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Abstract:

Nowadays, the core of the Particle Swarm Optimization (PSO)

algorithm has proved to be reliable. However, faced with

multi-objective problems, adaptations are needed. Deeper

researches must be conducted on its key steps, such as solution

set management and guide selection, in order to improve its

efficiency in this context. Indeed, numerous parameters and

implementation strategies can impact on the optimization

performance in a particle swarm optimizer. In this paper, our

recent works on those topics are presented. We introduce an

ε dominance variation which enables a finer neighborhood

handling in criterion space. Then we propose some ideas

concerning the guide selection and memorization for each

particle. These methods are compared against a standard

MOPSO implementation on benchmark problems and against

an evolutionary approach (NSGAII) for a real world problem:

SVM classifier optimization (or model selection) for a hand-

written digits/outliers discrimination problem.

Keywords: Optimization, particle swarm, SVM model selection,

multi objective optimizer, epsilon-dominance.

I. Introduction

In several technical fields, engineers are dealing with com-

plex optimization problems which involve contradictory ob-

jectives. Such multi-objective optimization problems have

been extensively studied during the last decades. Existing

approaches can be classified with respect to the hypotheses

which are required for the computation. A common hypoth-

esis is the derivability or continuity of the functions to be

optimized. Unfortunately, such hypotheses are not verified

for problems with complex models. Thus other ways have

been found through meta-heuristic algorithms. Genetic algo-

rithms are famous techniques in that domain and they have

shown to be efficient on many optimization problems (see

[13]). Recently, some researchers also tackle those problems

with multi-objective particle swarm optimizer (see [10]).

Based on the work of James Kennedy and Russel Eberhart

presented in [15], the particle swarm optimizers try to find

solutions of optimization problems by using techniques in-

spired by the nature, as the genetic algorithms mimic evo-

lution in species. In the last few years, PSO has been ex-

tensively studied and some results have shown that it can

compete with other evolutionary algorithms such as genetic

algorithms (see [16, 21, 31] ). Multi-Objective PSO algo-

rithms (refered as MOPSO in the paper) have also been im-

plemented and have opened a large new field of interest (see

[28]).

The aim of this paper is to propose some improvements of

particle swarm optimizer dealing with multi-objective prob-

lems. These improvements concern the introduction of a new

dominance and an original strategy for guide selection.

The paper is organized as follows: section II gives a brief

overview on basic definitions involved in multi-objective op-

timization problems and in particle swarm optimization. In

section III, our contributions concerning the dominance and

the guide selection strategy are described. In section IV,

these contributions are discussed through experimental re-

sults on benchmark problems. Finally, the proposed variant

of the MOPSO algorithm is applied on a real world problem

which concerns SVM multi-model selection for handwritten

digit identification.

II. Basic definitions

This section presents the basic formalization of multi-

objective optimization problems. Then it describes the par-

ticle swarm core algorithm and its classical multi-objective

implementation (see [10]).

A. Multi-objective optimization problems

Many definitions can be found for multi-objective optimiza-

tion problems (see [9] for a precise definition of all the fol-

lowing equations). Such problems seek to minimize simulta-

neouslyN objective functions fk depending on n parameters

in the form:

fk : Rn −→ R (1)
→
x −→ fk(

→
x)

with k ∈ [1;N ]

In order to express parameter limitations that can be met in

real world problems (such as material characteristics in engi-

neering applications), some constraints must be introduced.
1



They reduce the feasible region of Rn to a smaller one noted

S. Usually, these constraints are modeled as M equations

expressed as inequalities or equalities:

gk(
→
x) ≥ 0 with k ∈ [1;M ] (2)

hk(
→
x) = 0 with k ∈ [1;M ] (3)

The global multi-objective problem can thus be defined as

the minimization of:

→

f (
→
x) = {f1(

→
x), . . . , fk(

→
x), . . . , fN (

→
x)} (4)

given
→
x∈ S ↔

{ →
g (

→
x) ≥ 0

→

h (
→
x) = 0

(5)

B. Multi-objective solutions

In most case, multi-objective problems do not have a single

global optimal solution according to equation 4 and a new

definition of minimizing
→

f (
→
x) has to be used. The concept

of optimum changes, because in multi-objective optimization

problems the purpose is to find trade-off solutions rather than

a single solution. Thus to compare those solutions and deter-

mine which are useful, the well-known Pareto dominance is

commonly used. Based on the work of Vilfredo Pareto (see

[25]), it can be expressed as follows:

→
x i≻

→
x j↔

{

∀k ∈ [1, N ], fk(
→
xi) ≤ fk(

→
xj)

∃k′ ∈ [1, N ] | fk(
→
xi) < fk(

→
xj)

(6)

In accordance with [9], this expression means that a given

decision vector
→
x i dominates another one

→
x j if, and only if

none of the corresponding objective function values fk(
→
xi) is

worse than fk(
→
xj) and if there is a dimension in the criterion

space where it is strictly better. Using such a definition, the

Pareto optimal set P ∗ can be defined as the set of all non-

dominated vectors (see [29]).

P ∗ ⊂ Rn,
→
x i∈ P ∗ ↔ ∄

→
x j∈ Rn |

→
x j≻

→
x i (7)

The set of corresponding objective values in the criterion

space constitutes the so-called Pareto front.

The aim of a multi-objective optimization algorithm is to find

a good estimation of P ∗ noted P̂ in accordance to some other

concepts which can be linked to the problem. As stated in

Deb’s book [12], the quality of this estimation must be at

least measured in terms of diversity of the distribution and

spread along the front.

C. PSO core

The PSO is a population based algorithm which deals with

swarm intelligence. Each particle in this swarm has a n di-

mensional vector used as a position in the parameter space.

At each iteration, particles are moving using some core equa-

tions to compute their velocity and decide their movements.

The main advantage of PSO is its simple implementation as

it can be reduced to the two following equations (see [29]):

vi,t+1 = ω.r0.vi,t + (8)

c1.r1. (pi,best − xi,t) +

c2.r2. (pi,guide − xi,t)

xi,t+1 = xi,t + χ(vi,t+1) (9)

xi,t is the position of the ith particle at time t, and vi,t its ve-

locity. pi,best and pi,guide are respectively the best position

(in term of optimization) that the current particle has found

in its path and the position of a particle that has been chosen

as a guide. The weights applied to those positions are called

the individual and social factors because they respectively

depend on the current particle memory of its own best posi-

tion and on another particle position from the swarm. They

are both weighted independently by a coefficient cx and a

random value rx in [0, 1]. The particles will either tend to

explore the parameter space or to further investigate around a

previously found solution according to their variations. Thus

they have a significant impact on the convergence. ω is the

inertia weight which can be constant or time-dependant like

in [36]. Large values of this parameter tend to make the par-

ticle following its last direction with a turbulence factor r0
whose value is chosen in [0, 1]. A last part is modeled by the

function χ(). It is generally implemented as a simple factor

known as the turbulence factor like in [20] and thus replacing

the random part of the inertia weight. However some imple-

mentations use it as a velocity normalization function or a

constriction factor, keeping the direction but avoiding speed

divergence (see [23]).

D. From PSO to MOPSO

Only few modifications need to be made on the core

algorithm to adapt it to multi-objective problems. These

modifications are presented in algorithm 1. The main

changes are to consider a criterion space of dimensions

N and to compare the solutions offered by each particle.

It increases the algorithm computation cost, but does not

change its core. An elitist strategy should be engaged in

order to remember only the good parameter combinations

and therefore an archive has to be built. It retains only the

particle position that can be included in P̂ , the current Pareto

set estimation. In accordance to the cooperative approach in

PSO, this system is called the collaborative memory.

Input: SO an initialized swarm of particles

Output: P̂tend
the archive of non-dominated particles

t = 0;

while stopping criterion not reached do
Compute objective functions on (St);

foreach particle pi,t in St do

∗ if current position xi,t is best then
pi,best =xi,t;

end

∗ Select new guide pi,guide in archive (pi,t, P̂t);

Compute velocity (pi,t);

Test constraints (pi,t);

end

Update particle position in swarm (St);

∗ Update Archive (St, P̂t);

t = t + 1;
end

Algorithm 1: MOPSO pseudo-code with ∗ on features en-

hanced by our contributions (based on [28]).

Reyes-Sierra proposed a review of state-of-the-art MOPSO

variants in [28]. A categorization of the various approaches

is presented. It allows to point out that despite the youth



of this research field, the variants of MOPSO proposed are

very diversified. The most discriminative aspect is the strat-

egy used to manage the multidimensionality of the solution.

The simplest technique is to refine the problem through a sin-

gle objective using aggregation methods (such as a weighted

summarization) or to apply an ordering strategy on the dif-

ferent objectives. Sub-population approaches use multiple

swarms, optimizing separately each objective but sharing in-

formation to propose a global set of solutions. However, as

presented in the bibliography, a consensus seems to be estab-

lished on Pareto dominance based approaches (or combina-

tion of approaches) which appear to have better performance

(see [28] for a complete description of the MOPSO variants

and references).

The study of existing MOPSO variants also allows to point

out that dominance and guide selection strategy have a sig-

nificant impact on the algorithm performance. Thus, our con-

tributions, described in the next sections, are mainly focused

on them.

III. An enhanced epsilon dominance and guide

selection

In accordance to [28], the major difficulties in the adaptation

of PSO to multi objectives problems are : (i) the guide se-

lection (called the leader in the paper), (ii) the maintenance

of the non-dominated solutions and (iii) the diversity of the

swarm. Our contributions, described in the next sections, are

mainly focused on the two first of them. Our proposal can

be described as a Pareto dominance based one, using an ex-

ternal archive of non-dominated solutions and a density es-

timator to select the guide. Indeed, we propose a new guide

selection strategy and a variation of the domination concept

to ease the archive maintenance. The steps of the MOPSO al-

gorithm impacted by such contributions are highlighted with

stars in the algorithm 1.

A. Building the archive

As mentioned before, an archive of solutions eligible for the

Pareto set has to be maintained. In order to determine if a

particle should be included in the archive, the most common

method has been to retain all non-dominated solutions in ac-

cordance to the Pareto dominance. The drawback of such an

approach is the control of the archive size, which can quickly

become very large and hard to maintain, whereas only some

key values are needed to obtain a good Pareto Set description.

Thus other strategies have to be found to limit the archive size

while preserving its diversity and spread along the front.

The ε dominance introduced in [17] and evaluated in [19]

presents good capabilities to tackle this problem. Two defi-

nitions exist based on the deviation type: absolute (additive

ε see equation 10 from [17]) or relative (multiplicative ε see

equation 11 from [18]). According to previous studies, the

relative definition is commonly chosen as it permits to eas-

ily define the ε value and provides more results for smaller

objective values.

→
x i≻

→
x j ↔

{

∀k ∈ [1, N ], fk(
→
xi) + ε ≤ fk(

→
xj)

∃k′ ∈ [1, N ] | fk(
→
xi) + ε < fk(

→
xj)

(10)

→
x i≻

→
x j ↔

{

∀k ∈ [1, N ], fk(
→

xi)
1+ε ≤ fk(

→
xj)

∃k′ ∈ [1, N ] | fk(
→

xi)
1+ε < fk(

→
xj)

(11)

The difference with the classic Pareto dominance can clearly

be focused on the figure 1. As noticed in [18], this definition

allows to quickly achieve an estimation of the Pareto front by

modifying the domination area of a particle proportionally to

its criterion values. It is one way to manage simultaneously

the dominance between particles and the neighborhood in

the criterion space and will yield a better diversity along the

Pareto front.

Figure. 1: Illustration of Pareto dominance, ε dominance and

our ε dominance variant.

However, with such a definition, the difference with the

Pareto domination area is larger for particle with bigger ob-

jectives values. This could induce a drawback as shown in

figure 2 on a benchmark problem, where the domination area

of the considered element (p1) limits the front description.

Particular shapes of the Pareto front estimation (for instance

areas with only minor variations on one objective and large

variations on another) can thus be mistaken. This is a conse-



quence of the ε dominance definition, which limits the num-

ber of particles used to describe the extremes or the parts of

the front where one of the criteria is almost constant.

Such a problem was noticed in [18], but surprisingly, no

work exists in the literrature about the study of the effects

on Pareto front results and no solution has been proposed to

avoid this. In order to tackle this problem without involving

a CPU greedy clustering method, we introduce an ε domi-

nance variant. It limits the domination area introduced by

the standard ε dominance to local neighborhood in order to

avoid the limitations on large criteria value. The figure 1

presents a schematic illustration of this variant in comparison

with Pareto and ε dominance. One can see that the classic ε

dominance allows to handle the neighborhood of the consid-

ered particle (white one) in the objective space by extending

the domination area. Thus closest solutions, which reduce

the diversity of the solutions set, are removed. However, it

also removes some other particles not present in the local

neighborhood because of the global extension of the domi-

nation area. Using the ε dominance variant allows to limit

such extension, keeping its benefits and avoiding the high-

lighted drawbacks.

Figure. 2: Example of limitations introduced by ε domi-

nance against an estimation of the Pareto front (black line).

The highlighted zone will never be covered by new elements

as they are under the ε domination area of already present

elements (red crosses).

The principle of this variant is to use the implicit neighbor-

hood management introduced by the ε dominance. The dom-

inated neighborhood is proportional to ε (i.e. multiplicative

ε) which is easy to implement and define. The mathemat-

ical formalization of such a variant is expressed in equation

12. The first part is simply the Pareto dominance whereas the

second part defines the local domination areas in the neigh-

borhood.

→
x i≻

→
x j↔







































{

∀k ∈ [1, N ], fk(
→
xi) ≤ fk(

→
xj)

∃k′ ∈ [1, N ] | fk(
→
xi) < fk(

→
xj)

OR










∃k′ ∈ [1, N ] |

fk′(
→
xj) < fk′(

→
xi) <

1+2ε
1+ε fk(

→
xj)

∀k ∈ [1, N ], fk(
→

xi)
1+ε ≤ fk(

→
xj)

(12)

This variant of ε dominance allows to overcome the prob-

lem mentionned above while maintaining the benefits of

classical ε dominance. It keeps a good diversity while

avoiding the maintenance of a complex data structure for

the non-dominated particles induced by methods based on

clustering. Such criterion space clustering approaches have

been largely tested in [10] with the hypercube strategy, in

[21] with the sigma method or in [14] with the dominated

trees. The advantages of our variant will be highlighted in

the experimentations presented in section IV.

As it is presented in the papers mentioned above, the

maintenance of the archive of the non-dominated particles

is strongly linked to the guide selection which is one of the

core step of the MOPSO. Thus we also contribute on the

guide selection behavior.

B. Guide selection behavior

Performance of PSO algorithm depends on the factors which

will influence each particles movement through the core

equation 8. The particle will be influenced by its previous

position, which is regulated through the inertia factor, its per-

sonal memory pi,best and a guide pi,guide. Between the nu-

merous possible implementations of personal memory influ-

ence, we choose to select the last non-dominated position of

the particle to be the individual memorization of its best po-

sition. [5] has shown that more complex strategies can pro-

vide small improvements, but this approach (called newest

strategy in [5]) allows good performance with a very small

computational cost.

Then the most important factor is the global guide who will

try to help the particle to find to the Pareto front by modifying

its trajectory. According to [28], the guide has to be selected

in the archive of non-dominated solutions. Nevertheless the

selection heuristic can drastically change the swarm conver-

gence behavior.

Our approach is based on the use of a probabilistic frame-

work since it has shown to have better performance in [1].

The idea is to select each particle guide through a roulette

wheel selection where each non-dominated solution will

have a different selection probability evaluated at each iter-

ation. However, instead of using a computation based on

the Pareto domination to determine the probability, we use

a local density evaluation in order to tend the swarm to fill

the holes of the current Pareto front estimation. Thus for

each archive member, the probability is computed as an in-

verted density measure on its local neighborhood in the cri-

terion space. Such an approach has also been tested in [5]

for local best selection with quite good results. A similar ap-

proach can also be found in [2] but unfortunately without any

further detail on the chosen estimator. However, the choice

of the density measurement is not trivial because some par-

ticular shapes of the Pareto front or specific constraints can

introduce discontinuities. A classic density measure, based

on the counting of particles in a fixed area around the cur-

rent archive element, will be biased by configurations simi-

lar to figure 2 : the area could be almost empty because of

the front discontinuity. We propose a simple and intuitive

solution which provides density estimation on an adaptive

local neighborhood. It computes the sum of the inverted dis-



tances between the current particle and its K nearest neigh-

bors. Then the selection probability is computed by inverting

this estimation and normalizing it as a probability as shown

hereafter (where ψ is the set of the K nearest neighbors of

the current particle in the criterion space).

D(xi) =
∑

xj∈ψ

(xi − xj) (13)

then P (xi) =
D(xi)

∑

xk∈ψ

D(xi)

According to equation 13, a particle with closest neighbors

will have an important local density evaluation and thus a

small selection probability.

The last problem to solve is the choice of a decision rule

for changing the guide of a particle. Indeed the guide

selection strategy has a computational cost. Moreover if the

particles change their guide too often (at each iteration) their

movements cannot be really influenced by their guide and

the social effect can be lost. In mono-objective optimization,

this behavior is not a problem because the new guide should

always be better than the previous one. However in MOPSO,

guides are equivalent since they’re all included in P̂ . This

problem is partly solved by using complex swarm clustering

(for example by sub-swarming on each criterion, see [28]),

but we propose a more simple technique: enabling a particle

guide memorization. Indeed, we did not find any studies on

a guide memorization influence. Thereby the guide selection

step, highlighted by a star in Algorithm 1, is modified. This

is described in Algorithm 2.

Input: a particle p and

P̂t the current archived of non-dominated particles

Output: a particle pguide out of P̂t
if p current’s position is best position then

no guide selection;

else
r = random([0,1]);

if r > p’s memory threshold

AND current guide in P̂t then
keep current guide;

else

select guide(P̂t);

end

end

Algorithm 2: Enhanced guide selection pseudo-code with

memory threshold.

The idea is to allow a particle p to keep its previous guide in

particular case. To avoid the swarm to only explore locally

the front because of the stronger influence of guides, a

particle which has been recently added in the archive (which

means, when it reaches a non-dominated position) does

not select any guide. This is the reason of the first test in

the algorithm. In such case, p can be considered to be a

pioneer and it is assumed that it does not need any guide. It

is completely free to explore any part of the parameter space

using only its personal best position and its inertia. In the

other case, the particle uses a new characteristic added to

the swarm: a guide memory threshold which will define a

global behavior of guide memorization. A new guide will be

selected for this particle only if its threshold is exceeded as

shown hereafter (i.e. the particl remembers its guide) and if

its previous guide has not been deleted from archive.

The main advantage of this implementation is that the

memorization is under control with the threshold. Experi-

mentations have been conducted on the standard problems

in order to select a good trade-off for this new parameter.

The obtained results are presented in the following section.

IV. Evaluation on standards problems

In this section, benchmark problems are used in order to val-

idate our approach against a baseline MOPSO with basic im-

plementation.

A. Evaluation strategies

1) Algorithm setting

As explained in [26] and theoretically studied in [35], the

numerous parameters of a PSO algorithm can be adapted to

maximize the convergence on each problem. However our

experimental approach was to select values which present a

good trade-off in order to have a problem-free implementa-

tion. As the aim was to study the performance of our con-

tributions concerning dominance and guide selection, there

was no need for fine tuning of these parameters. Thus they

have been uniformly chosen in controled domains which best

fit the state of the art advices (see [26] and [28]):

• Inertia weight ωr0 in [0.8; 1.0]

• Individual cognitive factor c1r1 in [1.6; 1.8]

• Social cognitive factor c2r2 in [1.4; 1.6]

• The constriction function χ() implemented as a veloc-

ity threshold: when a dimension of the velocity vector

exceeds the threshold, the whole vector is normalized

such as the global direction is kept. Thus it constricts

the velocity when it has a dimension greater than 0.1

(with criteria values normalized in [0; 1]).

This approach can be linked to [27]. However we limit the

scales for the social and individual cognitive factors to dif-

ferent values since it has shown a statistically significant

improvement in mono-objective PSO (see [35]) and in our

multi-objective studies. We chose to introduce the uniform

randomization through the specified domain instead of using

secondary random factor rx in order to control their variabil-

ity. The swarm size was limited to 40 elements in order to

offer a good trade-off between the number of potential solu-

tions at each iteration and the update rate of the swarm. The

number of iterations is not fixed and depends on the prob-

lems. For performance comparisons on the experiments, our

stopping criteria was a limitation on the number of objective

function evaluations, empirically fixed in order to obtain an

acceptable estimation of the Pareto front.

2) Benchmark problems

Four problems from the literature have been chosen for the

experiments. The first one is BNH, or also called MOPC1



Table 1: Benchmark functions (f()) and constraints (g()).
Name Criteria/constraints

BNH f1(
→

x ) = 4x2
1 + 4x2

2

f2(
→

x ) = (x1 − 5)2 + (x2 − 5)2

g1(
→

x ) ≡ (x1 − 5)2 + x2
2 ≤ 25

g2(
→

x ) ≡ (x1 − 8)2 + (x2 + 3)2 ≥ 7
x1 ∈ [0, 5] x2 ∈ [0, 3]

MOP5 f1(
→

x ) =
x
2

1
+x

2

2

2
+ sin

`

x2
1 + x2

2

´

f2(
→

x ) =
(3x1−2x2+4)2

8
+

(x1−x2+1)2

27
+ 15

f3(
→

x ) = 1
x
2

1
+x

2

2
+1

− 1.1e−x
2

1
−x

2

2

x1 ∈ [−30, 30] x2 ∈ [−30, 30]

MOP6 f1(
→

x ) = x1

f2(
→

x ) = (1 + 10x2)

»

1 −

“

x1

1+10x2

”2
−

x1 sin(8πx1)
1+10x2

–

x1 ∈ [0, 1] x2 ∈ [0, 1]

TNK f1(
→

x ) = x1

f2(
→

x ) = x2

g1(
→

x ) ≡ x2
1 + x2

2 − 1 − 0.1 cos
“

16 arctan
“

x1

x2

””

≥ 0

g2(
→

x ) ≡ (x1 − 0.5)2 + (x2 − 0.5)2 ≥ 0.5
x1 ∈ [0, π] x2 ∈ [0, π]

(see [3]). It is considered to be simple because constraints

do not introduce serious difficulties in finding the Pareto set

and the front does not have any discontinuity or complex

convexity. The MOP5, proposed by Viennete, and MOP6

(see [6] for complete references) are two unconstrained

problems used to test optimization algorithms against two

major difficulties: an increase of the criterion number and

a discontinued Pareto front. Then the last problem, called

TNK by Tanaka [33], is considered to be quite difficult

because of the restriction of the solution space introduced

by the constraints. The descriptions of the mathematical

functions, as they have been implemented, are shown in

table 1.

3) Metrics

Comparing different executions of two multi-objective algo-

rithms is a very complicated task. However, in our case,

we only need to compare different variants of the same al-

gorithm. Thus we use only simple metrics to compare the

spread and diversity of the front obtained by each implemen-

tation.

The spacing metric S (see [30]) measures the homogeneity

of the front description by computing the mean distance be-

tween each element of the Pareto set estimation. Thus small

values are better than large ones. A null value means that the

elements are equidistant. This limit cannot be reached with

the relative implementation of the ε dominance because of its

intrinsic definition which introduces a neighborhood limita-

tion relative to the criterion value. The maximal extension D

simply measures the diagonal between the extremes elements

on each criterion and must be maximized in order to cover the

entire front. Then the set coverage SC proposed in [37] tries

to evaluate the domination of a Pareto front estimation P̂A
against another one, P̂B , by counting the number of elements

of P̂B which are dominated by a least one element of P̂A. By

definition if SC(P̂A, P̂B) = 1 and SC(P̂B , P̂A) = 0 we can

say that the estimation P̂A is better than P̂B . They were re-

spectively computed as presented in equations 14, 15 and 16

Table 2: Metrics for dominance comparison (left columns

results for MOPSO baseline with ε dominance and right with

enhanced ε dominance).

BNH MOP5 MOP6 TNK

Objectives evaluations 4000 2000 4000 4000

Archive size 17.6 58.4 66.1 47.3 9.68 23.9 10.4 26.8

Spacing metric 3.55 3.2 0.04 43.4 0.19 0.12 0.09 0.03

Maximal extension 99.7 105 1.55 65.8 0.97 1.05 1.30 1.30

Set coverage 0.98 0.96 0.12 1 0.92 0.9 0.97 0.95

with normalized objective values.

S =

√

√

√

√ 1
|P̂ |

|P̂ |
∑

i=A

(

di − d
)2

(14)

with di = min
→

xi∈P̂∧k 6=i

N
∑

n=1

| fn(
→
xi) − fn(

→
xk) |

D =

√

√

√

√

N
∑

n=1

(

max
→

xi∈P̂

fn(
→
xi) − min

→

xk∈P̂

fn(
→
xk)

)2

(15)

SC(P̂A, P̂B) =
|
{

x ∈ P̂B | ∃y ∈ P̂A : y ≺ x
}

|

| P̂B |
(16)

As the algorithm involves random values in its execution,

many differences can appear in two different runs. Thus

in our experimental protocol, the different configurations of

MOPSO used the same initial swarm with random position

vectors assigned in the parameter space. Then we repeat 100

times the execution (with different initial swarms) of each

implementation of the algorithm. Our aims were to obtain

a good estimation of the general algorithm behavior and to

enable statistical estimators computation for each metric at

each iteration.

The computional cost involved by the enhancement of neigh-

borhood and guide selection was evaluated both on bench-

mark and real life problems. It appears that the most critical

point was the objective computations and that the computa-

tional overload in comparison to the baseline was not signi-

ficative. Thus it has not been studied in the following results.

B. Results and discussion

1) Dominance

We compare the ε dominance variant to the ε dominance

classically used in MOPSO on the benchmark problems. Ta-

ble 2 presents the metric mean values over all executions of

our approach (in the right columns and bolded when there is

some improvement) against standard ε dominance approach

(in the left columns). As the set coverage is a non-symmetric

binary measure, we present both the results of our approach

against the standard and the standard against our variant.

The results summarized in table 2 must be carefully inter-

preted. First of all we can see that MOP5 is a problem that

highlights the standard ε dominance drawbacks. Since one

of the objectives has small variability, the front is extended

on very high values. The limitation introduced by the stan-

dard ε dominance does not allow to describe those parts and

thus the final estimation is very different (and worst) than the

one obtained with our variant. Closely considering the set



coverage allows a better understanding of the situation: the

dissymmetry on the metric implies that all the elements from

the Pareto front estimated with our dominance variant domi-

nates the ones from the other approach estimation.

The consequence of this is the large differences on the other

metrics: the maximal extension is clearly improved and the

spacing metric values are not comparable since the objective

values are too different. So on this particular problem, our

variant allows to perform a better (or faster) estimation of

the Pareto front.

For the other problems, one can observe that the set cov-

Figure. 3: Dominance comparison on the benchmark prob-

lems (the left blue front is for the standard ε dominance and

the right red one for our variant).

erage metrics of both approaches are quite similar and thus

we can conclude that the Pareto front estimations are both

near the real Pareto front (or near the limit of the algorithm

capacities for the number of iterations). As the archive size

is always significantly improved by our approach, we can ar-

gue that it generally permits to obtain a finer description of

the front. This is confirmed by the spacing metric which is

also improved and proves that the results are well distributed

Table 3: Metrics for guide selection behavior comparison

(left columns results for MOPSO baseline with random guide

selection and right with enhanced guide selection).
BNH MOP5 MOP6 TNK

Objectives evaluations 4000 2000 4000 4000

Archive size 55.6 44.8 111 104 18.7 21.5 27.5 27.8

Spacing metric 2.95 2.55 29.9 58.9 0.24 0.13 0.03 0.02

Maximal extension 108 121 1357 1681 2.59 2.08 1.29 1.30

Set coverage 0.97 0.99 0.91 0.99 0.95 0.96 0.97 0.97

along the front. Finally, we provide the maximal extension

in a specific way in order to allow a better interpretation. The

evaluation has been made not on the final front estimation on

each runs but on the filtered front. It means that the archive

obtained with one approach is reduced by removing all the

elements that are dominated by at least one element from

the other approach archive. We choose this method because

some front estimations contain incorrect elements which cor-

rupt the maximal extension value. The results show that

if our approach appears to yield less satisfactory results at

first, it is only due to the presence of dominated solutions

in the other estimation. Thus its maximal extension artifi-

cially grows because of such false Pareto front estimation.

This particular difficulty on the metric interpretation high-

lights the difficulty of quantitative comparison.

A more thorough comparison requires a qualitative obser-

vation of the estimated Pareto front. As seen in Figure 3,

the quality of the front is clearly enhanced with our variant:

the extremes are better described and the description of parts

where a criterion is almost invariant is also enhanced. This

is highlighted on MOP5, where the classic ε dominance does

not allow describing the right part of the front because of the

particular shape of the Pareto front.

It is obvious that the classic ε dominance can also tackle

those problems by reducing the epsilon value and allow more

elements to be included in the archive. But other parts of the

front which are well described will also suffer from this by

more and more elements inclusion and thus the archive size

bounds can be quickly broken. Moreover, it will not resolve

the problem involved in ‘flat‘ parts of the front as our ap-

proach can do.

2) Guide selection strategy

Both configurations in this study use the proposed enhanced

ε dominance. Their differences are only on the guide man-

agement: the first uses a full random selection and no guide

memorization whereas the other involves the density based

probability to select the guide that can be kept through the

next iteration. The number of neighbors was experimentally

limited to 4 and the memory factor to 0.6 as it appears to be

the most effective values in our experiments (not presented

here). Figure 4 shows the evolution of the different metrics

through the iterations on each problem. Table 3 presents

the mean improvements over all executions of our approach

(right columns) against random selection (left columns).

BNH: The improvement is not obvious on BNH tests. Such

a result is quite logical since the objective functions are quite

simple and do not need a strong strategy to allow a good esti-

mation of the Pareto set. Improvements of the front diversity

can be seen but through a reduction of archive size.



Figure. 4: Evolution of metrics through iteration on different

problems (means values for standard guide selection in blue

dashed lines and our variant in red lines).

MOP5: The performance of our approach must be well inter-

preted for this problem. As shown by the dynamic evolution

of the metric in figure 4, the results are biased. Indeed af-

ter about 20 iterations the values of metrics fall drastically

for the random selection. The reason is that the front of this

problem is particularly difficult to find as it has a lot of local

optimal solutions as explained previously. This is confirmed

by the evolution of the set coverage and maximal extension

which allow concluding that the front estimated by the prob-

abilistic approach is quite better.

MOP6: The solution is significantly improved by our ap-

proach on MOP6 tests. It is quite obvious that this particular

problem, which contains much discontinuities on its Pareto

front, is better solved by our enhanced guide selection be-

havior. The only exception is the maximal extension. The

reasons are the same as in the precedent study on dominance.

TNK: The problem involves a lot of hard constraints which

strongly limit the parameter space. Thus our approach based

on a density estimator evaluated in the criterion space does

not improve the global results since it does not permit to

tackle the specific difficulties introduced in this problem.

Such results can be difficult to analyze since some behavioral

particularities are kept undetected even when using several

metrics. Thus, we interpret the values as relative improve-

ment in order to facilitate the analysis on each problem. The

classical qualitative evaluation of the Pareto front has also

led us these interpretations. With respect to all the measures,

we can conclude that our approach obtained a significant im-

provement in most cases. As we saw, the higher improve-

ment is reached with difficult problems (i.e. with discontin-

ued front) without strong constraints. However such results

are limited to the context of our experiments, which is the

comparison between different MOPSO approaches on stan-

dard problems. Thus we have also tested our MOPSO in a

real world environment against an evolutionary algorithm.

V. SVM model selection using the proposed

MOPSO

This section proposes an original application of the proposed

MOPSO for tuning the hyperparameters of a classifier. Such

a problem is a critical step for building an efficient clas-

sification system as this crucial aspect of model selection

strongly impacts the performance of a classification system.

For a long time, this problem has been tackled using a mono-

objective optimization process, with the predictive accuracy

or error rate as objective. Now, it is well-known that a single

criterion is not always a good performance indicator. Indeed,

in many real-world problems (medical domain, road safety,

biometry, etc...), the missclassification costs are (i) asymet-

ric as error consequences are class-dependant ; (ii) difficult

to estimate, for instance when the classification process is

embedded in a more complex system. In such cases, a sin-

gle criterion might be a poor indicator. Since the works of

Bradley [4] concerning the Receiver Operating Characteris-

tics (ROC) curve, classifier model selection has been implic-

itly considered to be a multi-objective optimization problem,

particularly in the context of a two-class classification prob-

lem. Indeed, a classifier ROC curve represents the set of

trade-offs between False Rejection (FR) and False Accep-



tance (FA) rates (also known as sensitivity vs. specificity

trade-off). As a consequence, some approaches have been

proposed in order to choose the classifier hyperparameters

using the ROC curve as a performance indicator. Unfortu-

nately, these approaches are always based on a reduction of

the FR and FA rates into a single criterion such as the Area

Under Curve (AUC) or the FMeasure (FM).

In this section, classifier hyperparameters tuning is explic-

itly considered to be a multi-objective optimization problem

aiming at optimizing simultaneously FA and FR. It is tack-

led using the proposed MOPSO optimizer. Consequently, the

aim is to use the proposed MOPSO to find a set of classifiers

in order to select the best set of FA/FR trade-offs. Such a

strategy is evaluated on data extracted from a real-world ap-

plication which takes place in the context of a handwritten

digit/outlier discrimination problem.

On can note that some other combinations of SVM classifier

and particle swarm optimization (limited to mono-objective

optimization) can be found in the literrature with different

approaches. Two examples can be found in [32] and [24].

In the first one, the PSO is used to select the characteris-

tics (genes in a tumor classification problem) exploited by

the SVM classifier and thus appears as a very efficient pre-

processing module in the overall classification system. And

in the second one, a Modified PSO called the Converging

Linear Particle Swarm Optimizer is proposed to replace the

traditionnal learning algorithm. Tested against baseline algo-

rithms on the handwritten characters database from MNIST,

it has shown to have similar capabilities. In both studies, an

original combination is proposed and promising results are

presented. The following sections will describe our own pro-

posal.

The application is quickly described in subsection V-A, in

order to justify our choices. The SVM classifier used and

its optimization strategy are described in subsection V-B. Fi-

nally, obtained results are presented and discussed in V-C.

A. Digits/outliers discrimination

The work described in this section is part of the design of

a more complex system which aims at extracting numer-

ical fields (phone number, zip code, customer code, etc.)

from incoming handwritten mail document images. The

proposed approach is applied to a particular stage of this

numerical field extraction system [7]. More precisely, the

classifier to be optimized is used as a fast two-class classifier

which has to identify the digits among a huge number

of irrelevant shapes (words, letters, fragments of words,

etc). Consequently, the classifier objective is to reject as

many outliers as possible, while accepting as many digits

as possible. However, rejecting a digit has a much more

serious consequence than accepting an outlier. The rejected

data will never be processed and thus a numerical field

can be lost. If a non-digit is accepted, it will increase the

computation cost on non-relevant data. This problem is a

good example of a classification task with asymmetric and

unknown misclassification costs since the influence of a FA

or a FR rate on the whole system results is unknown a priori.

Concerning the classifier to be optimized, the Support Vector

Machines classifier has been chosen for its well-known

efficiency in a two-class context.

B. SVM classifier and optimization strategy

Support Vector Machines are a well-founded and largely

used learning machine algorithm which have been proved to

be very effective on several real-world problems. In order

to take into account asymmetric misclassification costs,

we adopt the strategy proposed in [22] that consists in the

introduction of two distinct penalty parameters C− and C+

(also called positive and negative margins).

Figure. 5: Schematic view of the SVM optimization strategy

through MOPSO.

In such a case, given a set of m training examples xi be-

longing to the class yi, the classical maximization of the dual

Lagrangian with respect to the αi becomes:

max
α





m
∑

i=1

αi −
1

2

m
∑

i,j=1

αiαjyiyjκ(xi, xj)



 (17)

subject to the constraints :


















0 ≤ αi ≤ C+, for yi = 1
0 ≤ αi ≤ C+, for yi = 1
m
∑

i=1

αiyi = 0

Where αi denotes the Lagrange multipliers, C− and C+ are

respectively the cost factors for the two classes (−1) and

(+1), and κ(xi, xj) denotes the kernel transformation. In

the classical case of a Gaussian (RBF) kernel, κ(xi, xj) is

defined as:

κ(xi, xj) = e−γ×||xi−xj ||
2

(18)

In accordance with [8], we choose to keep the intrinsic op-

timization of support vector in SVM using the Lagrangian

maximization and we apply the optimization process to the

classifier hyper-parameters. Hence, our optimization param-

eters are:

• the kernel parameter of the SVM-rbf : γ

• the penalty parameters introduced above: C− and C+.

As explained before, the criteria to be optimized are both

the FA rate and the FR rate which are obtained by testing

the hyperparameters set on a test database. The proposed

strategy is illustrated on figure 5.



C. MOPSO on SVM experimentation and comparison

In this section, the experimental results obtained using the

approach shown on figure 5 are presented and discussed.

Two kinds of tests are presented. The first one aims at show-

ing the interests of our MOPSO improvements. The sec-

ond one consists in a comparison of the proposed MOPSO

with respectively a state of the art multi-objective algorithm

(NSGA-II [11]) and a classic SVM model selection ap-

proach.

Our first comparison has been made against a baseline

MOPSO (standard ε dominance and random guide selection)

in order to ensure that our contributions concerning MOPSO

are efficient on a real world problem. The comparative re-

sults are presented on figure 6. As one can see, the problem

does not appear to be difficult. The Pareto front estimation

does not contain any discontinuity. However the gain of our

contributions can be clearly observed. The standard MOPSO

mainly focusses its search on the middle part of the front and

has a poor description of the extremes. The results obtained

using our approach are quite better. One can be observed a

better homogeneity of the description and well defined ex-

tremes parts.

Figure. 6: Final Pareto Front estimation for both baseline

MOPSO (up) and enhanced (down) MOPSO.

The second test concerns a comparison between the pro-

posed MOPSO and a state-of-the-art MOEA: the NSGA-II

(report to [11] for a complete description). As the approach

differs from ours, some adaptations have been needed to

Figure. 7: Final Pareto Front estimation for both approaches

(NSAGII in green and enhanced MOPSO in red).

offer a fair comparison. The most important parameter is the

archive size which is limited to the initial population size in

NSGA-II. Thus our MOPSO implementation was modified

in order to limit its archive size. Using such a limitation, ε

value was dynamically computed with a specific heuristic

in order to rebuild the archive. Both algorithms were ran

using the same population size (40) for a limited number of

objective evaluations (1000). Such values appear as good

trade-offs between the running time and the quality of the

final Pareto set estimation. The results obtained are shown

on figure 7 for the Pareto front estimation and on figure 8 for

the metrics previously introduced.

One can note that we also introduce on figure 7 the results

obtained using a classical SVM model selection called

SVM-perf [34]. This approach has been configured to use

the Area Under the ROC curve (AUC) as a single criterion

during the classifier learning.

Figure. 8: Comparative values of metrics (NSAGII in green

and enhanced MOPSO in red).

One can observe on figure 7 that both MO approaches allow

a major improvement of the classic optimization w.r.t. SVM-



perf approach. Of course, such a comparison is not fair from

a theoretical point of view since we compare a ROC curve

obtained using a single parameterized classifier (using AUC

as building criterion) with an approach that considers a set of

classifiers. Nevertheless, from a practitioner point of view,

these results aim at justifying the use of a multi-objective

optimization framework in the context of SVM model selec-

tion. Indeed, for a chosen FA/FR trade-off, our framework

provides a solution to the practitioner which is better than

the solution obtained using a single classifier with a given

output threshold.

Concerning the comparison of our approach with NSGA-II,

the qualitative analysis proposed on figure 7 does not con-

clude to any dominance between the two multi objective op-

timizers. The quantitative comparison of metric values con-

firms this idea. The Figure 8 presents their variations per it-

eration and shows that both approaches obtain similar values

very quickly. Thus the two approaches are quite competitive

and perform both well on this problem. Such a result is quite

interesting as it shows that our MOPSO implementation can

compete with the state-of-the-art MOEA.

VI. Conclusion and further works

This paper introduces two contributions on two intrinsic dif-

ficulties faced when adapting the PSO to multi objective op-

timization: the archive and social guide management. Our

variant on ε dominance enables a fast neighborhood man-

agement in criterion space and has proved to well maintain

the diversity in the archive. Then our guide selection strat-

egy and guide memorization have shown to allow the Pareto

front estimation to be enhanced in its difficult parts. The val-

idation of such methods has been made both on standard and

real world problems and against a state-of-the-art multi ob-

jective optimizer. Our approach appears to be competitive

and reliable.

Managing neighborhood, in order to avoid premature con-

vergence and to promote a good spreading of solutions on

the Pareto front estimation, is an open problem and several

authors have proposed ideas to tackle this problem. This pa-

per proposes an approach which has proven its low compu-

tational cost and its performance on a set of problems. A

comparison with other proposal remains to be made in a near

future.

However, what we tried to prove here was that our imple-

mentation allows obtaining a better Pareto set estimation than

others using the classic ε dominance. Our proposition on the

guide selection allows studying the guide memorization, a

topic rarely discussed in other studies. It has shown to allow

a significant improvement while keeping the MOPSO perfor-

mance at the state-of-the-art level on a real world problem.

Thus our approach appears as a good improvement to easily

handle neighborhood in criterion space.

Much more experiments can then be conducted in order to

compare to more MOPSO implementations. But before this,

other improvements can be studied to go beyond the ones

proposed in this paper. In particular, after proposing a new

guide selection strategy, we are looking on the personal best

management and selection which is the most natural con-

tinuation of our researches. The problem of the extremes

handling, which has been partly solved by the neighborhood

management, is always present because of the bias intro-

duced by the relative ε dominance. This will also be one

of the next big steps of our future work. The management of

algorithms parameters also needs to be finer studied and our

aim is to reduce the number of algorithm parameters (some

successful tests have been conducted on an auto adaptive ε).

Then, the neighborhood has to be enlarged to the parameter

space. It will avoid a guide to be selected when it will add

to much turbulence to its movements because its parameters

combinaison is too different from the guided particle.

We also want to adapt our experimental approach to a more

realistic environment in order to ensure the usability of our

particle swarm optimizer. Some experiments will be con-

ducted by considering the kernel choice as a new parameters

in the optimization process for SVM model selection. This

induces heterogeneity in the parameters but it can be tackled

by MOPSO without too many difficulties. This research path

is particularly valuable since it really helps the engineers to

design their systems which have several heterogeneous pa-

rameters. Finally, we plan to enlarge our set of applications

in terms of system complexity and domains. Information re-

trieval systems will be our most promising research paths es-

pecially for information extraction tasks through linguistic

patterns which involve many parameters.
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