A Rakotomamonjy

R Le Riche

D Gualandris

Z Harchaoui

A comparison of statistical learning approaches for engine torque estimation

Engine torque estimation has important applications in the automotive industry: for example, automatically setting gears, optimizing engine performance, reducing emissions and designing drivelines.

A methodology is described for the on-line calculation of torque values from the gear, the accelerator pedal position and the engine rotational speed. It is based on the availability of input-torque experimental signals that are preprocessed (resampled, filtered and segmented) and then learned by a statistical machine-learning method.

Four methods, spanning the main learning principles, are reviewed in a unified framework and compared using the torque estimation problem: linear least squares, linear and non-linear neural networks and support vector machines. It is found that a non-linear model structure is necessary for accurate torque estimation. The most efficient torque model built is a non-linear neural network that achieves about 2% test normalized mean square error in nominal conditions.

Symbols and abbreviations

a i , a i,j , a parameters of functional forms to be learned Engine torque estimation has been an active field of research in the last decade, primarily in relation to control apparatus that have become generalized in modern vehicles for optimizing engine performance, reducing traction wheel slip, reducing emissions and setting gears. Torque estimates are also needed for sizing gearboxes and other driveline components because, along with the temperature, they are a key factor in calculating mechanical damage.

A
Most previous research on torque estimation has relied on simple1 internal combustion (IC) engine models. The inputs to these models typically include specific engine measures such as air or fuel mass flows [START_REF] Chamaillard | A simple method for robust control design, application on a non-linear and delayed system: engine torque control[END_REF][START_REF] Karlsson | Cylinder-by-Cylinder Engine Models Vs Mean Value Engine Models for use in Powertrain Control Applications[END_REF][START_REF] Scherer | Device for determining the engine load for an internal combustion engine[END_REF][START_REF] Dixon | Engine torque control[END_REF][START_REF] Namba | Vehicle acceleration control system[END_REF], throttle angles [START_REF] Hohmann | Nonlinear torque control of a spark ignition engine[END_REF][START_REF] Jankovic | Nonlinear control in Automotive Engine Applications[END_REF][START_REF] Scherer | Device for determining the engine load for an internal combustion engine[END_REF], manifold pressures [START_REF] Sano | A substitution method for measuring engine output torque -calculation from the combustion pressure wave[END_REF][START_REF] Hohmann | Nonlinear torque control of a spark ignition engine[END_REF][START_REF] Jankovic | Nonlinear control in Automotive Engine Applications[END_REF][START_REF] Scherer | Device for determining the engine load for an internal combustion engine[END_REF], sparks advances [START_REF] Chamaillard | A simple method for robust control design, application on a non-linear and delayed system: engine torque control[END_REF][START_REF] Karlsson | Cylinder-by-Cylinder Engine Models Vs Mean Value Engine Models for use in Powertrain Control Applications[END_REF] and crankshaft positions [START_REF] Rizzoni | Engine control using torque estimation[END_REF][START_REF] Wang | Event-based estimation of indicated torque for IC engines using sliding-mode observers[END_REF].

The present work deals with estimating the net IC engine torque from readily available measures, namely accelerator pedal position, vehicle speed and engine rotational speed. Real torque measures, i.e. those obtained by customers in everyday driving conditions, interest car manufacturers because they enable a statistical description of the actual loads transmitted in the power trains. This work has been motivated by and applied to a car customer survey, in which 40 vehicles were equipped with a data acquisition system and lent to 40 customers for a month; during that time the specified signals were recorded in everyday driving conditions. The torque could not be directly recorded because in case of an accident the car manufacturer would need to be able to prove that the vehicle had not been significantly altered for the survey. This condition restricted the recorded signals to the ones considered here, from which the torque was estimated a posteriori.

This article presents a principled approach for creating torque models. based on statistical learning strategies that automatically build a model from experimental inputs (in this case torque sets). A statistical learning method encompasses a functional form and a way of tuning it to the data at hand: linear least squares [START_REF] Ljung | System Identification: Theory for the User[END_REF], neural networks [START_REF] Bishop | Neural Networks for Pattern Recognition[END_REF] and support vector machines [START_REF] Vapnik | Statistical Learning Theory[END_REF] will be considered here.

The article starts with a review of engine torque modelling, followed by a description and a first analysis of the experimental data available. Then, three important classes of statistical learning strategies that span most of the existing statistical learning principles-linear least squares, neural networks (NN) and support vector machines (SVM)-are introduced and compared for the torque estimation problem.

Review of engine torque modelling

Many statistically founded methods for learning dynamic systems will be compared later in this article for an important practical problem, the estimation of engine torque. Car manufacturers need to know engine torque values in order to size power train components (such as gearboxes and crankshafts) and to regulate the engine and gearbox for optimized performance and reduced emissions.

Torque can be mechanically estimated from either of two viewpoints: the internal combustion engine and the car's longitudinal dynamics. As detailed in Appendix A, a car's longitudinal dynamics cannot properly predict the torque when external influences such as wind, wheel-on-road friction and slope are unknown. Since those factors are typically unknown, previous strategies for torque calculation have involved modelling the engine.

Models of internal combustion engine have various degrees of complexity. The most complex models are complete multi-physical descriptions of the combustion chamber (chemical, thermal and compressible gas analyzes) in which the torque can be obtained by integrating the pressure on the pistons [START_REF] Heywood | Internal Combustion Engine Fundamentals[END_REF][START_REF] Vitek | 3D In-Cylinder Flow Model of Internal Combustion Engine[END_REF]). An example of a complex model is found in [START_REF] Chalhoub | Effects of structural deformations of the crank-slider mechanism on the estimation of the instantaneous engine friction torque[END_REF] where the effects of structural deformations on the engine friction torque are assessed. Such physically detailed models are computationally too demanding for control or pre-design.

Therefore most previous research on torque estimation has relied on simple models. In [START_REF] Karlsson | Cylinder-by-Cylinder Engine Models Vs Mean Value Engine Models for use in Powertrain Control Applications[END_REF], for example, the validity of simple IC engine models for control is studied by comparing cylinder-by-cylinder and mean-cylinder models.

Simple torque models can be classified according to their inputs. Most are directly based on engine inputs such as the air and fuel mass flows and the ignition timing [START_REF] Chamaillard | A simple method for robust control design, application on a non-linear and delayed system: engine torque control[END_REF][START_REF] Karlsson | Cylinder-by-Cylinder Engine Models Vs Mean Value Engine Models for use in Powertrain Control Applications[END_REF][START_REF] Namba | Vehicle acceleration control system[END_REF]). Equivalently, intake and exhaust pressure, engine speed and throttle angle have also been commonly used for torque estimation [START_REF] Jankovic | Nonlinear control in Automotive Engine Applications[END_REF][START_REF] Hohmann | Nonlinear torque control of a spark ignition engine[END_REF][START_REF] Scherer | Device for determining the engine load for an internal combustion engine[END_REF]. Another engine internal variable, the difference in combustion chamber pressure, has been correlated to engine torque in [START_REF] Sano | A substitution method for measuring engine output torque -calculation from the combustion pressure wave[END_REF]. Finally, crankshaft dynamics have been used to calculate engine torques in [START_REF] Rizzoni | Engine control using torque estimation[END_REF][START_REF] Wang | Event-based estimation of indicated torque for IC engines using sliding-mode observers[END_REF].

Alternatively, simple torque models can be classified by their functional forms. In [START_REF] Jankovic | Nonlinear control in Automotive Engine Applications[END_REF] and [START_REF] Hohmann | Nonlinear torque control of a spark ignition engine[END_REF], analytical relations based on elementary fluid dynamics yield the intake air flow (and thus the torque). More often, generic models are identified from time histories of measured engine variables: linear dynamic equations e.g. [START_REF] Namba | Vehicle acceleration control system[END_REF][START_REF] Scherer | Device for determining the engine load for an internal combustion engine[END_REF], composition of polynomials [START_REF] Chamaillard | A simple method for robust control design, application on a non-linear and delayed system: engine torque control[END_REF]), composition of fuzzy linear dynamic equations [START_REF] Maertens | Engine load prediction in off-road vehicles using multiobjective nonlinear identification[END_REF]), combination of polynomials (stochastic estimation of the coefficients), frequency analysis [START_REF] Rizzoni | Engine control using torque estimation[END_REF] and neural networks [START_REF] Hafner | Model-based control design for IC engines on dynamometers: the toolbox OPTIMOT[END_REF].

Four statistical learning approaches for building simple torque models are com-pared here. All four use as inputs measures available in any conventional vehicle2 : the accelerator pedal's position, the car's speed and the engine rotation speed. The input set is restricted by the application motivating this research; more informative signals such as air and fuel flows and throttle position cannot be used for legal reasons in a survey of customers, as mentioned above.

Starting with such data and using no knowledge of the fuel injection controller, it is possible to build a physically based torque model that uses neither external car dynamics (since external friction sources are unknown) nor internal combustion relations (since fuel and air flows-as well as equivalent data such as throttle and crankshaft angles and manifold pressures-are unknown). This approach to torque reconstruction, which combines such inputs as accelerator pedal position (an internal command to the engine through the injection controller) and vehicle speed, is based on mixed internal and external dynamics.

3 Data description and analysis

Data description and preprocessing

The measured input signals that are considered here for estimating the net engine torque are 1. the distance covered by the vehicle, d(t), 2. the vehicle speed, ḋ(t), 3. the instantaneous load at the rear axle, F R (t), 4. a binary indication that the vehicle is stopped, stop(t), 5. the clutch pedal position, C p (t), 6. the gear engaged, r(t), with r(t) = -2 for gears not engaged, -1 for reverse, 0 for neutral, 1 to 5 for gears 1 to 5, 7. the engine rotation speed, θ(t), 8. and the accelerator pedal position, A p (t).

The signal to predict is the engine torque y(t). Many hours of measured input and output signals are available. The measured engine torque values were taken from the automatic gearbox calculator which defines a mapping to the torque value from the engine rotation speed, the air and fuel flows, various temperatures (cooling system, oil, outside), the accelerator pedal position and the gear engaged. The load at the rear axle was estimated by a sensor that measures displacements (in mm) between the chassis and the car body which are then converted to a load (in kg) Hz. Downsampling and oversampling were performed by discarding excess samples and linear interpolation, respectively. Furthermore, the torque signal which was perturbed by a quantization noise has been processed by a low-pass mean filter of order W = 20. It is important to note that the filtering was useful because of the the quantization nature of the noise-not because of general experimental noises, which the statistical learning methods take into account. The filter order was chosen as a compromise between smoothing and preserving the signal extrema's amplitudes. Note also that the averaging filter introduces a delay of (W -1)/2 periods, which was corrected on the filtered output.

d(t) ḋ(t) stop C p A p r θ F R -0.
Because the objective of this present work is to estimate the torque of a moving vehicle with a gear engaged, the stop and C p signals are used to discard recordings when the vehicle is idle (stop(t) = 1) or the gear is not completely engaged (C p (t) > 0.1). The brake pedal position is not needed for torque estimation; indeed, in terms of net engine torque, braking is treated simply as a case where no acceleration is applied.

Data analysis

Before turning to complex statistical learning methods, some intuition about the data is built by correlating input and output signals.

Firstly, linear correlation coefficients between input signals are calculated in Table 1. Some signals are slightly linearly correlated: the vehicle and the engine speeds, ḋ(t) and θ, have c = 0.77, and the vehicle speed and the stop signal stop(t) have c = -0.75. In both cases, the correlation is physically obvious. Similarly, the clutch pedal position C p and the gear engaged r show some correlation (c = -0.71). The accelerator A p and the engine rotation speed are also slightly correlated (c = 0.49).

Secondly, the correlation between each input and the unfiltered output (the torque, y) is studied. In order to investigate possible polynomial relationships, correlations between the input at the power p and the output are calculated in Table 2. Figure 2 illustrates the relationships by plotting the output against each input. Table 2 and Figure 2 show that there is a strong relationship between y and the accelerator position, A p , with a linear coefficient of correlation c = 0.9. Looking more closely at the figure, one sees that the relationship is more quadratic than linear for low torques. The table also supports this conclusion because the correlation between y and A p p is highest for p = 2. The engine speed, θ, is also slightly correlated to the torque (c = 0.3). The input signals other than these two have no significant polynomial correlation with the torque.

Statistical learning methods for engine torque modelling

The previous section has shown that acceleration and its square were highly correlated to the engine torque. In order to build a more accurate model of engine torque, the torque estimation problem will now be formulated to enable time delays and non-linear dependencies on inputs, in order to fit the general statistical learning framework.

The output (the torque, y) depends on N inputs x i (e.g., A p , θ, . . .) and past values of the torque through

y(t) = f (u(t)) + e(t) (1)
where e(t) represents the modelling error and the input vector u is

u(t) = [x 1 (t), • • • , x 1 (t -td 1), • • • , x N (t), • • • , x N (t -td N), y(t -1), • • • , y(t -td y)] .
(2) td i is the maximal delay of the input signal x i . It is assumed that the output signal value at a time t depends on its past values up to the time t -td y . f is an unknown function of m = td y + N i=1 td i + N variables. Building a torque model, denoted g, now consists in approximating f from a finite set of measured input/output data, (u(t)/y(t)). Such a regression problem, combining functional analysis and statistics, is the subject of statistical learning [START_REF] Vapnik | Statistical Learning Theory[END_REF]. It is intuitive that g should reasonably fit the data, i.e. have a small

d(t), ḋ(t), F R (t) ,stop(t) , C p (t), r(t), θ(t), A p (t).
empirical error

E emp (g) = 1 ℓ ℓ i=1 L(y(t i), g(u(t i))) (3)
where ℓ is the number of samples and L is a loss function, e.g.

||y(t i) -g(u(t i))|| 2 or |y(t i) -g(u(t i))
| ε as explained later. However, blindly minimizing E emp over a large class of functions 3 G would make g exactly fit the data but with a poor prediction ability because i) g would learn data noise, and ii) g would not uniquely be determined by the data or, in mathematical terms, min g∈G E emp would be ill-posed. Statistical learning theory is therefore concerned with constraining the minimization of the empirical error to an appropriately small functional space; this is generically known as regularization [START_REF] Evgeniou | Regularization Networks and Support Vector Machines[END_REF]. Most statistical learning strategies implement it by minimizing a regularized error, which is the sum of the empirical error and a functional regularization term

E reg (g) = E emp (g) + λ||g|| 2 K . (4)
The functional regularization enforces some smoothness and flatness on the function; λ is a parameter that controls the trade-off between fitting the data and having a regular function. It is a functional norm or, more precisely, the norm in the reproducing kernel Hilbert space (RKHS) defined by the positive definite function (kernel) K (see [START_REF] Evgeniou | Regularization Networks and Support Vector Machines[END_REF] for further explanation). An example of ||g|| 2 K when g is a finite dimensional linear function as in Equation (5) is the L 2 norm of its coefficients vector, g 2 K = m i=1 a 2 i (see also footnote 4 and Section 4.3 on support vector machines).

Besides functional regularization, there exist computational regularization techniques, the most general example of which is cross-validation [START_REF] Efron | Estimating the error rate of a prediction rule: Improvement on cross-validation[END_REF]. This technique aims to estimate the prediction error by dividing the data into subsets and repeatedly minimizing E reg while leaving out one subset. These subsets are used at each cross-validation iteration to calculate one prediction error occurrence. Averaging these prediction errors yields the estimate. Cross-validation is used here to choose model hyper-parameters, which are fixed when minimizing E reg , such as λ in Equation (4). Two other computational regularization techniques, early stopping and weight decay, will be presented with neural networks.

In brief, a statistical learning method is defined by a functional space G in which the regularized error E reg is minimized, a loss function L, a functional regularization ||g|| 2 K and optionally a strategy for computational regularization. These items will be described next for the four torque estimation methods (linear least squares, linear and non-linear neural networks and support vector machines). The following assumes that the reader is familiar with optimization concepts, which can be found in [START_REF] Minoux | Mathematical programming: Theory and Algorithms[END_REF].

Linear Least Squares modelling

This is the baseline method for regression. It is computationally and conceptually the simplest approach and may satisfactorily predict the torque since it is highly correlated to the acceleration. The salient feature of linear models is their intrinsic stiffness which makes them less prone to data overfitting; this saves the effort required for regularization, but also limits their accuracy in non-linear cases. The functional form of the estimated output is

g(u(t)) = m i=1 a i u i (t) + a 0 (5)
where u i (t) is the i-th component of the input vector u(t).

The loss function is a quadratic norm and there is no regularization. Thus, the coefficients a 0 , • • • , a m minimize the empirical error

E emp (g) = 1 ℓ ℓ j=1 y(t j) - m i=1 a i u i (t j) -a 0 2 (6)
which gives, in matricial notation,

min a y -U a 2 (7) where a = [a 0 , • • • a m] t , y = [y(t 1), • • • , y(t ℓ)] and U =    1 u 1 (t 1) • • • u m (t 1) 1 u 1 (t ℓ) • • • u m (t ℓ)    .
The solution of this least squares minimization problem is given by the normal equations,

U t U a = U t y . (8)

Neural Networks

Neural networks (NNs) are a very popular statistical learning method [START_REF] Bishop | Neural Networks for Pattern Recognition[END_REF], Ripley 1996). The functional form of a NN is

g(u(t)) = N h j=1 w j Φ j b j + m i=1 a i,j u i (t) + a 0 (9)
which is metaphorically described as the linear combination of N h "hidden layer neurons" Φ j 's. In non-linear NNs, the Φ j 's are sigmoidal functions such as the hyperbolic tangent. In this work, linear NNs are additionally considered where the Φ j 's are identity functions. Non-linear NNs have three interesting properties, universal approximation, parsimony and complexity control. Universal approximation means that they can approximate arbitrarily well any function providing N h is large enough (a property shared by other function classes such as polynomials and Fourier series).

They are parsimonious because their number of internal parameters (1 + mN h + 2N h for a 0 , the a i,j 's the b j 's and w j 's) grows linearly with the dimension of the input space, m. Complexity control means that by changing N h one can control the variance of the function independently from other factors such as the number of data or the input space dimension.

A NN learns the data by solving the non-linear least-squares problem

min w,a 1 ℓ ℓ i=1 (y(t) -g(u(t i))) 2 + λ   j w 2 j + i,j a 2 i,j   (10)
The Levenberg-Marquardt optimization algorithm is well suited to solving this problem [START_REF] Levenberg | A method for the solution of certain nonlinear problems in least square s[END_REF][START_REF] Marquardt | An algorithm for least squares estimation of nonlinear parameters[END_REF]. It is a gradient-based optimizer that, for non-linear least-squares problems, is a quasi-Newton method (Le Riche & Guyon 1999). Evaluation of the gradient of the objective function (Equation (10)) with respect to the parameters (or weights) w and a is performed by a computationally efficient implementation of chain rule differentiation, a technique known as "error back-propagation" in the field of NNs [START_REF] Bishop | Neural Networks for Pattern Recognition[END_REF].

The last penalty term in Equation (10), referred to as weight decay, is, rigorously speaking, a computational regularization strategy, although it seems closely related to functional regularization 4 (see Equation (4) and [START_REF] Canu | Why sigmoid-shaped functions are good for learning[END_REF][START_REF] Girosi | Regularization theory and neural networks architectures[END_REF]).

Another computational regularization strategy, early stopping, is used for learning NNs. Both versions of this strategy involve stopping the minimization of Equation(10) before convergence.

In one version, a "stopping" subset of the learning data set is isolated and used exclusively to control the empirical error-it is not involved in defining Levenberg-Marquardt search directions. Whenever the empirical error on the stopping subset increases for S 1 Levenberg-Marquardt iterations, optimization is stopped and the solution found S 1 iterations earlier is chosen even though the empirical error on the learning subset might have kept decreasing. This strategy is based on the supposition that if the stopping error increases while the learning error decreases, optimization is probably fitting the noise of the learning data.

In the other version, the search is stopped after a given number of Levenberg-Marquardt iterations, S 2 .

In this work, both stopping criteria are used and optimization is stopped whenever either is met. The NN regularization hyper-parameters λ and S 2 are determined through cross-validation.

Finally, note that the difference between linear least squares and linear NN is that the latter is subject to the specified computational regularization strategies (weight decay and early stopping). Otherwise, these two models share the same functional form and empirical error.

Support Vector Machines

Support Vector Machines (SVM) [START_REF] Schölkopf | Leaning with Kernels[END_REF][START_REF] Vapnik | Statistical Learning Theory[END_REF]) in regression minimize the regularized error E reg of Equation (4) where the loss function L of the empirical error is the ε-insensitive loss function

E emp (g) = 1 ℓ ℓ i=1 |y(t i) -g(u(t i))| ε (11) 4
In the case of a linear NN, weight decay is a functional norm in a RKHS of (finite) dimension R n+1 , whose basis vectors are e0 :

R n → R x → 1 , ei : R n → R x → xi and whose kernel is K(x, y) = È n i=1 xiyi + 1.
The link between weight decay and functional norms is still a subject for research in the case of non-linear NNs [START_REF] Canu | Why sigmoid-shaped functions are good for learning[END_REF][START_REF] Girosi | Regularization theory and neural networks architectures[END_REF].

and | • | ε means

|x| ε = 0 if |x| < ε |x| -ε otherwise. (12
)
With the ε-insensitive loss function, any output which is less than ε away from the data is treated as a perfect interpolant. ε can be interpreted as the resolution of the measures; it also controls the regularity of the function that minimizes E reg because increasing it reduces the emphasis on interpolating the data and increases the degrees of freedom available for decreasing the regularization term of Equation (4). Note that the functional norms g 2 K will not be explicit in the framework of classical SVMs because the first order optimality conditions (the Karush Kuhn and Tucker conditions) will be used to transform them into linear combinations of K.

However, the choice of the kernel K defines the reproducing kernel Hilbert space (RKHS) in which a minimizer of E reg (Equations (4) and (11)) is sought. In other words, the kernel determines the functional form of the solution which can be written (as any function of the RKHS)

g(u(t)) = ℓ i=1 a i K(u(t i), u(t)) + a 0 . (13)
Because the ε-insensitive loss function is not differentiable, slack variables ξ and ξ * are introduced into the original SVM problem; this yields an equivalent quadratic optimization problem:

min g,ξ,ξ * Φ(g, ξ, ξ *) = C ℓ ℓ i=1 (ξ i + ξ * i) + 1 2 g 2 K subject to the constraints: g(u(t i)) -y i ≤ ε + ξ i ∀i ∈ [1, • • • ℓ] y i -g(u(t i)) ≤ ε + ξ * i ∀i ∈ [1, • • • ℓ] ξ i , ξ * i ≥ 0 ∀i ∈ [1, • • • ℓ] (14)
where C = 1 2λ . This minimization problem is convex, so it is equivalent to solve its dual form where the Lagrange multipliers associated with the ε-tube constraints are introduced (denoted α i and α * i). Making use of the Karush-Kuhn and Tucker conditions in the dual form to eliminate the slack variables, the SVM regression problem turns out to be the following quadratic programming problem in α i and α * i [START_REF] Schölkopf | Leaning with Kernels[END_REF][START_REF] Smola | A tutorial on support vector regression[END_REF][START_REF] Vapnik | Statistical Learning Theory[END_REF]:

min α i ,α * i ε ℓ i=1 (α * i + α i) -ℓ i=1 y i (α * i -α i) + 1 2 ℓ i,j=1 (α * i -α i)(α * j -α j)K(u(t i), u(t j))
subject to the constraints:

ℓ i=1 (α * i -α i) = 0 0 ≤ α i , α * i ≤ C ℓ ∀i ∈ [1, • • • ℓ] (15
)
a 0 is the Lagrange multiplier associated to the constraint ℓ i=1 (α * i -α i) = 0. The solution of the regression problem (the minimizer of E reg) is finally

g(u) = ℓ i=1 (α i -α * i)K(u(t i), u) + a 0 . (16
)
Note that the data points u(t i) for which the error is less than ε have their α i and α * i equal to 0 since they are Lagrange multipliers associated to inactive constraints. Furthermore, α i and α * i cannot be simultaneously equal to 0, so only a few points, called the "support vectors", have either α i or α * i different from zero. The support vectors are the only data points that determine the model g (Equation (16))-the other points could be removed without changing the SVM; this property is known as sparsity.

In SVMs, two hyper-parameters are tuned by cross-validation, C (= 1/(2λ)) and ε.5 Polynomial kernels will be used in this work,

K(u, u ′) = (< u, u ′ > +1) p , (17
)
where < u, u ′ > denotes the scalar product between u and u ′ .

This presentation of the statistical learning methods under consideration for torque estimation will close with a comparative review of their theoretical features. One should be careful here not to rush to conclusions because, as the No Free Lunch Theorem in optimization [START_REF] Wolpert | No Free Lunch Theorems for Search[END_REF] states, there is no such a thing as a universally better performing method. For this reason the numerical tests performed later on the torque estimation problem remain necessary.

For certain choices of kernels such as Gaussian radial basis functions, it has been shown [START_REF] Dyn | Interpolation of scattered data by radial functions[END_REF]) that SVMs, like NNs, are universal approximators. However, the universal approximation property is not of much practical benefit in itself since it should be balanced against the associated risk of poor prediction. More important in practice is the difficulty of the optimization problem that needs to be solved to learn the methods. Learning NNs is complex because it involves a non-linear least squares problem where the Levenberg-Marquardt algorithm may converge to a local minimum. On the other hand, the linear least squares method can be tuned to the data by a simple linear system resolution. Learning SVMs involves solving a classical quadratic programming problem where convergence to a global optimum is guaranteed. With regard to computer memory usage, SVMs typically require more memory than NNs, as shown in Problem (15) where there are ℓ 2 terms K(u(t i), u(t j)). To save some memory, SVM implementations can make use of the sparsity property [START_REF] Collobert | SVMTorch: Support Vector Machines for Large-Scale Regression Problems[END_REF]

(x) = ℓ i=1 a i K(u(t i), x) + a 0 loss function L ε-insensitive functional regularization 1/(2C) g 2 K computat. regularization cross-validation (C and ε) optimization pb.
constrained quadratic programming Table 3: Summary of the features of the statistical learning methods considered. each subproblem, many α i and α * i are set to 0 (non support points) and not considered in the optimization. This guess is iteratively updated until a solution to the quadratic problem (15) is found.

All the characteristics of the methods presented are summarized in Table 3.

5 Experimental results

Experimental setup

The four statistical learning methods previously described are now compared for estimating an IC engine net torque.

The relationship between the engine torque, the accelerator pedal position A p (t) and the engine speed θ depends on which gear is engaged, as measured by the discrete signal r(t). Here we have adopted the simplest way to cope with this dependency: building a separate model for each gear. This can be seen as a rough way of introducing expert knowledge into the models. Other approaches would imply making r(t) one of the inputs u i in Equation (2) with the drawback of increasing the input space dimension and the complexity of the learning task.

A large number of experimental data, representing several hours of recording, are available here. They translate into a number of (u, y) pairs that vary with the maximum delay, td max = max i=y,1...N (td i), because the input signals of relation (2) have to start td max time steps after the beginning of usable sequences. Short sequences may also disappear from the inputs as their length becomes smaller than td max . On average, there are on the order of 140000 data points for each gear.

The data are divided into learning, validation and test sets. The learning set consists in general of the ℓ points used to calculate the empirical error (Equation (3)) when tuning the models parameters (the a and w parameters). An exception is made for early stopping, when part of the learning set is put aside to control learning as explained in Section 4.2. The validation set is composed of the ℓ V points used to evaluate each tuned model's performance and cross-validate the hyper-parameters (see Section 4). Performance is quantified in terms of the normalized mean square error

nmse = ℓ V i=1 (y(i) -g(u(t i))) 2 ℓ V i=1 y(i) 2 . (18
)
The prediction (or generalization) ability of a model is evaluated by its nmse on the test set. The data are correlated in time, so care is taken to split them so that contiguous sequences of signals are allocated to the sets. For each gear, the learning and validation set sizes are ℓ = ℓ V = 20000, the early stopping set is made up of 30% of the learning set and the test sets have about 100000 points.

Setting hyper-parameters

A first experiment is performed in order to choose the value of the time delays td i and td y . These should be chosen in accordance with the driveline dynamics. The time delays are taken to be the same for all input signals but the torque, and are varied from 0 to 40 for a non-linear NN composed of 5 tanh neurons in the hidden layer and having A p and θ as inputs. In all cases, td y = 0 in the best performing variants: so there is no recursivity in the statistical models. The results in terms of nmse are shown in Figure 3 for gears 2 and 5. Optimal delays are 30 for gear 2 and 40 (or more) for gear 5. The smaller delays for gear 2 than gear 5 reflect faster dynamics. It is striking however that the improvement in nmse is no longer significant beyond delays of 20. Therefore, in accordance with Occam's Razor6 , time delays of 20 are chosen for a saving of 10 × (N + 1) inputs.

In the case of SVMs, the results presented here correspond to third order polynomials (p = 3 in Equation 17), which were found to have the best performance from a range of p = 1 to 4.

The hyper-parameters of NNs and SVMs are chosen by cross-validation. For NNs, these parameters are the weight decay factor, λ, and the number of optimization iterations (early stopping), S 2 . They are selected from the sets of possible values {0.01, 0.1, 1} and {100, 500, 1000}, respectively. The other early stopping

Model : hyper-parameters Input Signals

A p A p , θ A p , θ, ḋ A p , θ, ḋ, F R NN, 5 tanh(x)'s, gear 2 : (S 2 , λ)
(500,0.1) (500,0.01) (1000,0.01) (500,0.1) NN, 5 tanh(x)'s, gear 5 : (S 2 , λ) (100,1) (500,0.1) (500,0.1) (1000,0.1) 3rd order polynomial SVM, gear 2 : (C, ε) (10,0.05) (10,0.05) (10,0.05) -3rd order polynomial SVM, gear 5 : (C, ε) (10,0.05) (10,0.05) (100,0.05) -Table 4: Optimal values of hyper-parameters obtained by cross-validation, filtered torque.

parameter, S 1 , is set equal to 10. Table 4 summarizes the optimal values of the hyperparameters. The optimal settings of the NNs change with respect to the network input set, but it is clear that more regular functions (lower S 2 and higher λ) perform better on the higher gears, which indeed have slower dynamics. For SVMs, the two hyper-parameters are the regularization factor, C, and the width of the ε-insensitive norm, ε, which are taken from the sets {10, 100, 1000} and {0.05, 0.1, 0.15}, respectively. The optimal values of these hyper-parameters, given in Table 4, are constant at C = 10, ε = 0.05.

Comparison of models

The statistical learning methods (linear least squares, NNs and SVMs) are now compared for six sets of input signals: {A p }, {A p , θ}, {A p , θ, ḋ}, {A p , θ, F R }, {A p 2 , θ} and { θ, ḋ, F R }. Tables 5 and6 show the validation nmse obtained for the different models. The following conclusions can be made:

• Averaged over both gears, the best7 model is a non-linear NN with 5 tanh neurons in the hidden layer accepting as inputs A p 2 and θ. It accurately estimates the torque with a validation nmse of 1.9% on gear 2 and 0.14% on gear 5. The faster dynamics of gear 2 make it more difficult to learn than gear 5. Squaring the accelerator position is not critical to this NN model because the model is non-linear, and using A p and θ as inputs yields a similar prediction performance.

• Using the accelerator position as input is critical to the method, as illustrated by the major deterioration in nmse seen in the rightmost columns of Tables 5 and6.

• For gear 2, the dependency of engine torque on accelerator position is clearly non-linear since using non-linear models reduces the nmse by about 3%. The non-linearity is, as the correlation coefficients of Table 2 suggest, partly represented by the square of the accelerator position, since linear models in gear 2 have their nmse decrease by 2.3% with a substitution of A p for A p 2 . This non-linearity fades away for the fifth gear, where non-linear models are only 0.6% better than linear ones.

• The best input signal set (of the sets tried here) is {A p , θ} (or equivalently {A p 2 , θ}) for both gears. On average over all models, changing the input from {A p } to {A p , θ} improves the torque estimates by about 3%. Adding ḋ to {A p , θ} does not produce further significant progress. Such a result was partly expected since θ is equal to ḋ multiplied by a gear-dependent factor. Nevertheless, redundant signals may be useful to neutralize measuring noise; this explains the marginal improvement seen for gear 2, but this progress is so small that Occam's razor can be invoked to remove ḋ from the inputs. Finally, adding a rear axle load estimate, F R , to the inputs does not improve the torque estimation.

Figures 4 and5 illustrate the performance of the best model for gears 2 and 5. Figure 4 plots the real versus the estimated torques, and shows again that the model is more accurate for gear 5 than for gear 2 (points are more concentrated around the y = x axis in the first plot than in the second one). For both gears, it is evident that most points departing from the optimal x = y region are above it at low torque values; this indicates a tendency to underestimate low torques. Figure 5 is a time representation of the estimated and real torque signals. While the overall dynamics of the engine is accurately reproduced by the best NN model, the most important errors occur for gear 2 in unstable regions (for example around 260 sec.).

To sum up performance on the validation set, the best model found using A p , θ, ḋ and F R as possible inputs is a non-linear neural network composed of five tanh neurons in the hidden layer with A p and θ as selected inputs. The prediction performance of this best model will now be evaluated on a test set composed of data that have never been used before, corresponding to experiments spanning a 1 month period, and divided into 6 subsets. Table 7 gives the test nmse results for the two gears. The model performs globally well (nmse < 4% for gear 2 and nmse < 2% for gear 5) except for test set 2. Close examination of test set 2 shows that most badly predicted data are associated with experiments run on the same day. Removing that day's data from set 2 reduces the nmse values to 1.5% and 0.16% for gears 2 and 5, respectively. It is therefore likely that the data gathered on that day do not represent nominal driving conditions. It is noteworthy that detecting atypical data can be an interesting side application of statistical learning.

Models Input Signals

A p A p , θ A p , θ, ḋ A p , θ, ḋ, F R A p 2 ,

Concluding remarks

This article has shown that IC engine torque values can be accurately estimated online, in nominal conditions, using statistical learning methods from signals available in any conventional vehicle: the gear engaged (r), the accelerator pedal position (A p) and the engine rotational speed (θ).

A wide spectrum of statistical methods for building the torque model (linear least squares, linear and non-linear neural networks and support vector machines) have been compared. They differ in their functional forms, in how they are compared to the data (quadratic or ε-insensitive norms), and in how they are regularized. Non-linear neural networks performed the best with a test normalized mean square error of the order of 2%. The performance of support vector machines was close to that of the non-linear neural networks. Linear models were unable to predict torque correctly, especially at low gears. The approach's main limitation is that experimental values of r, A p , θ and the torque must be available for each type of vehicle considered. Torque estimates deteriorate profoundly in the absence of A p as an input signal.

Another limitation is that the method-at least in the form presented here-is not robust with regard to such changes of working conditions as major variations in ambient pressure or temperature because they affect the relationship between A p and the torque. 8 The methodology presented here could be applied to developing a (left) Gear 2. (right) Gear 5. more robust estimation system, but complementary inputs such as air, fuel or coolant temperatures would be required. More generally, the statistical learning approaches summarized and illustrated here for torque estimation provide a way of diversifying the sensors data processings. In the near future, such redundant information may be exploited to detect abnormal use conditions and sensor failures. term is Lagrange's Equation, where K is the kinetic energy,

K = 1 2 M ḋ2 + 4 i=1 1 2 I i θ2 . (21)
To simplify the above Equation, it is considered that there are 4 pieces in rotation with moments of inertia I i . Transmission ratios are defined here as

k i = θi θ4 (22)
where the 4th rotating piece is the wheel of radius R. Introducing (22) into (21), the kinetic energy of the vehicle is

K = 1 2 (M + 4 i=1 I i k 2 i R 2) ḋ2 . (23)

Figure 2 :

 2 Figure2: Net torque, y(t), vs. each input signal. >From left to right and top to bottom: d(t), ḋ(t), F R (t) ,stop(t) , C p (t), r(t), θ(t), A p (t).

Figure 3 :

 3 Figure 3: Validation normalized mean square error vs. time delays. The model is a neural network with 5 tanh neurons in the hidden layer and accepting A p and θ as inputs. (left) Gear 2. (right) Gear 5.

Figure 4 :

 4 Figure 4: Examples of real vs. estimated engine torque on validation set, best model (NN with 5 tanh neurons using A p (t) and θ(t) as inputs). (left) Gear 2. (right) Gear 5.

Figure 5 :

 5 Figure 5: Examples of real (solid line) and estimated (dashed line) engine torques on validation set, best model (NN with 5 tanh neurons using A p (t) and θ(t) as inputs). (left) Gear 2. (right) Gear 5.

Figure 6 :

 6 Figure 6: Sketch of a vehicle seen as a material point.

Table 2 :

 2 Figure1: Examples of signals for a given data acquisition session. d(t), distance covered by the vehicle, ḋ(t), vehicle speed, F R (t), instantaneous load at the rear axle, stop(t), binary indication of stopped vehicle, C p (t), clutch pedal position, r(t), signal indicating which gear is engaged, θ(t), engine speed, A p (t), accelerator pedal position, y(t), net engine torque. Correlation coefficients, c, between each input at the power p and the output torque, y(t).

	power p	F R	d	ḋ(t) stop	C p	A p	r	θ
	1	-0.23 -0.21 0.17 -0.19 -0.13 0.91 0.12 0.30
	2	-0.02 -0.23 0.12 -0.19 -0.19 0.95 0.25 0.30
	3	-0.15 -0.24 0.09 -0.19 -0.19 0.92 0.11 0.28
	4	-0.02 -0.23 0.06 -0.19 -0.19 0.87 0.21 0.26

 : Problem (15) is solved as a series of smaller quadratic programming problems, each of which corrects a guess of the support vectors. In

		Linear Least Squares
	functional space	g(x) = m i=1 a i x i + a 0
	loss function L	least squares
	functional regularization	none
	computat. regularization	none
	optimization pb.	linear least squares
		Neural Networks
	functional space	g(x) = N h j=1 w j Φ j (m i=1 a i,j x i) + a 0 , Φ j (x) = tanh(x) or x
	loss function L	least squares
	functional regularization	none
	computat. regularization	weight decay, early stopping, cross-validation (λ and S 2)
	optimization pb.	non-linear least squares (Levenberg-Marquardt)
		Support Vector Machines
	functional space	g

Table 5 :

 5 θ θ, ḋ, F R Comparison of models validation nmse, gear 2, filtered torque. A p , θ A p , θ, ḋ A p , θ, ḋ, F R A p 2 , θ θ, ḋ, F R

	Linear Model	9.31 6.43	6.29	6.35	3.94	14.15
	Linear NN	9.26 6.26	6.07	6.19	3.89	16.84
	NL NN, 4 tanh(x) & 1 x 6.35 1.96	1.91	1.91	2.22	12.74
	NL NN, 5 tanh(x)'s	6.30 1.95	1.91	1.91	1.90	12.25
	3rd order polyn. SVM	6.29 2.47	2.12	-	-	-
	Models			Input Signals		
	A p Linear Model 2.49 1.70	1.78	1.85	5.40	12.41
	Linear NN	1.86 1.21	1.30	2.85	4.59	14.22
	NL NN, 4 tanh(x) & 1 x 1.28 0.14	0.17	0.23	0.12	14.18
	NL NN, 5 tanh(x)	1.28 0.14	0.16	0.21	0.14	26.00
	3rd order polyn. SVM	1.74 0.28	0.73	-	-	-

Table 6 :

 6 Comparison of models validation nmse, gear 5, filtered torque.

Table 7 :

 7 torque on validation set, best model (NN with 5 tanh neurons using A p (t) and θ(t) as inputs). (left) Gear 2. (right) Gear 5. Normalized mean-square error on test sets using the best neural network model.

	Test sets	size	nmse gear 2	size	nmse gear 5
	Set 1	4460	0.71	16455	0.24
	Set 2	8014	11.27	26278	4.18
	Set 3	4531	2.55	107510	1.88
	Set 4	15324	3.81	53739	0.35
	Set 5	7693	2.06	18902	0.20
	Set 6	8463	2.06	35600	0.17

Here "simple" means that the model evaluation is sufficiently rapid to allow real time applications.

Except for the load at the rear axle, FR, which is studied here but is not useful in the best strategies.

Examples of "large" functional spaces are polynomials of a sufficiently high degree or finite trigonometric sums. Other examples are the functional forms spanned by neural networks or support vector machines, as seen later in the text.

Cross-validation on ε is possible because the criterion that will be used to compare all learning methods in Section 5 is the normalized mean square error-whose definition does not depend on ε.

Named after the 14th century logician and Franciscan friar, William of Occam; the general scientific meaning of Occam's razor is this: if you have two equally likely solutions to a problem, pick the simplest. In statistical learning, Occam's Razor corresponds to the principle of structural risk minization[START_REF] Vapnik | Statistical Learning Theory[END_REF] which, out of two models of similar observed performance, advocates selecting the simplest.

More precisely, the best model of the ones studied in this article. In particular, it is likely that more informative inputs for torque-such as fuel and air flows, spark advances and throttle angles-would yield more robust estimations.

For example, at a high ambient temperature the spark is retarded to avoid engine knock.

Acknowledgement: The authors would like to thank the reviewers for their pertinent comments on the first version of this article. We also thank Adam Funk for his help in editing the article.

Using this expression of K into Equation (20) yields the definition of the reduced mass of Equation (19),

Some of the forces in the left hand-side of Equation (19) are now further explicited using classical approximate relations.

where P i is the power at the i-th rotating piece and η the driveline efficiency between the engine and the wheels. Friction forces are typically expressed as

where ρ is the air density, S the vehicle aerodynamic cross-section, C x the drag coefficient and C rf a road friction coefficient. Substituting forces expressions into (19) gives a longitudinal dynamics equation involving the net engine torque y,

In a conventional vehicle in real driving conditions, the road slope α, the road surface state C rf and the wind are unknown. This is the reason why the external model cannot be used to estimate engine torque. Note, on the contrary, that Equation (29) could participate in estimating some of these external condition parameters.