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Abstract

We investigate Monte Carlo Markov Chain (MCMC) procedures for the random
sampling of some one-dimensional lattice paths with constraints, for various constraints.
We will see that an approach inspired by optimal transport allows us to efficiently bound
the mixing time of the associated Markov chain. The algorithm is robust and easy to
implement, and samples an ”almost” uniform path of length n in n

3+ε steps. This
bound makes use of a certain contraction property of the Markov chain, and is also
used to derive a bound for the running time of Propp-Wilson’s Coupling From The

Past algorithm.

1 Lattice Paths with Constraints

We are interested in this paper in some families of one-dimensional lattices paths. We fix
three integers n, a, b > 0, and consider the paths of length n, with steps +a/ − b, that
is, the words of n letters taken in the alphabet {a,−b}. Such a word s = (s1, s2, . . . , sn) is
identified to the path S = (S1, . . . , Sn) := (s1, s1+s2, . . . , s1+s2+ · · ·+sn).On the right, one
sees the lattice path S = (1, 2, 0, 1, 2, 3, 1) associated to the word s = (1, 1,−2, 1, 1, 1,−2).
The problem we discuss here is to efficiently sample uniform (or almost uniform) paths in a
sub-family An of paths, with Markov chains.

To illustrate the methods and the results, we focus on three particular sub-families.

1. Discretemeanders, denoted byMn, which are simply the non-negative paths: S ∈Mn

if for any i ≤ n we have Si ≥ 0. This example is mainly illustrative because the
combinatorial properties of meanders make it possible to perform exact sampling very
efficiently (an algorithm running in O(n1+ε) steps is given in [3], an order that we
cannot get in the present paper).

2. Paths with walls. A path with a wall of height h between r and s is a path such
that Si ≥ h for any r ≤ i ≤ s (see Fig. 1 for an example). These are denoted by
Wn =Wn(h, r, s), they appear in statistical mechanics as toy models for the analysis
of random interfaces and polymers (see examples in [6]).

3. Culminating paths, denoted by Cn, which are non-negative paths whose maximum is
attained at the last step: for any i we have 0 ≤ Si ≤ Sn. They have been introduced
in [3], motivated in particular by the analysis of some algorithms in bioinformatics.
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Figure 1: A path of steps +1/− 2, with a wall of height h = 6 between i = 10 and j = 15.

Remark 1. The methods discussed here apply to any values of (a, b), but we have in mind
the challenging case b > a: for our three families the ratio card(An)/card(Pn) decreases
exponentially fast, making impossible a naive rejection algorithm.

2 Sampling with Markov chains

We will consider Markov chains in a family An, where all the probability transitions are
symmetric. For a modern introduction to Markov chains, we refer to [7]. Hence we are
given a transition matrix (pi,j) of size |An| × |An| with

pi,j = pj,i whenever i 6= j,

pi,i = 1−
∑

j 6=i

pi,j .

Lemma 2. If such a Markov chain is irreducible, then it admits as unique stationnary
distribution the uniform distribution π = π(An) on An.

Proof. The equality π(i)pi,j = π(j)pj,i holds for any two vertices i, j. This shows that the
probability distribution π is reversible for (pi,j), and hence stationnary. It is unique if the
chain is irreducible.

This lemma already provides us with a scheme for sampling an almost uniform path
in An, without knowing much about An. To do so, we define a “flip” operator on paths.
Fix an integer i ∈ {1, 2, . . . , n− 1} and a path S = (S1, . . . , Sn) ; let (s1, . . . , sn) be the
corresponding word.

The path φ(S, i, ↑) is defined as follows : if (si, si+1) = (−b, a) = then these two

steps are exchanged into (a,−b) = . The n− 2 other steps remain unchanged. For the
case i = n, φ(S, n, ↑) is simply the path associated to the word

(s1, . . . , sn−1, a).

The path φ(S, i, ↓) is defined equally: if (si, si+1) = , it turns into . The path
φ(S, n, ↑) is the path associated to (s1, . . . , sn−1,−b).

For the family An = Cn, we have to use another definition of φ(S, n, ↑) and φ(S, n, ↓,),
if we want the chain to be irreducible. Notice that since the maximum is reached at n, the
⌈b/a⌉+ 1 last steps are necessarily

(a, a, . . . , a) or (−b, a, . . . , a).
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We thus define φ(S, n, ↑) as the path obtained by changing the ⌈b/a⌉ + 1 last steps into
(a, a, . . . , a) (regardless of their initial values in S) and φ(S, n, ↓) as the path obtained by
changing the ⌈b/a⌉+ 1 last steps into (−b, a, . . . , a)

We are also given a probability distribution p = (pi)1≤i≤n, and we assume that pi > 0
for each i. We will consider a particular sequence p later on, but at this point we can take
the uniform distribution in {1, . . . , n}. We can now describe the algorithm.

Algorithm 1 MCMC: Approximate sampling of a path in An

initialize S ∈ An

I1, I2, · · · ← i.i.d. r.v. with law p

ε1, ε2, · · · ← i.i.d. uniform r.v. in {↑, ↓}
for t = 1 to T do

if φ(S, It, εt) is in An then

S← φ(S, It, εt)
end if

end for

In other words, this algorithm performs the Markov chain in An with transition matrix
P = (PR,S)R,S∈An

defined as follows:

{

PR,S = pi/2, if S = φ(R, i, ε) for some ε and 0 otherwise,

PR,R = 1−
∑

S 6=R
PR,S.

Proposition 3. Denote by S(t) the path sampled by the t-th run of the loop in Algorithm
1. When t→∞, the sequence S(t) converges in law to the uniform distribution in An.

Proof. We have to check that the chain is aperiodic and irreducible. Aperiodicity comes
from the (many) loops. Irreducibility will follow from Lemma 5.

We choose now the distribution (pi). Instead of pi = 1/n, we will use the weights defined
by (see the plot of i 7→ pi for n = 100 below):

pi :=
4i

n(n+ 1)
− κ0

i(i+ 1)

2
( for i = 1, . . . , n), (1)

where κ0 = 6
n(n+1)(n+2) ∼ 6n−3. We let the reader check that (pi)i≤n is indeed a probability

distribution.

The reason for which we use this particular distribution will appear in the proof of Propo-
sition 6. We will then need the following relation: for each 1 ≤ i ≤ n− 1,

2pi − pi−1 − pi+1 = κ0. (2)

Remark 4. There are obviously many other Markov chains which are reversible with respect
to the uniform measure, and some of them may seem more natural to the reader. However,
such Markov chains are in general neither monotonous (see later Section 4) nor of positive
Ricci curvature (Section 3). The latter condition is essential for our purpose.
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2.1 Analysis of Algorithm 1

We could deduce from a brief glance at Algorithm 1 that time-complexity is always linear
in T , but we have to pay attention to what is hidden behind each run of the for loop.

• If It < n, the time needed for the test ”φ(S, It, εt) is in An” can be considered as
constant, since we only have to compare 0, S(i), S(n).

• If It = n, the new value S(n) is compared with the maximum of S, which can be
done in O(n). Fortunately, this occurs with probability pn = O(n−1), so that the
time-complexity of each loop is, on average, a O(1).

For Algorithm 1 to be efficient, we need to know how S(T ) is close in law to π. This
question is related to the spectral properties of the matrix P . In particular, the speed of
convergence is governed by the spectral gap (i.e. 1−λ, where λ is the largest of the modulus
of the eigenvalues different from one, see [9] for example), but this quantity is not known in
general. Some geometrical methods [5] allow to bound from below 1−λ, but they assume a
precise knowledge of the structure of the graph defined by the chain P . It seems that such
results do not apply here.

Instead, we will study the metric properties of the chain P with respect to a natural
distance on An, and show that it satisfies a certain contraction property.

3 Error estimates with contraction

Going back to a more general setting, we consider a Markov chain in a finite set V , endowed
with a metric d. For a vertice x ∈ V and a transition matrix P , we denote by Pδx (resp.
P tδx) the law of the Markov chain associated to P at time 1 (resp. t), when starting from x.
For x, y ∈ V , the main assumption made on P is that there is a coupling between Pδx, P δy

(that is, a random variable (X1, Y1) with X1
law
= Pδx, Y1

law
= PδY ) such that

E [d(X1, Y1)] ≤ (1 − κ)d(x, y), (3)

for some κ > 0, which is called the Ricci curvature of the chain, by analogy with the Ricci
curvature in differential geometry1. If the inequality holds, then it implies that P admits a
unique stationnary measure π and that, for any x,

‖ P tδx − π ‖TV≤ (1− κ)tdiam(V ), (4)

where diam(V ) is the diameter of the graph with vertices V induced by the Markov chain
and ‖ . ‖TV stands, as usual, for the Total Variation distance

‖ µ1 − µ2 ‖TV:= sup
A⊂V

|µ1(A)− µ2(A)| .

Hence, a positive Ricci curvature gives the exponential convergence to the stationnary mea-
sure, with an exact (again, exact means non-asymptotic) bound. In many situations, a
smart choice for the coupling between X1, X2 gives a sharp rate of convergence in eq. (4)
(see [10]).

3.1 Metric properties of P

To apply the Ricci curvature machinery, we endow each An with the L1-distance

d1(S, S
′) =

1

a+ b

n
∑

i=0

|Si − S′
i|.

1The Ricci curvature is actually the largest positive number such that (3) holds, for all the couplings of
Pδx, P δy ; here we should rather say that Ricci curvature is larger than κ.
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(Notice that |Si− S′
i| is always a multiple of a+ b.) For our purpose, it is fundamental that

this metric space is geodesic.

Lemma 5 (Families An are geodesic). Each An, equipped with the distance d1, is geodesic
in the following sense: for any two S, T ∈ An with d1(S, T ) = k, there exist k + 1 paths
S0 = S, S1, . . . , Sk = T in An such that for each i

• d1(Si, Si+1) = 1 ;

• Si and Si+1 are neighbours in the Markov chain P .

This implies in particular that P is irreducible and that the diameter of P is smaller than
maxS,T d1(S, T ) ≤ n(n+ 1)/2.

Proof. The proof goes by induction on k. We fix S 6= T (and denote by s, t the corresponding
words) ; we want to decrease d1(S, T ) by one, by applying the operator φ(·, i, ε) with proper
i, ε. We denote by i0 ∈ {1, . . . , n} the first index for which S 6= T :

S0 = T0, S1 = T1, . . . , Si0−1 = Ti0−1, Si0 6= Ti0 .

For instance we have Ti0 = Si0 + a + b. Let j be the position of the left-most peak in T
in {i0 + 1, i0 + 2, . . . , n}, if such a peak exists. Then S′ := φ(T, j, ↓) is also in An: it is
immediate for the three familiesMn,Wn, Cn. We have d1(S, S

′) = k − 1.
If there is no peak in T after i0, then (ti0+1, ti0+2, . . . , tn) = (a, a, . . . , a). Hence we try

to increase the final steps of S by one. To do so, we choose S′ := φ(S, n, ↑) if S 6= φ(S, n, ↑),
or S′ = φ(S, j, ↑) where j is the position of the right-most valley otherwise.

We will show that Ricci curvature of P w.r.t. this distance is (at least) of order 1/n3.

Proposition 6. For the three families Mn, Cn,Wn, the Ricci curvature of the associated
Markov chain, with weights defined as in (1), is larger than κ0.

Proof. Fix S,T in An ∈ {Mn, Cn,Wn}, we first assume that S,T are neighbours, for in-
stance T = φ(S, i, ↑) for some i, as in Fig. 2. Let (S1,S2) be the random variable in An×An

Figure 2: The paths S,T differ at i.

whose law is defined by

(S1,S2)
(law)
= (φ(S, I, E), φ(T, I, E)) ,

where I is a r.v. {1, . . . , n} with distribution p and E is uniform in {↑, ↓}. In other words,
we run one loop of Algorithm 1 simultaneously on the both paths.

We want to show that S1,S2 are, on average, closer than S,T. Three cases may occur:
Case 1. I = i This occurs with probability pi and, no matter the value of E, we have
S1 = S2.
Case 2. I = i− 1 or i+ 1. We consider the case i−1. Since S and T coincide everywhere
but in i, we necessarily have one of these two cases:
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• there is a peak in S at i− 1 and neither peak nor valley in T at i− 1 (as in the figure
on the right) ;

• there is a valley in T at i− 1 and neither peak nor valley in S at i− 1.

In the first case for instance, then we may have d1(S
1,S2) = 2 if E =↓, while the distance

remains unchanged if E =↑. The case I = i + 1 is identical. This shows that with a
probability smaller than pi−1/2 + pi+1/2 we have d1(S

1,S2) = 2.
Case 3. I 6= i− 1, i, i+ 1 In this case, S and T are possibly modified in I, but if there
is a modification it occurs in both paths. It is immediate for the families Mn,Wn, less
apparent for Cn. In the latter we have to check that if φ(T, I, ↑) is in Cn, so is φ(S, I, ↑).
But this is true because we have maxj Sj = Sn = Tn. Hence a flip in S at I does not violate
the maximum-at-last-position condition, because it does not violate this condition for T.

Thus, we have proven that when S,T only differ at i

E
[

d1(S
1,S2)

]

≤ 2× (pi−1/2 + pi+1/2) + 0× pi + 1× (1− pi − pi−1/2− pi+1/2) (5)

≤ (1− κ0)× 1 = (1− κ0)d1(S, T ).

What makes Ricci curvature very useful is that if this inequality holds for pairs of neighbours
then it holds for any pair, as noticed in [4]. Indeed, take k paths S0 = S, S1, . . . , Sk = T as
in Lemma 5 and apply the triangular inequality for d1:

E [d1(φ(S, I, E), φ(T, I, E))] ≤

k−1
∑

i=0

E [d1(φ(Si, I, E), φ(Si+1, I, E))]

≤ (1− κ0)k = (1− κ0)d1(S, T ).

Remark 7. It is easy to exhibit some S, T such that ineq. (5) is in fact an equality. In
the case where pi = 1/n, this equality reads E

[

d1(S
1,S2)

]

= d1(S, T ), and we cannot obtain
a positive Ricci curvature (though this does not prove that there is not another coupling or
another distance for which we could get a κ > 0 in the case pi = 1/n.).

Combining Proposition 6 with Eq. (4) gives our main result.

Theorem 8. For each family An, Algorithm 1 returns an almost uniform sample of π, as
soon as T ≫ n3:

‖ S(T )− π ‖TV≤ n2/2 exp

(

−
6T

n(n+ 1)(n+ 2)

)

.

3.2 Related works

Bounding mixing times via a contraction property over the transportation metric is quite a
standard technique, the main ideas dating back to Dobrushin (1950’s). A modern introduc-
tion is made in [9]. For geodesic spaces, this technique has been developped in [4] under the
name path coupling.

The Markov chain P on lattice paths has in fact already been introduced2 by D.Wilson
[12] for lattice paths with a fixed end-point (as a first step for the sampling of random tilings),
with uniform weights pi = 1/n. The author also proves a mixing time of order n3 logn, by
showing that (3) holds with a different distance (namely, a kind of Fourier transform of the
heights of the paths). It does not seem to us that his method can be applied for paths with
our kinds of constraints (when the end-point is not fixed).

2It is considered in [12] 2d-paths from (0, 0) to (x, y) with steps East/North. These are, up to a linear
transformation, one-dimensional paths of length x+ y with steps +x/− y, starting and ending at zero.
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More generally, we do believe that it is difficult to build a Markov chain for these kinds
of lattice paths which has a mixing time much smaller than n3, with the constraint that each
step of the chain is fast to compute (in addition to [12], see also [2] for some related results
in the context of quasicrystals: the weights are also uniform with yet another distance).

4 Coupling From The Past with P

Propp-Wilson’s Coupling From The Past (CFTP) [11] is a very general procedure for the
exact sampling of the the stationnary distribution of a Markov chain. It is efficient if the
chain is monotonous with respect to a certain order relation � on the set V of vertices, with
two extremal points denoted 0̂, 1̂ (i.e. such that 0̂ � x � 1̂ for any vertice x). This is the
case here for our three families, with the partial order

S � T iff Si ≤ Ti for any i.

For the familyM10 with a = 1, b = −2 for instance, we have

0̂ = 0̂meanders = (1, 1,−2, 1, 1,−2, 1, 1,−2, 1),

1̂ = 1̂meanders = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

It is easy to check that for each n, families Cn and Wn also admit extremal points 0̂, 1̂.
We describe CFTP, with our notations, in Algorithm 2.

Algorithm 2 CFTP: Exact sampling of a path in An

S← 0̂, T← 1̂
. . . , I−2, I−1 ← i.i.d. r.v. with law p

. . . , ε−2, ε−1 ← i.i.d. uniform r.v. in {↑, ↓}
τ = 1
repeat

S← 0̂, T← 1̂
for t = −τ to 0 do

if φ(S, It, εt) is in An then S← φ(S, It, εt)
if φ(T, It, εt) is in An then T← φ(T, It, εt)

end for

τ ← 2τ
until S = T

We refer to ([7],Chap.10) for a very clear introduction to CFTP, and we only outline
here the reasons why this indeed gives an exact sampling of the stationnary distribution.

• The output of the algorithm (if it ever ends!) is the state of the chain P which has
been running ”since time −∞”, and thus has reached stationnarity.

• The exit condition S = T ensures that it is not worth running the chain from T steps
earlier, since the trajectory of any lattice path 0̂ � R � 1̂ is ”sandwiched” between
those of 0̂, 1̂, and therefore ends at the same value.

Proposition 9. Algorithm 2 ends with probability 1 and returns a exact sample of the
uniform distribution over An. This takes on average O(n3(logn)2) time units.

We recall that CFTP has a major drawback compared to MCMC. For the algorithm to
be correct, we have to reuse the same random variables It, εt, so that space-complexity is in
fact linear in n3(log n)2. This may become an issue when n is large.
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Figure 3: A sketchy representation of CFTP : trajectories starting from 0̂, 1̂ at time −T/2
don’t meet before time zero, while those starting at time −T do.

Proof. It is shown in [11] that Algorithm 2 returns an exact sampling in O(tmix logH) runs
of the chain, with

tmix :=

{

t ≥ 0 ; sup
v∈V

‖ P tδv − π ‖TV≤ e−1

}

.

The number H is the length of the longest ordered chain of states between 0̂ and 1̂. It is
a consequence of the proof of Lemma 5 that H = O(n2). Regarding tmix, we have, for
instance by ([9], p.189),

tmix ≤
1

κ0
(log(diamV ) + 1) ,

hence tmix = O(n3 logn). (Recall that under Section 2.1, each test in Algorithm 2 takes,
on average, O(1) time units.)

5 Concluding remarks and simulations

1. In Fig.4, we show simulations of the three kinds of paths, for n = 600. The final height
of the culminating path is very low (about 30), it would be interesting to use our algorithms
to investigate the behaviour of this height when n→∞ ; this question was left open in [3].

2. One may wonder to what extent this work applies to other families An of paths. The
main assumption is that the family of paths should be a geodesic space w.r.t. distance d1.
This is true for example if the following condition on An is fulfilled:

(R, T ∈ An and R � S � T )⇒ S ∈ An.

Notice however that this is quite a strong requirement, and it is not verified for culminating
paths for instance.

3. A motivation to sample random paths is to make and test guesses for some functionals
of these paths, taken on average over An. Consider a function f : An → R, we want an
approximate value of π(f) := card(An)

−1
∑

s∈An

f(s), if the exact value is out of reach by
calculation. We estimate this quantity by

π̂(f) :=
1

T

T
∑

t=1

f (S(t)) , (6)

(recall that S(t) is the value of the chain at time t). For Algorithm 1 to be efficient in
practice, we have to bound

P (|π(f)− π̂(f)| > r) , (7)

for any fixed r > 0, by a non-asymptotic (in T ) quantity. This can be done with ([8],
Th.4-5), in which one can find concentration inequalities for (7). The sharpness of these
inequalities depends on κ and on the geometrical structure of An.
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Figure 4: (Almost) uniform paths of length 600. From top to bottom: a culminating path,
a meander, a path with wall (shown by an arch).
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