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Abstract

We propose in this paper a segmentation process that can deal with noisy discrete
objects. A flexible approach considering arithmetic discrete planes with a variable
width is used to avoid the over-segmentation that might happen when classical
segmentation algorithms based on regular discrete planes are used to decompose
the surface of the object. A method to choose a seed and different segmentation
strategies according to the shape of the surface are also proposed, as well as an
application to smooth the border of convex noisy discrete objects.
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1 Introduction

Three-dimensional discrete objects are widely used in several areas using data
coming from acquisition processes such as scanner, magnetic resonance imag-
ing (MRI), . . . Due to their internal structure and their huge size, the manip-
ulation of such objects is not an easy task. Rendering algorithms for instance,
cannot apply usual techniques to obtain a nice visualization of the objects. A
general idea to address this problem is to transform the discrete volume into
a Euclidean polyhedron. The segmentation of the border of such objects into
discrete primitives such as discrete planes is thus a natural first step and we
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briefly describe hereafter the main methods proposed within the framework
of discrete geometry.

In [9], L. Papier and J. Françon propose a segmentation of the surface of a
discrete object into pieces of standard arithmetic discrete planes. These stan-
dard planes are recognized using a Fourier-Motskin elimination algorithm [10]
and are forced to be homeomorphic to a topological disk in order to be used in
a polyhedrization process. They state that the resulting segmentation heavily
depends on the choice of the seed to start the recognition of a new face and
the tracking order of the points chosen for enlarging the current face, but do
not address these problems.

In the framework of surface area estimation [12], R. Klette and H.J. Sun have
proposed a segmentation of the surface into digital planar segments (DPS) –
which are actually pieces of standard discrete planes. To incrementally check
whether a set of points is a DPS, they compute the convex hull of this set to
retrieve a specific pair of parallel planes for which the main diagonal distance
has to be less than

√
3. A breadth-first search of the surfel graph representing

the surface is used to incrementally add points into the DPS.

In [18], I. Sivignon et al. have compared different tracking processes to decom-
pose the surface of a discrete object into naive discrete planes. A dual-space
approach is used to incrementally recognize the pieces of planes [20]. In [19]
the authors have also studied the relation between a segmentation into naive
and standard discrete planes depending on the considered surface definition.

Moreover, theoretical works have proved that the problems of polyhedrization
and segmentation are computationally hard [17,2,3].

The previously mentionned methods of segmentation are reversible. They gen-
erally use naive and standard discrete planes recognition algorithms and be-
have well with regular discrete objects. However the discrete data coming from
acquisition processes are often distorted and these methods might lead to an
over-segmentation (see Fig. 6(b)). In this paper we propose a new and origi-
nal method to segment discrete objects into pieces of discrete planes which is
adapted to this possibly distorted data:

• it is more flexible and addresses the problem by considering a segmenta-
tion into pieces of discrete planes with a variable width (parameter fixed by
the user) – a flexible recognition algorithm [13] is used,

• it considers the shape of the object to choose the seeds and to guide
the incremental growth of the segments during the segmentation process.

To do this, a first pre-processing step is done to compute geometric features
of the surface of the discrete object.
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3D noisy discrete objects have been synthesized from regular ones in order
to test our method and its adaptability to the level of data distortion. The
method is presented in section 2. In section 3, after recalling the definition
of blurred pieces of discrete planes, we summarize results from [14] about
geometric features for noisy discrete surfaces. The different steps of the seg-
mentation process are then described in section 4, followed by some results on
synthesized 3D noisy and real objects. In section 5 an application to smooth
the border of convex noisy discrete objects is proposed. The paper ends up
with a conclusion and some perspectives in section 6.

This paper is an extended version of a conference paper [15] presented at
IWCIA’08.

2 Noisy Discrete Objects

In this paper, we are dealing with three-dimensional noisy discrete objects.
The aim is to propose a more flexible segmentation algorithm to avoid the
over-segmentation that might happen when regular discrete primitives are
used. We would obtain a decomposition into segments which correspond to
the natural faces of the objects (for instance six segments, for the six faces
of a cube). To test the robustness of our method and its adaptability, we
have to observe how it behaves according to the distortion levels of data. We
thus have to generate noisy discrete objects from regular counterparts, with
different level of distortion. For this purpose, we use a method proposed by
T. Kanungo [11] to simulate local distortions that arise after scanning or pho-
tocopying processes. Kanungo’s noise model accounts for the pixel inversion
(due to light intensity fluctuations, pixel sensitivity and thresholding level)
and the blur that occurs due to point-spread function of the optical system
of scanners. Although this method was primarily designed for 2D images, the
different concepts involved can easily be extended to 3D.

The probability of a voxel flipping from background to foreground – or ob-
ject – (and vice versa) is modeled as an exponential function of its distance
from the nearest object voxel (resp. background voxel). Thus, the probability
P (o|b, d, α0, α) to flip a background voxel into an object voxel is α0e

−αd2
+ η.

The parameter α0 is the initial value for the exponential and the decay speed
of the exponential is controlled by the parameter α. The flipping probability
P (b|o, d, β0, β) = β0e

−βd2
+ η of an object voxel into a background voxel is

similarly controlled by β0 and β. The parameter η represents the constant
probability of flipping for all voxels.

The object voxel and background voxel distance d can be computed using
a distance transform (DT ) algorithm [1]. An algorithm that simultaneously

3



computes the distance transform of object voxels and background voxels is
proposed in [7].

To take into account the effect of the point-spread function of the system, a
morphological closure operation is applied.

To sum up, the algorithm to synthesize a noisy object from an initial binary
object works as follows:

(1) Compute the distance d of each voxel from the object boundary using
DT

(2) Invert background voxels with probability P (o|b, d, α0, α) = α0e
−αd2

+ η
(3) Invert object voxels with probability P (b|o, d, β0, β) = β0e

−βd2
+ η

(4) Perform a morphological closing operation

Fig. 1 shows a noisy discrete object synthesized using different values of α and
β. α0 = β0 = 1, η = 0 and we chose to set α = β to generate a symmetrical
noise. Fig. 2 and 1(b) allows to see the influence of the DT . And Fig. 3 shows
the results obtained using different structuring elements.

(a)

(b) (c) (d)

Fig. 1. Noisy half hollowed ellipsoids synthesized from (a) using Kanungo’s model
with a DT = 〈3, 4, 5〉 and (b) α = β = 0.4, (c) α = β = 0.2 and (d) α = β = 0.1. The
structuring element for the closure is made up of a voxel and its 6-neighborhood.

One can notice that this method may produce non-connected objects (espe-
cially with small α, β values or small structuring elements), but we can easily
extract a maximal connected component 1 and keep it as the noisy object.

1 By visiting all the n-connected voxels (n ∈ {6, 18, 26}), for instance.
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(a) (b) (c)

Fig. 2. Noisy half hollowed ellipsoids synthesized from Fig. 1(a) using Kanungo’s
model with α = β = 0.4 and (a) DT 6 = 〈1,∞,∞〉, (b) DT 18 = 〈1, 1,∞〉 and (c)
DT 26 = 〈1, 1, 1〉. The structuring element for the closure is made up of a voxel and
its 6-neighborhood.

(a) (b) (c)

Fig. 3. Noisy half hollowed ellipsoids synthesized from Fig. 1(a) using Kanungo’s
model with a DT = 〈3, 4, 5〉, α = β = 0.05 and a structuring element for the mor-
phological closure made up of a voxel and (a) its 6-neighborhood, (b) its 18-neigh-
borhood and (c) its 26-neighborhood.

Another way to synthesize noisy discrete objects from regular ones is to ran-
domly move inward or outward – by unit moves – border voxels. Thus, gen-
erated objects remain connected. In addition, the modification is very local,
which enables to easily check that some properties are preserved. For instance,
if the original surface of the object is a two-dimensional combinatorial mani-
fold, we can check that a random move does not invalidate this property by
verifying that the 26-neighborhood of the new voxel does not contain a forbid-
den configuration (see [8] for a list of allowed configurations in two-dimensional
combinatorial manifolds). If it is not the case, we do not move the voxel.

In this paper, the noisy objects have been synthesized using Kanungo’s method.
But we also present results with scanned versions of real objects (see Sec-
tion 4.4).

3 Background

We recall in this section the definition of a width-ν blurred piece of discrete
plane, an arithmetical discrete primitive introduced in [13], that allows to deal
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(a) (b)

Fig. 4. (a) A width-3 blurred piece of discrete plane and (b) a piece of its optimal
bounding plane P(4, 8, 19,−80, 49), using the Euclidean norm.

with noisy discrete data. Relying on this primitive, we present the notion of a
width-ν patch centered at a border point of a discrete object and some features
of the border obtained from this patch. More details about the construction
of the patch and the study of different features of the border can be found
in [14].

3.1 Blurred Pieces of Discrete Planes

One can see a blurred piece of discrete plane as an arithmetic discrete plane
for which some points are missing. More formally:

Definition 1 Let N be a norm on R3 and E a set of points in Z3. We say that

the discrete plane P(a, b, c, µ, ω) 2 is a bounding plane of E if all the points

of E belong to P, and we call width of P(a, b, c, µ, ω), the value ω−1
N(a,b,c)

.

A bounding plane of E is said optimal if its width is minimal.

Definition 2 A set E of points in Z3 is a width-ν blurred piece of dis-

crete plane if and only if the width of its optimal bounding plane is less than

or equal to ν.

Two recognition algorithms of blurred pieces of discrete planes have been
proposed in [13]. The first one considers the Euclidean norm and, for a set
of points P in Z3, it solves the recognition problem by using the geometry
of the convex hull of P . The second one considers the infinity norm and uses
methods from linear programming to solve the recognition problem.

2 An arithmetic discrete plane P(a, b, c, µ, ω) is the set of integer points (x, y, z)
verifying µ ≤ ax + by + cz < µ + ω, where (a, b, c) ∈ Z3 is the normal vector of
the plane. µ ∈ Z is named the translation constant and ω ∈ Z the arithmetical
thickness.
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Thereafter, we denote by Ob a possibly noisy 6-connected discrete object.
We call surface or border of Ob the set of points Bb which have a 6-neighbor
that does not belong to Ob. All the results we present on this type of objects
have been obtained by considering the geometrical approach which uses the
Euclidean norm.

3.2 Width-ν Discrete Patches

If we are working on a noisy discrete surface and need to extract some of
its local geometric features, such as the normal vector or the curvature, it is
wise to use estimators that take into account the irregularity of this surface
to compute these kinds of features. A way to achieve this goal at a point
p of the surface is to gather the information of points lying in an extended
neighborhood of p. The notion of patch we present hereafter takes place in
this framework, considering an adaptive neighborhood around p.

Definition 3 Let Bb be the border of a discrete object, p a point in Bb and ν
the greatest real value allowed. Let d be a distance. At each point q ∈ Bb we as-

sociate the weighting factor dp(q) = d(p, q). We call width-ν patch centered

at p, and denote by Γν(p), a width-ν blurred piece of discrete plane incremen-

tally recognized from p by adding points q of Bb following the increasing values

of dp(q).

About the Incremental Recognition: We construct a width-ν patch

centered at p using the incremental recognition algorithm of blurred pieces of
discrete planes introduced in [13]. We add the points following the increasing
values of dp and, as soon as the width of the blurred piece of discrete plane
becomes greater than ν, we stop the recognition process.

About the Distance d: To uniformly spread the patch in all directions, the
best solution would be to use a geodesic distance 3 . Nevertheless, for efficiency,
we have chosen to rely on a distance based on a chamfer mask 〈3, 4, 5〉 which
is a good approximation of the geodesic distance [1]. The aim is to have a
well-balanced patch around p which looks almost circular. With this method
we obtain patches like those in Fig. 5.

3 The geodesic distance between two voxels v and w of the border Bb of a discrete
object is the length of the shortest path {v = p1, p2, ..., pn = w} from v to w such
that pi ∈ Bb, 1 ≤ i ≤ n.
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(a) (b)

Fig. 5. An example of width-2 patches spread on the surface of different noisy
objects. (a) A sphere of radius 20 and (b) a cube of edge 25.

3.3 Patch Features

A patch Γν(p), as previously defined, characterizes the planarity of the surface
around p (with respect to the width ν). Thus, the more the patch is spread,
the less the surface around p is bent.

In addition, if the growth of Γν(p) stopped, it means that the close neighboring
points outside Γν(p) would bend the patch too much if they were added. In that
case the patch could no longer be regarded as flat. Therefore, it is possible
to deduce a conformation of the discrete surface around p by studying the
patches centered along the points of the outline of Γν(p).

The following definitions give a formal quantization of all these observations.

3.3.1 Width-ν Normal

With the previous intuition we can see that the normal vector of Γν(p) is a
good estimation of the normal at p. Thus, assimilating the normal vector of
Γν(p) to the normal of the surface at p, we define a normal vector estimator
for each point of the surface of a possibly noisy discrete object.

Definition 4 Let Bb be the border of a discrete object and p a point of Bb.

We call width-ν normal at p the normal vector

−→nν(p) = −→n (Γν(p))

where −→n (Γν(p)) is the normal vector of the patch Γν(p).
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3.3.2 Width-ν Patch Area

Given a Euclidean surface S and its normal vector field {−→n }, in the continuous
space we can compute the area of S with the formula:

A(S) =
∫
S

−→n (s) ds

The discrete version of this equation given in [5] has been adapted as follows
to compute the area of the surface of a width-ν patch:

EA(Γν(p)) =
∑

s∈SΓν (p)

−→nν(p).−→n el(s) = −→nν(p).
∑

s∈SΓν (p)

−→n el(s)

where SΓν(p) is the set of surfels 4 of the patch surface, and −→n el(s) the elemen-
tary normal vector of s.

3.3.3 Shape Estimator

An estimator that enables the characterization of the shape (hollow-shaped,
knob-shaped or flat) of the surface around a border point of a possibly noisy
discrete object has been developed. It is based on the study of the conformation
of the patches which are centered on points belonging to the outline of Γν(p).

Definition 5 (Patch Outline) Let Bb be the border of a discrete object Ob.

We denote by Sb the set of surfels of Bb which are incident to a point that does

not belong to Ob, and SΓν(p) the subset of Sb that belongs to Γν(p). A point

q belongs to the outline of Γν(p) if the voxel representation of q has a surfel

s ∈ SΓν(p) and if there exists a surfel s′ ∈ Sb \ SΓν(p) such that s and s′ are

adjacent by edge.

Let C be the set of points that belong to the outline of Γν(p). Our shape
estimator of the surface around a point p is then given by the formula:

Fν(p) =
1

|C|
∑
∀q∈C

̂(−→nν(p),−→nν(q)) ·
EA(Γν(q))

EA(Γν(p))

where ̂(−→nν(p),−→nν(q)) is the oriented angle value between the two normal vec-
tors. So, the estimator Fν(p) is a weighted mean of the angle values between
−→nν(p) and the −→nν(qi)1≤i≤|C|.

Fν(p) is positive when the surface around p is rather knob-shaped and Fν(p)
is negative when the surface around p is rather hollow-shaped. An increasing

4 Faces of a voxel are called surfels
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(a) (b)

Fig. 6. Segmentation of (a) a regular cube of edge 25
and (b) a noisy counterpart by using the DSD algorithm
(http://liris.cnrs.fr/isabelle.sivignon/DSD.html).

value of |Fν(p)| means that the surface around p is more strongly bent. More-
over, if Γν(p) is big, a value Fν(p) close to zero means that the area around
p is almost flat (according to the width ν we chose). If Γν(p) is small, then
the area around p is strongly distorted, but in a way we can neither qualify as
hollow- or knob-shaped.

4 Segmentation

4.1 Introduction

The segmentation of a three-dimensional discrete object we will describe in
this section consists in partitioning the border of the object into pieces of
discrete planes. Some studies have been led on the subject [12,18,19,9] but
they all consider regular planes with a fixed width (mainly naive or standard
arithmetic discrete planes). Although these methods give good results with
regular discrete objects (Fig. 6(a)), it is not always the case when we have
to deal with irregular or noisy discrete objects (Fig. 6(b)). In particular, ir-
regularities force to create lots of small segments. The approach we present
hereafter is more flexible and considers a segmentation into pieces of planes
with a variable width, width-ν blurred pieces of discrete planes to be specific
(denoted BPDPν in the sequel), to deal with noisy data.
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4.2 Segmentation into Blurred Pieces of Discrete Planes

Firstly, a pre-processing step is done on the border Bb of the discrete object we
want to segment. Given a real ν, for each point p ∈ Bb we compute a width-ν
patch centered at p as explained in section 3.2. At each point p we can thus
associate the features presented in section 3.3, that is:

• the normal vector −→nν(p),
• the area factor EA(Γν(p)),
• and the shape factor Fν(p).

Our segmentation process can be summed up to the following steps: a seed

is chosen among points of Bb to start a first BPDPν recognition that grows
through a process of accretion. An adjacent point is selected and added to
the BPDPν if it satisfies some required criteria. The BPDPν eventually stops
growing when there are no more adjacent points that can be added without
contradicting the criteria. This procedure is repeated from a new seed until
all points of Bb belong to a BPDPν .

In the following paragraphs we will discuss more in detail the different key
points of this segmentation algorithm.

Seed Selection: The easiest way to choose a seed is to randomly pick a
border point which does not belong to a BPDPν and to start the recognition
process from there. The problem with this approach is that we have no control
over the segmentation. To segment a cube for instance, a bad choice would be
to start from seeds that lie near an edge of the cube. This would result in an
over-segmentation as shown in Fig 7.

A better choice is to start from seeds that are lying in flat areas. It is indeed
more meaningful to give a higher priority to flat areas than to bent areas
since the underlying primitive of a BPDPν is an arithmetical discrete plane.
Chances to have a better approximation are thus higher. Therefore we have
chosen to rely on the area estimator EA(Γν(p)) to find the seeds. The idea is to
pick the border point p (not yet processed) which has the highest EA(Γν(p))
value as the next seed.

BPDPν Recognition: The algorithm used to incrementally recognize width-
ν blurred pieces of discrete planes is the geometrical one proposed in [13] by
considering the Euclidean norm.
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Fig. 7. Over-segmentation due to
randomly chosen seeds.

(a)

(b) (c) (d)

Fig. 8. The points that belong to the
BPDPν are in grey (a) Processing order
of the neighborhood. (b-d) Some possi-
ble configurations when we try to add the
point with the question mark: (b) it can-
not be added because it is not 4-connected
to another grey point; (c) it cannot be
added because it creates a hole; and (d)
it can be added.

The spreading of a BPDPν heavily depends on the way the neighborhood of
the seed is visited as explained in [18]. For the same reasons as before, the
value EA(Γν(p)) is used in the accretion process. Points p adjacent to the
evolving BPDPν are added according to their decreasing EA(Γν(p)) values.

To implement this behaviour we use a priority queue Q. We start by pushing
the seed into the queue with a weight equals to its area factor and mark this
seed as visited. Then, while Q is not empty, we pop out of Q the point p
with the highest weight w and we add p to the evolving BPDPν if it satisfies
the required criteria presented in the following paragraph. We then add the
non-visited 26-neighbours of p which belong to the border and their associated
area factor into the priority queue Q and mark them as visited.

Using this technique the BPDPν does not stop growing if a point cannot be
added.

Required Criteria: The first criterion that has to be satisfied is that the
width of the evolving BPDPν must not exceed ν when a point p is added.
But this is implicitly checked in the recognition algorithm.

Moreover, as we plan to use the segmentation in a future work to develop
a polyhedrization algorithm for noisy discrete objects, the BPDPν segments
have to satisfy some constraints of good formation. In particular we want a
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(a) (b) (c)

Fig. 9. Width-2 segmentation of a (a) noisy cube of edge 30; (b) noisy sphere of
radius 20 with the method presented in section 4.2. (c) Segmentation of the same
sphere using only width-2 patches.

BPDPν segment to be 4-connected and without holes, i.e. homeomorphic to
a topological disk, according to the main direction of the normal vector of
its seed. To check these constraints we use a simplified version of a method
proposed in [16] (p.153). We work in the projection plane associated to the
normal vector of the seed. We consider the 8-neighborhood of the point we
are trying to add in the evolving BPDPν and process the 8-neighbors in the
order shown in Fig. 8(a). During the processing a zero-initialized counter is
incremented at each time we go from a point which belongs to BPDPν to a
point which does not, and vice-versa. At the end, if the counter value is greater
than two it means that the point cannot be added without creating a hole. At
the same time we check that at least one 4-neighbor belongs to BPDPν . If a
point does not pass these tests it is marked as non-visited to give the tracking
process the opportunity to visit it later on.

Some results obtained with this segmentation method are given in Fig. 9(a)
and 9(b). On the one hand, if we look at the cube in Fig. 9(a), we can see that
the segmentation is rather good and partitions the object into six segments
which correspond to the six faces of the cube. On the other hand, the segmen-
tation of the sphere in Fig. 9(b) could be better. The problem with the sphere
is its curved border. The tracking process of points described in section 4.2
has the opportunity to skirt round the points that cannot be added and on
curved parts it tends to create rough-crescent-shaped BPDPν . If we now use
a width-ν patch-based segmentation, as described in section 3.2, we can see
that the result is better (see Fig. 9(c)). This is due to the chamfer-mask-based
tracking process used to grow the patches.
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4.3 Hybrid Method

Relying on the previous observations, we have developed an hybrid segmen-
tation method. For seeds that lie in a flat part of the object we develop a
BPDPν segment as described in 4.2 and for seeds that lie in curved parts we
develop a patch Γν(p) (see section 3.2).

To distinguish between flat parts and curved parts we use the shape factor
Fν(p). As previously explained, an increasing value of |Fν(p)| means that the
surface around p is more strongly bent. Thus, given a threshold value σ and
a seed s, if |Fν(s)| < σ we develop a BPDPν segment, otherwise we develop
a patch Γν(s). Results are presented in the next paragraph.

4.4 Results and Comparisons

Results obtained with the hybrid method are shown in Fig. 10 and 11.

In Fig. 10 synthetic objects with different shapes have been segmented at
different widths. We can see in Fig. 10(g) and 10(h) that the method still
works for non-noisy objects. Furthermore, due to the hybrid approach, both
flat and curved areas of the noisy half hollowed ellipsoid in Fig 10(c), 10(f)
and 10(i), are well segmented.

To emphasize the improvements brought by the hybrid method in case of
distorted data, the number of segments obtained with the method proposed
by I. Sivignon 5 , called DSD algorithm, and with the Hybrid Method (HM)
are shown in Table 1.

Table 1
Number of segments obtained on synthesized objects.

Cube Half hollowed ellipsoid Sphere

Noise level None Weak Strong None Weak Strong None Weak Strong

parameters α = 0.28 α = 0.1 α = 0.4 α = 0.05 α = 0.2 α = 0.05

DT = 〈3, 4, 5〉 β = 0.28 β = 0.06 β = 0.4 β = 0.05 β = 0.2 β = 0.05

DSD algo 6 223 237 133 199 362 215 662 488

W
id

th

ν = 1 6 206 224 93 177 327 115 603 491

HM ν = 2 6 6 36 33 47 110 50 115 119

ν = 3 6 10 15 27 30 41 26 58 50

We can see that the results between the Hybrid Method at ν = 1 and the
DSD algorithm are really close. But for increasing width values, the number
of segments significantly decreases.

5 http://liris.cnrs.fr/isabelle.sivignon/DSD.html
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We can however notice that on the cube with a weak level of noise, there are
more segments for ν = 3 than for ν = 2. It is due to the fact that a segment on
one side of the cube may “overflow” on the other sides, as shown in Fig 10(d).
In that case, some points on these sides cannot be added because they do not
satisfy the required criteria (Section 4.2) and then create tiny segments.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Results of different segmentations by using the hybrid method on synthetic
objects: (a, b) a width-2 segmentation of a weakly noisy sphere of radius 20; (d, e) a
width-3 segmentation of noisy cubes of edge 30 and 25; (g, h) a width-1 segmentation
of non-noisy objects; and (c, f, i) a width-2 segmentation of an half hollowed ellipsoid.

In Fig. 11 two scanned real-life objects – an old Dodge car and a spaceship,
available on the TC18 website 6 – have been segmented with both DSD algo-
rithm proposed by I. Sivignon and hybrid approach. We can notice that, with
the hybrid approach, the flat areas, i.e the roof, the parts of the hood and the
windshield of the car are well segmented, with respect to the shape of the car

6 http://www.cb.uu.se/~tc18/code_data_set/3D_images.html
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(a) (b)

(c) (d)

Fig. 11. The segmentation of a car (a, c) by using the DSD algorithm; and (b, d)
by using the width-2 hybrid method.

Table 2
Number of segments obtained on real scanned objects.

Dodge car Spaceship

DSD algo 565 913

Hybrid Method, ν = 2 259 430

and with a small number of segments. It is also the case for the wings of the
spaceship. In curved areas the two segmentations are close, but it is difficult
to decide what is a “good” segmentation in these areas.

The number of segments obtained with both Hybrid Method and DSD algo-
rithm are shown in Table 2.

Note that, at this time, the witdh ν and the threshold have to be set manually,
but we would like to investigate more to find a way to automatically choose
an appropriate value for these parameters.

16



5 Application to Smoothing

In this section we present an application of the previous segmentation to
smooth the border of noisy discrete objects. The approach we propose only
works for convex objects.

Another method [7] has been proposed which relies on distance transform
(DT ). In order to remove protrusions, cavities and components of negligible
size, the DT of the whole binary 3D image – i.e. both the object and the
background – is computed. Then all voxels having a distance less than a cho-
sen threshold are set to zero. This creates a kind of “hollow space” around
the border of the object. The DT of this hollow space is then computed and
voxels having equal distances to object and background are assigned as the
new border of the object.

Our smoothing method directly exploits the results obtained by the segmen-
tation algorithm. To smooth a noisy discrete object Ob, the following steps
are performed:

(1) Compute a segmentation of Ob for a given width ν. Let LS be the list of
all the segments.

(2) For each segment Si ∈ LS (1 ≤ i ≤ |LS|), choose a Euclidean represen-
tative plane Pi of Si

(3) Let Bi be the set of all integer points that lie in the negative half-space
of the representative of Pi. Compute the resulting smoothed object Os =⋂

i Bi

Point (3) states that the smoothed object is the digitization of a convex set.
This explains why our method makes sense only when we want to smooth
objects for which the result is expected to be convex.

Furthermore different candidates can be chosen to be the Euclidean repre-
sentative of a segment. Let (a, b, c, µ, ω) be the characteristics of the width-ν
blurred piece of discrete plane associated to a segment S of the segmenta-
tion. We have chosen as Euclidean representative of S the Euclidean plane
ax + by + cz = µ + ω/2, that is, the plane at middle distance between the two
leaning planes of S. This choice seems reasonable for objects synthesized with
kanungo’s noise model.

As it stands, this method can still produce unsatisfactory results, as shown in
Fig. 12, due to the maximal-extension strategy used to develop the BPDPν ’s.
Indeed, if we add points that lie in discontinuous areas of the object (e.g.
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(a) (b)

Fig. 12. (a) Example of an undesired segmentation for the smoothing. Points near
the edge of the cube have been added into, e.g., the red segment (due to the maxi-
mal-extension strategy) which has originated a step in (b) the smoothed cube.

vertices and edges, for a cube) it tends to tilt the segments, which can disturb
the smoothing. To avoid this scenario we must ensure that the segments are
reliable enough. That is to say, we should not add points that are in strong
discontinuous areas of the object. We can detect these points thanks to the
shape estimator Fν(p). Since increasing values of |Fν(p)| means that the sur-
face around p is more strongly bent, we do not add points that have a shape
factor value greater than a given threshold. Fig. 13(c) shows a gradient col-
ormap – from green (flat areas) to red (knob-shaped areas) – of the shape
factor Fν(p) for a noisy dodecahedron and Fig. 13(d) shows the reliable seg-
ments obtained when we do not add the points that lie in the discontinuous
areas of the object (i.e. the edges, depicted in red in the colormap, for the
dodecahedron).

Fig. 13 sums up the different states of a dodecahedron, from (a) the regular
original version to (b) a noisy counterpart to (e) its smoothed version, which
turns out to be very close to the original one. The digitization of the convex
hull of the noisy object is also shown in (f). We can see that the smoothed
version obtained with our method is more regular. It is because the border of
this object is composed of pieces of digital planes, which correspond to the
digitization of the twelve Euclidean representatives of the reliable segments,
whereas the convex hull of the noisy object is made up of a greater number of
facets due to the noise.

Fig. 14 shows different noisy versions of regular mathematical objects and
their smoothed counterparts. For each object the expected number of reliable
segments has been found and we have obtained a smoothed version very close
to the original one.
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(a) (b) (c)

(d) (e) (f)

Fig. 13. Different states of a discrete objects. (a) The regular discrete dodecahedron,
(b) a noisy counterpart, (c) the colormap of the shape estimator – from flat (green)
to knob-shaped (red), (d) the reliable segments, (e) the smoothed object and (f) a
digitization of the convex hull of (b).

6 Conclusion

In this paper we have presented a segmentation method to decompose a pos-
sibly noisy discrete object into pieces of discrete planes with a variable width.
Different segmentation strategies have been proposed, guided by geometric
features of the border of the object, computed in a pre-process step. Good
results have been obtained for both noisy and non-noisy objects, but we still
have to investigate more to automatically choose appropriate values for the
different parameters of the method. An application to smooth the border of
convex noisy discrete objects has also been proposed.

In a future work, we intend to improve the smoothing algorithm so that it
also works for non convex objects. We also want to use the segmentation to
develop a polyhedrization algorithm for noisy discrete objects. But some work
has to be done to propose a good definition for facets and to study the way
to group them together to build a Euclidean polyhedron. The strategies used
in [6] and in [4] could help us in that way.
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(a) (b) (c)

(d) (e) (f)

Fig. 14. Different noisy objects with their reliable segments (a) a cube, (b) an
octahedron, (c) an icosahedron and (d), (e), (f) their respective smoothed version.
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