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Abstract

We present a semi-classical analysis of the opening of superchannels in gated mesoscopic SNS or SFS junctions. For perfect
Josephson junctions (i.e. hard-wall potential), this was considered by [2] in the framework of scattering matrices. Here we allow
for imperfections in the junction, so that the complex order parameter continues as a smooth function, which is a constant in
the superconducting banks, and vanishes rapidly inside the lead. The problem of finding quantization rules for Andreev states
near energy E close to the Fermi level, reduces to finding the zeroes of the determinant of a monodromy matrix, which we
characterize partially by means of geometric quantities.

1 Introduction.
Consider a narrow metallic lead, with a few transverse chan-
nels, connecting two superconducting contacts. For simplic-
ity, the lead is identified with a 1-D structure, the interval
x ∈ [−L,L]. The reference energy in the lead is taken as the
Fermi level EF , and the problem reduces to describing the dy-
namics of a quasi-particle (pair hole/electron) in the effective
chemical potential µ(x) = EF −E⊥(x), where E⊥(x) denotes
the transverse energy of the channel, obtained from adia-
batic approximation. For simplicity, we shall consider only
one transverse mode. Interaction with the superconducting
bulk is modeled through the complex order parameter, or
superconducting gap, ∆0e

iφ±/2 at the boundary ±L ; due
to the finite range of the junction, this interaction continues
to a function x 7→ ∆(x)eiφ(x)/2, which vanishes rapidly in-
side the interval [−L,L]. For simplicity we will assume ∆(x)
is smooth on [−L,L], vanishes on [−L′, L′], 0 < L′ < L and
φ(x) = φ± is a constant on ±x > 0. We gauge the interaction
with the supraconductor by setting −φ− = φ+ = φ, so that
x 7→ φ(x) is odd, φ(x) = −φ near x = −L and φ(x) = φ near
x = L. Under these conditions, the dynamics of the quasi-
particle is described by Bogoliubov-De Gennes Hamiltonian
of the form

P(x, ξ) =
(

ξ2 − µ(x) ∆(x)e
i
2φ(x)

∆(x)e−
i
2φ(x) −ξ2 + µ(x)

)
(1)

The energy surface ΣE = {det(P − E) = det(P + E) =
−(ξ2 − µ(x))2 − ∆(x)2 + E2 = 0}, foliated by two smooth
lagrangian connected manifolds Λ±E , ±ξ > 0 on Λ±E , is
invariant under the reflections on the x and ξ axis. In
this paper, we shall ignore tunneling between channels Λ±E ,

which is exponentially small, and focus on the upper branch
Λ+
E . Because of the smoothness of ∆, the exchange be-

tween holes and electrons occurs inside [−L,L], we denote
by a = (x0, ξ0), a′ = (−x0, ξ0) ∈ Λ+

E , the “branching points”
defined by ∆(x0) = E with x0 > 0. We use throughout Weyl
h-quantization P(x, hDx) of Hamiltonian (1). So, if I de-
notes complex conjugation Iu(x) = u(x), i.e. I quantizes the
reflection on the ξ axis, and ∨ the reflection ∨u(x) = u(−x),
we have PT symmetry

∨IP(x, hDx) = P(x, hDx)I∨ (2)

and P(x, hDx) is unitarily equivalent with the operator ob-
tained by conjugation of charge (i.e. changing µ to −µ)
provided we take imaginary times (i.e. changing ξ to iξ).
Thus, such an hamiltonian has the CPT symmetry. For sim-
plicity, we linearize the coefficients near x0, i.e. we assume
µ(x) = Const and ∆(x) = E + α(x − x0) near x0, the slope
α > 0 will appear only as a rescaling of the “Planck constant”
h which stands here for the characteristic wave-length of the
quasi-particle relative to the size of the lead. This is what we
call in the sequel the Normal-Supraconductor (NS) junction
model. For the dynamics of the quasi-particle, the mecha-
nism goes roughly as follows : An electron e− moving in the
metallic lead, say, to the right, with energy 0 < E ≤ ∆0 be-
low the gap and kinetic energyK+(x) = µ(x)+

√
E2 −∆(x)2

is reflected back as a hole e+ from the supraconductor, in-
jecting a Cooper pair into the superconducting contact. The
hole has kinetic energy K−(x) = µ(x)−

√
E2 −∆(x)2, and a

momentum of the same sign as this of the electron, because
of CPT symmetry. When inf [−L,L]K−(x) > 0 it bounces
along the lead to the left hand side and picks up a Cooper
pair in the supraconductor, transforming again to the original
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electron state, a process known as Andreev reflection. Since
P(x, hDx) is self-adjoint, there is of course also an electron
moving to the left, and a hole moving to the right (in fact,
P(x, hDx) is the hamiltonian for 2 pairs of quasi-particles),
for no net transfer of charge can occur through the lead in
absence of thermalisation. So we stress that Bogoliubov-de
Gennes hamiltonian is only a simplified model for supercon-
ductivity, and a more thorough treatment should involve sec-
ond quantization. Nevertheless, when φ 6= 0, this process
yields so called phase-sensitive Andreev states, carrying su-
percurrents proportional to the φ-derivative of the eigenen-
ergies of P(x, hDx). Note that E > −µ(x) is a “scattering
energy” for the diagonal hamiltonian ξ2−µ(x), so the dynam-
ics is more complicated than this of a particle in a potential
well ; in some respect, the “barrier” ∆(x) is “transparent”
to the pair hole/electron, which makes possible the exchange
with Cooper pairs inside the supraconducting bulk. In the
context of a perfect junction, the problem was handled in
the formalism of scattering matrix and eigenvalue equation
for the Andreev levels En(h) was derived by matching the
wave-functions and their derivatives at the NS junction [2].
It is of the form

cosφ = cos(2ν0En(h)− 2 arccos(
En(h)

∆0
)) (3)

where ν0 = L
hvF

(vF is the Fermi velocity). This formula was
generalized in the cas of a FS junction in [1]. In the semi-
classical framework we should expect instead [5] (Sect 6) that
the quantization condition takes the form

f0(En(h)) + hf1(En(h)) = (n+
1
2

)h+O(h2) (4)

where f0(E) is some action integral over a connected compo-
nent (or cycle) of the energy surface , and f1(E) the measure
over this cycle of some subprincipal symbol, with respect to
Leray measure. We content in this report to characterize
Andreev levels En(h) by saying that the determinant of the
monodromy matrix, relative to the complex vector bundle of
a connection among microlocal solutions of (P − E)U = 0
should vanish precisely when E = En(h). We point out that
our construction readily extend to the case of SFS junctions
[1], by changing the energy level E by a quantity ±Eex, where
Eex denotes the exchange splitting energy.

2 A connection among microlocal so-
lutions.

In the sequel we shall construct various microlocal solutions
to (P − E)U(x, h) = 0. Due to PT symmetry, we expect
that when E = En(h) is an eigenvalue, the solutions com-
puted near a and extended up to a′ would match with those
computed near a′. In other words, the way of transporting
a basis of the 2-D complex vector bundle of microlocal solu-
tions determines a connnection, and we want to express the
holonomy associated with this connection, still ignoring the

coupling with ξ < 0. The quantization condition precisely
means that we can select a global section among microlocal
solutions. To describe the analytical setting, it is convenient
to introduce the :

Définition 2.1 We say I(S, ϕ; Ξ)(x, h) is an admissible C2-
valued lagrangian distribution if

I(S, ϕ; Ξ)(x, h) = (2πh)−d/2
∫
Rd

eiϕ(x,Θ,Ξ,h)/hS(x,Θ,Ξ;h)dΘ

Here Ξ is a vector-valued parameter, ϕ(x,Θ,Ξ, h) a non de-
generate phase-function, and S(x,Θ,Ξ;h) = S0(x,Θ,Ξ;h) +
hS1(x,Θ,Ξ;h) + · · · a C2-valued amplitude (i.e. a classical
symbol in h), S0 =

(
eiφ/2X
Y

)
possibly depending on h (with the

property that φ(x) = ±φ is a constant on ±x > 0). The sym-
bols X = X(x,Θ,Ξ, h), Y = Y (x,Θ,Ξ, h) have their princi-
pal part

(
X0
Y0

)
= λ(x,Θ,Ξ;h)

(X′0
Y ′0

)
proportional to a real vector(X′0

Y ′0

)
=
(X′0
Y ′0

)
(x,Θ,Ξ, h). Again, λ(x,Θ,Ξ;h) ∈ C can depend

on h.

Here, all functions here are only defined microlocally. In gen-
eral, microlocal solutions for (P − E)U(x, h) = 0 will be
obtained as linear combinations of such lagrangian distribu-
tions, with complex coefficients.

2.1 WKB solutions.

Most elementary admissible C2-valued lagrangian distribu-
tions, in the microlocal kernel of (P − E), are WKB solu-
tions, obtained away from branching points. We diagonalize
P − E outside the “branching points”. The eigenvalues of
(P − E)(x, ξ) are denoted by λI , and λII , so that the en-
ergy surface takes the form ΣE = {λI = 0} for E > 0.
Thus (λI)−1(0) ∩ {ξ > 0} is the union of 2 pieces of null
bicharaceristics and join analytically at a′ and a, as a con-
nected component of det(P − E) = 0, and similarly for
(λI)−1(0)∩{ξ < 0}. Again, for simplicity, we shall restrict to
ξ > 0. Call the vector space of C2 generated by

(
1
0

)
the space

of (pure) electronic states and this by
(

0
1

)
the space of (pure)

hole states. Choose (x1, ξ1) ∈ ΣE ∩ {ξ > 0} not a branching
point, so that (x1, ξ1) belongs to an electronic state, or to
a hole state. These states mix up when ∆(x) 6= 0, but we
can still sort them out semiclassically, outside (x0, ξ0). Then
there is a unitary, hermitian matrix with smooth coefficients,
A(x, ξ), defined along the piece ρ = ρ± ⊂ {ξ > 0} of ΣE con-
taining (x1, ξ1), and up to the branching points, such that

A∗(P − E)A =
(
λI 0
0 λII

)
When ∆(x) 6= 0 the normalized eigenvectors
(eI(x, ξ), eII(x, ξ)) of A corresponding to eigenvalues
(λI , λII) depend smoothly on (x, ξ), and can be extended
throughout x ∈ [−L,L] as a smooth section valued in the
circle. Moreover, each eigenvector can be multiplied by a
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phase factor exp iω(x, ξ), allowing for monodromy in the fi-
bre bundle of WKB solutions. When E > 0, we are only
interested in the eigenvector e = eI belonging to λI = 0.

It is possible to implement this diagonalization at the
level of operators, and we recall that the first 2 terms of the
Weyl symbol of λI(x, hDx, h) are computed in [5] (Sect 6).
It is convenient to keep the (real valued) subprincipal symbol
λI1(x, ξ) together with the principal symbol λI0(x, ξ), so let

λ̂I(x, ξ, h) = λI0(x, ξ) + hλI1(x, ξ)

We look for a WKB solution Ũ(x, h) of A∗(P−E)AŨ(x, h) =
0, and take Ũ(x, h) = eiϕ

I(x,h)/h(u(x, h), 0) where ϕI solves
the modified eikonal equation λ̂I(x, ∂xϕI , h) = 0, and the
symbol u = u0 + hu1 + · · · is uniquely determined up to a
constant factor by solving transport equations along ρ. In
particular u0(x, h) satisfies :

∂ξλ̂
I(x, ∂xϕI , h)∂xu0 +

1
2

∂2

∂x∂ξ
λ̂I(x, ∂xϕI , h)u0 = 0

so u0 can be chosen to be real. Applying A we get

U(x, h) = AŨ(x, h) = e
i
hϕ1(x,h)(u0(x, h)e(x, ∂xϕI) +O(h))

This way, we have constructed an admissible C2-valued la-
grangian distribution U(x, h), such that (P − E)U(x, h) = 0
microlocally near (the interior of) ρ. In particular, the space
of microlocal solutions U of λI(x, hDx, h;E)U = 0 supported
in ξ > 0 is of dimension 2.

2.2 Microlocal solutions for the NS junc-
tion model.

Close to the branching points, we consider now more com-
plicated admissible C2-valued lagrangian distributions. Near
a = (x0, ξ0), the NS junction model Hamiltonian, in h-Fourier
representation, takes the form Pa(−hDξ, ξ) =(

ξ2 − µ e
i
2φ(E − α(hDξ + x0))

e−
i
2φ(E − α(hDξ + x0)) −ξ2 + µ

)
where µ = ξ2

0 is a constant. Consider the eigenvalue equation

(Pa(−hDξ, ξ)− E)U = 0, where U =
(
ϕ̂1

ϕ̂2

)
.

Clearly, the system decouples, and to account for time-
reversal symmetry, it is convenient to introduce the scal-
ing parameter β =

√
α(2ξ0)−3/2, together with the changes

of variables ξ = ξ0(±2βξ′ + 1). The functions ũ±β(ξ′) =
(ξ2−µ−E)−1/2e−i(E−αx0)ξ/αhϕ̂2 satisfy a second order ODE
of the form

(P̃±β(−hDξ′ , ξ
′, h)− E2

1

β2
)ũ±β(ξ′) = 0 (5)

with E1 = (2ξ0)−2E, and

P̃±β (−hDξ′ , ξ
′, h) = (hDξ′)2 + (ξ′ ± βξ′2)2

+ (2ξ0βh)2 (2β2ξ′2 ± 2βξ′ + 3
4 + E1)

(β2ξ′2 + βξ′ − E1)2
(6)

Viewed as a h-PDO’s of order 0, microlocally defined near
(x′, ξ′) = 0, P̃ = P̃±β can be taken to the normal form of a
harmonic oscillator. More precisely, there exists a real-valued

analytic symbol F (t, h) = F±β(t, h) ∼
∞∑
j=0

Fj(t)hj , defined

for t ∈ neigh(0), F0(0) = 0, F ′0(0) = 1
2 , F1(t) = Const, and

(formally) unitary FIO’s A = A±β whose canonical transfor-
mations κA defined in a neighborhood of (0,0), are close to
identity and map this point onto itself, such that

A∗F (P̃ , h)A = P0 =
1
2

((hDη)2 + η2 − h)

From the point of vue of pseudo-differential calculus, it is im-
portant to modify the canonical relation κA by a term O(h)
in order to improve Egorov theorem by an accuracy O(h2).
In our problem this phase shift will be responsible for mon-
odromy. Define the large parameter ν by F ( E2

2ξ0α
, h) = νh. So

ũ = ũ±β solves (5) microlocally near (0,0) iff v = A∗ũ solves
Weber equation (P0−νh)v = 0 microlocally near (0,0), when
νh ∼ E2

4ξ0α
is small enough. The well known parabolic cylin-

der functions Dν and D−ν−1, whose integral representation
is the inverse Laplace transform

Dν(ζ) =
Γ(ν + 1)

2iπ
e−ζ

2/4

∫ (0+)

∞
e−ζs−s

2/2(−s)−ν ds
s

form a basis of solutions of 1
2 ((hDη)2 + η2 − h)v = νv. Let

us write

v =
∑
ε=±1

α(ν)
ε Dν(ε(h/2)−1/2·) =

∑
ε=±1

α(−ν−1)
ε D−ν−1(iε(h/2)−1/2·)

(7)
for complex constants α(ν)

ε , α(−ν−1)
ε . To distinguish between

±β, we index also the constants α(ν)
ε by ±β. We call h′ = αh

the new “Planck constant”. By a careful analysis involving
the search for critical points of the phase functions, and sta-
tionary phase expansions, we obtain :

Proposition 2.1 For x < x0 near x0, there are 2 basis of
oscillating microlocal solutions of (Pa −E)U = 0 indexed by
ε = ±1: ∑

ρ

Ua,νρ,ε,±β(x, h′),
∑
ρ

Ua,−ν−1
ρ,ε,±β (x, h′)

which satisfy :

Ua,ν−,ε,β = Ua,ν+,ε,−β , Ua,−ν−1
−,ε,β = Ua,−ν−1

+,ε,−β

Recall that the branch with ρ = ρ± = ±1 is microlocalized on
ρ± ; the part on ρ+ (ξ > ξ0 near a), belongs to the electron
state, while the part ρ− (ξ < ξ0 near a) belongs to the hole
state. Each of these solutions is an admissible C2-valued la-
grangian distribution in the sense of Definition 1.1. Divide
all microlocal solutions by the trivial factor eiπ/4eiE0ξ0/h

′
,

E0 = E − αx0. Then with the notations of (7) the general
solution of (Pa − E)U = 0 is of the form

U =
∑
ρ,ε

α
(ν)
ε,±βU

a,ν
ρ,ε,±β =

∑
ρ,ε

α
(−ν−1)
ε,±β Ua,−ν−1

ρ,ε,±β
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Consider similarly the solutions near a′. We have :

Ua
′,ν

ρ,ε,−β = ∨IUa,νρ,ε,β , Ua
′,−ν−1

ρ,ε,−β = ∨IUa,−ν−1
ρ,ε,β .

Note that the functions U (ν)
ρ,ε,±β and U (−ν−1)

ρ,ε,±β differ essentially
by O(h) in their phase functions. The sum over ρ = ±1 is
due to the contributions to stationary phase, for a given x, of
the critical points on ρ±. Note also that in this region where
µ is a constant, Uρ,ε,±β = e

i
hxξ0Uρ,ε,±β;h′ with Uρ,ε,±β;h′ os-

cillating on a frequency scale 1
h′ = 1

αh , so if we think of the
slope α to be large, Uρ,ε,±β behaves as a plane wave e

i
hxξ0 ,

modulo a slow varying function.

2.3 The monodromy matrix.

From now on we just keep the second basis D−ν−1(iεζ) (to fix
the ideas) of solutions of Weber equation, Dν(εζ) being useful
only if we consider x > x0 and the coupling with ξ < 0. We
sum over ρ = ±1 the branches of microlocal solutions defined
above, and set Ua,−ν−1

ε,β =
∑
ρ

Ua,−ν−1
ρ,ε,β , and similarly for a′.

We can uniquely extend from a, as WKB solutions, the mi-
crolocal solutions Ua = Ua,−ν−1

ε,β along ρ± towards a′. Simi-
larly we can construct corresponding microlocal solutions Ua

′

in the neighborhood of a′, and extend them along ρ± towards
a. Denote for short by α1, α2 the coefficients α(−ν−1)

ε,± , etc. . . .
Because of symmetry (2) and Proposition 2.1, the extension
along ρ± of the linear combination α1U

a,−ν−1
+,β + α2U

a,−ν−1
−,β

will be a linear combination β1U
a′,−ν−1
+,−β +β2U

a′,−ν−1
−,−β and the

coefficients
(
β1
β2

)
are related to

(
α1
α2

)
by

(
β1

β2

)
= Ma,a′

(
α1

α2

)
(8)

where Ma,a′ =
(
d11 d12

d21 d22

)
∈ U(2). This is the monodromy

matrix. Similarly, we obtain Ma′,a by extending from the
left to the right, and due to symmetry, Ma′,a = (Ma,a′)−1 =
(Ma,a′)∗. Moreover we have |d11| = |d22|, |d12| = |d21|, so
that if ∆ij = arg dij , the unitarity relation takes the form
∆11 + ∆22 = ∆12 + ∆21 ± π and |d11|2 + |d21|2 = 1, while
detMa,a′ = ei(∆12+∆21).

Using the WKB solutions of Sect 2.1, and conservation
laws resulting from the fact that the Wronskian for solu-
tions of the differential operator (6) is a constant, we can
in particular compute the trace of Ma,a′ in term of the ac-
tion integral S+ =

∫ x0

−x0
ξ+(x, h)dx = 2

∫ x0

0
ξ(x, h)dx, where

λ̂I(x, ξ+(x, h), h) = 0. Namely, modulo an inessential factor,

TrMa,a′ = d11 + d22 ∼ e
i
hS+e−

i
4φ cos(πν +

φ

4
) (9)

3 The normalized microlocal solu-
tions and the approximate Bohr-
Sommerfeld quantization rule.

Following a classical procedure in Fredholm theory, we can
translate the original eigenvalue problem for P into a finite
dimensional problem via the Grusin operator [6](Sect 4), but
due to the fact that we have ignored coupling with the bichar-
acteristics in the lower half-plane ξ < 0, the “simplified”
Grusin problem is not well-posed. So we proceed a little
formally taking only in account the microlocal kernel K0 of
P−E in (x, ξ) ∈]−x0, x0[×R+. First we normalize the basis
in K0, obtained in Proposition 1.2, using generalized wron-
skians introduced in ([4],[5],[6]) and adapted to a system of
h-PDO’s in [7]. Namely, let χ = χa be a cut-off supported
on a domain containing (the interior of) ρ+ ∪ ρ−, equal to 1
near a, and to 0 near a′, ω = ωa be a small neighborhood of
(ρ+ ∪ ρ−) ∩ supp[P, U ], and χω be a cut-off equal to 1 near
ω. If U, V are such solutions, we call

W(U, V ) = (χω
i

h
[P̃, χ]U |V )

the microlocal wronskian of (U, V ) in ω. This quantity is in-
dependent, modulo error terms O(h∞) of the choices of χ
and χω as above. For each of the U ’s above, W(U,U) is a
(positive) classical symbol, allowing to normalize U so that
W(U,U) = 2. We shall denote the normalized solutions by
the same letter. Consider also

F a,−ν−1
ε,β = χωa

i

h
[P, χa]U (a,−ν−1)

ε,β

and similarly F a
′,−ν−1

ε,−β , which span the microlocal co-kernel
K∗0 of P −E in ]− x0, x0[×R+, as ε = ±1. For ε = 1, let U1

be equal to Ua1 = Ua,−ν−1
+,β near a, and to

Ua
′

1 = (1−χa
′
)Ua,−ν−1

+,β,ext = (1−χa
′
)(d11U

a′,−ν−1
+,−β +d21U

a′,−ν−1
−,−β )

near a′. We compute the scalar products R+U1 =

((Ua1 |F
a,−ν−1
+,β ), (Ua1 |F

a,−ν−1
−,β ), (Ua

′

1 |F
a′,−ν−1
+,−β ), (Ua

′

1 |F
a′,−ν−1
−,−β ))

using microlocal Wronskians. Consider the classical symbols

ca±,∓ = (Ua
′,−ν−1
±,−β |F a

′,−ν−1
∓,−β ), γa

′

ε = Im(χa
′
Ua
′,−ν−1

ε,−β |F a
′,−ν−1

ε,−β ),

and δa
′

±,∓ = ((1−χa′)Ua
′,−ν−1
±,−β |F a

′,−ν−1
∓,−β ), which can be eval-

uated explicitely using Proposition 2.1 and stationary phase
expansions, as in [7]( Lemma 7.2). We define similarly U2 for
ε = −1, and also with similar notations, U3, U4 by moving
from a′ towards a instead, so we find

R+U1 = (2, ca+,−, d11(1−iγa
′

+ )+d21δ
a′

−,+, d11δ
a′

+,−+d21(1−iγa
′

− ))

R+U2 = (ca−,+, 2, d12(1−iγa
′

+ )+d22δ
a′

−,+, d12δ
a′

+,−+d22(1−iγa
′

− ))

R+U3 = (e11(1−iγa+)+e21δ
a
−,+, e11δ

a
+,−+e21(1−iγa−), 2, ca

′

+,−)

R+U4 =
(
e12(1−iγa+)+e22δ

a
−,+, e12δ

a
+,−+e22(1−iγa−), ca

′

−,+, 2)

Consider now the matrix G consisting of the columns R+Uj ,
1 ≤ j ≤ 4. This is the Gram matrix of the vectors Uj in the
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basis (F a,−ν−1
ε,β , F a

′,−ν−1
ε,−β )ε=±1. We can show that, modulo

O(h∞), the relations

ca−,+ = ca+,−, |δa
′

+,−| = |δa+,−|, |δa
′

−,+| = |δa−,+|,

γa
′

− + γa− = γa
′

+ + γa+ = 0

hold, which make of G an hermitean matrix. It follows
that its spectrum is real, with a possible degeneracy, so
are the functions defining the branches for the equation
detG(E, h) = 0.

Proposition 3.1 The vectors Uj are colinear, precisely
when E satisfies detG(E, h) = 0, which is an equation with
real coefficients. This means there exists for these values of
E a smooth section U solving (P − E)U = 0, globally on
]− x0, x0[×R+.

Of course, relation (8) is not sufficient for computing Ma,a′ ,
and getting an explicit form for the Bohr-Sommerfeld rule
in term of φ, but further information can still be extracted
by considering the vector-bundle associated with a basis of
eigenvectors eI± of P (see [5]). A more thorough spectral anal-
ysis should also involve a microlocal insight into the junction,
e.g. x > x0. This relies on the “infinitesimal” invariance by
conjugation of charge : namely, we can change β into ±iβ,
without altering equation (5), and more generally, consider
the family of distributions, obtained by extending ũβ(ξ′), say,
along a path eiγβ, 0 ≤ γ ≤ 2π in the complex domain (see
also [3] for related topics). Note also that P±β(−hDξ, ξ, h)
is not microhyperbolic at (x0, ξ0) in the directions (0,±idξ),
see e.g. [5] (Sect 10). The germ of corresponding microlocal
solutions in x > x0 have complex phases, not simply purely
imaginary as in usual tunneling problems for Schrödinger op-
erators.
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