1 − x2)
2(1 − x3)

4(1 − 1
ψ7x1x2x3)

3.

This is the equation corresponding to Nt′1
. The other equations follow in a

similar way.

Remark 6.3. Using the same method, we could treat the cases n = 11, n =

13, etc. The only difficulty is practical, as the number of classes (s1, . . . , sn)

grows quickly with n.
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