A variational model for image texture identification R. Echegut and L. Piffet Université d'Orléans, Département de Mathématiques (MAPMO), UFR Sciences, Bâtiment de mathématiques, Route de Chartres B.P. 6759, 45067 Orléans cedex 2, FRANCE echegut.romain@wanadoo.fr, Loic.Piffet@univ-orleans.fr Variational models in image processings have been extensively studied during the past decade. There are used for segmentation processes (geodesic or geometric contours) and restoration and textures extraction purpose as well. Roughly speaking image restoration problems are severely ill posed and a Tychonov-like regularization process is needed. The general form of such models consists in the mimization of a "energy" functional :

F(u) = u -u d X + R(u) , u ∈ Y ⊂ X ,
where X, Y are (real) Banach spaces, R is a regularization operator, u d is the observed (or measured) image and u is the image to recover. The first term is the fitting data term and the second one permits to get a problem which is no longer ill posed. The most famous model is the Rudin-Osher-Fatemi denoising model (see [START_REF] Osher | Nonlinear total variation based noise removal algorithms[END_REF]) which leads to the following problem:

min u∈BV (Ω) λ|u| BV (Ω) + 1 2 u d -u 2 L 2 (Ω) . (P ROF )
Here, we are interested in textures extraction and/or image denoising. Recently people considered that an image can be decomposed in many components, each component describing a particular property . of the image (see [START_REF] Aubert | Image decomposition into a bounded variation component and an oscillating component[END_REF][START_REF] Osher | Image denoising and decomposition with total variation minimization and oscillatory functions. Special issue on mathematics and image analysis[END_REF][START_REF] Yin | A comparison of three total variation based texture extraction models[END_REF] for example). We agree with this idea and assume that the image f we want to recover from the data u d can be decomposed as f = u + v where u and v are functions that belong to different functional spaces: u is the "texture" part which involves (periodic or not) details (and noise as well) while v is a more regular part (usually called the "cartoon" component).

In a first section, we present the functional framework, introducing the BV 2 space, and the general variational model we consider. In section 2, we focus on numerical implementation and present the discretization process. Numerical tests are reported in the last section.

1 Functional framework and model

The BV 2 (Ω) space

Let Ω be an open bounded subset of R n , n ≥ 2 (practically n = 2). Following Demengel [START_REF] Demengel | Fonctions à hessien borné[END_REF], we define the space of bounded hessian functions that we call BV 2 (Ω). We recall that the space BV (Ω) of bounded variation functions (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Aubert | Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Variations[END_REF][START_REF] Attouch | Variational analysis in Sobolev and BV spaces : applications to PDEs and optimization[END_REF]) is defined as

BV (Ω) = {u ∈ L 1 (Ω) | Φ(u) < +∞},
where

Φ(u) = sup {∫ Ω u(x) div ξ(x) dx | ξ ∈ C 1 c (Ω), ξ ∞ 1 } . ( 1 
)
The space BV (Ω), endowed with the norm u BV (Ω) = u L 1 + Φ(u), is a Banach space. The derivative in the sense of the distributions of every u ∈ BV (Ω) is a bounded Radon measure, denoted Du, and Φ(u) = ∫ Ω |Du| is the total variation of Du. We extend this definition to the second derivative (in the distributional sense). Recall that the Sobolev space

W 1,1 (Ω) = { u ∈ L 1 (Ω) | ∇u ∈ L 1 (Ω) }
where ∇u stands for the first order derivative of u (in the sense of distributions).

Definition 1. A function u ∈ W 1,1 (Ω) is Hessian bounded if |u| BV 2 (Ω) := sup {∫ Ω ∇u, div(φ) R n | φ ∈ C 2 c (Ω, R n×n ), φ ∞ 1 } < ∞, where div(φ) = (div(φ 1 ), div(φ 2 ), . . . , div(φ n )), with ∀i, φ i = (φ 1 i , φ 2 i , . . . , φ n i ) ∈ R n and div(φ i ) = n ∑ k=1 ∂φ k i ∂x k .
For more information on the BV 2 (Ω) space, see [START_REF] Demengel | Fonctions à hessien borné[END_REF][START_REF] Piffet | Modèles variationnels pour l'extraction de textures 2D[END_REF].

The variational model

We now assume that the image we want to recover from the data u d can be written as f = u + v where . where u is in BV (Ω) and v is in BV 2 (Ω). Such decompositions have already been performed [START_REF] Aubert | Modeling very oscillating signals, application to image processing[END_REF][START_REF] Aubert | Image decomposition into a bounded variation component and an oscillating component[END_REF][START_REF] Aubert | Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Variations[END_REF] using the "Meyer" space of oscillating function [START_REF] Meyer | Oscillating patterns in image processing and nonlinear evolution equations[END_REF] instead of BV 2 (Ω). So far, the modelization we propose is not the same: the oscillating component will be included in the non regular part u while v involves the cartoon and the contours. We consider the following function defined on BV (Ω) × BV 2 (Ω) :

F (u, v) = 1 2 u d -u -v 2 L 2 (Ω) + λ|u| BV (Ω) + µ|v| BV 2 (Ω) + δ ∇v W 1,1 (Ω) , (2)
where λ, µ, δ ≥ 0. We are looking for a solution to the optimisation problem inf

(u,v)∈BV (Ω)×BV 2 (Ω) F (u, v) (P)
The first term

u d -u -v 2 L 2 (Ω)
of F is the fitting data term. Other terms are Tychonov-like regularization terms. Note that the δ-term is not useful from the modelling point of view. It is only a tool that allows to prove existence of solutions. We shall choose δ = 0 for numerical tests.

If the image is noisy, the noise is considered as a texture and will be involved in u: more precisely v will be the part of the image without the oscillating component, that is the denoised part. In [START_REF] Bergounioux | A BV 2 (Ω) model for image denoising and/or texture extraction[END_REF] we focus on the denoising process taking only v into account (and assuming that u = 0 so that u d -v is the noise). We now give an existence and uniqueness result for the general problem (P) (see [START_REF] Bergounioux | A BV 2 (Ω) model for image denoising and/or texture extraction[END_REF] for the proof).

Theorem 1. Assume that λ > 0, µ > 0 and δ > 0. Problem (P) has a unique solution (u, v).

Numerical implementation

Discretization of the problem

We assume for simplicity that the image is squared with size N × N . We note X := R N ×N R N 2 endowed with the usual inner product and the associated euclidean norm

u, v X := ∑ 1 i,j N u i,j v i,j , u X := √ ∑ 1 i,j N u 2 i,j . (3) 
It is classical to define the discrete total variation as following (see for example [START_REF] Aubert | Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Variations[END_REF]) : the discrete gradient of the numerical image u ∈ X is ∇u ∈ X 2 defined by (∇u) i,j = ( (∇u)

1 i,j , (∇u) 2 i,j ) , (4) 
where (∇u)

1 i,j = { u i+1,j -u i,j if i < N 0 if i = N, and (∇u) 
2 i,j = { u i,j+1 -u i,j if j < N 0 if j = N.
The (discrete) total variation |u| BV (Ω) is given by

J 1 (u) = ∑ 1 i,j N (∇u) i,j R 2 , (5) 
where

(∇u) i,j R 2 = ( (∇u) 1 i,j , (∇u) 2 i,j ) R 2 = √ ( (∇u) 1 i,j ) 2 + ( (∇u) 2 i,j ) 2 .
The discrete divergence operator div is the adjoint operator of the gradient operator ∇ :

∀(p, u) ∈ X 2 × X, -div p, u X = p, ∇u Y , so that (div p) i,j =    p 1 i,j -p 1 i-1,j if 1 < i < N p 1 i,j if i = 1 -p 1 i-1,j if i = N +    p 1 i,j -p 2 i,j-1 if 1 < j < N p 2 i,j if j = 1 -p 1 i,j-1 if i = N. (6)
To define a discrete version of the second order total variation we have to introduce the discrete Hessian operator. As for the gadient operator, we define it by finite deferences. So, for any v ∈ X, the Hessian matrix of v, denoted Hv is identified to a X 4 vector: (Hv) i,j = ( (Hv) 11 i,j , (Hv) 12 i,j , (Hv) 21 i,j , (Hv) 22 i,j

) .

The discrete second order total variation |v| BV 2 (Ω) of v is defined as

J 2 (v) = ∑ 1 i,j N (Hv) i,j R 4 . (7) 
As in the BV case, we may compute the adjoint operator of H (which is the dicretized "second divergence" operator) :

∀p ∈ X 4 , ∀v ∈ X H * p, v X = p, Hv X 4 . ( 8 
)
and we deduce an numerical expression for H * from the equality [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF]. The discretized problem stands inf

(u,v)∈X 2 1 2 u d -u -v 2 X + λJ 1 (u) + µJ 2 (v) + δ(|v| + J 1 (v)), (P d )
where

|v| := ∑ 1 i,j N |v i,j | .
In the finite dimensional case we have an existence result with δ = 0.

Theorem 2. Problem P d has a unique solution for every δ ≥ 0 and λ > 0.

For numerical purpose we shall set δ = 0. In fact, we have performed tests with δ = 0 and very small δ = 0 (as required by the theory to get a solution to problem P) and results where identical. So, to simplify numerical implementation, we consider the following discretized problem :

inf (u,v)∈X 2 1 2 u d -u -v 2 X + λJ 1 (u) + µJ 2 (v). ( Pd )

Algorithm

Using non smooth analysis tools (for convex functions) it is easy to derive (necessary and sufficient) optimality conditions. More precisely (u, v) is solution of ( Pd ) if and only if

   0 ∈ ∂ ( λJ 1 (u) + 1 2 u d -u -v 2 ) 0 ∈ ∂ ( µJ 2 (v) + 1 2 u d -u -v 2 ) , ( 9 
)
where ∂J is the classical subdifferential of J. Using subdifferential properties, we see that ( 9) is equivalent to

{ u = u d -v -Π λK1 (u d -v) v = u d -u -Π µK2 (u d -u) . ( 10 
)
where K 1 and K 2 are closed convex sets. Chambolle [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] proved that

K 1 = {div p | p ∈ Y, p i,j R 2 1 ∀i, j = 1, . . . , N } (11)
in the BV (Ω) setting and we may prove similarly that

K 2 = {H * p | p ∈ Z, p i,j R 4 1, ∀i, j = 1, . . . , N }, ( 12 
)
(see [START_REF] Bergounioux | A BV 2 (Ω) model for image denoising and/or texture extraction[END_REF]). Moreover, Chambolle [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] proposed a fixed point algorithm to compute Π λK1 and we are able to extend this result to the second order case. Therefore, we set the following fixed point algorithm:

p 0 = 0 (13a) p n+1 i,j = p n i,j -τ (H[H * p n -u d /λ]) i,j 1 + τ (H[H * p n -u d /λ]) i,j R 4 . ( 13b 
)
which convergence is proved in [START_REF] Bergounioux | A BV 2 (Ω) model for image denoising and/or texture extraction[END_REF] :

Theorem 3. Let be τ 1/64. Then λ (H * p n ) n converges to P λK2 (u d ).
So, we propose the following algorithm :

• Step 1 : We choose u 0 et v 0 (for example, u 0 = 0 et v 0 = u d ) and 0 < α < 1.

• Step 2 : define the sequences ((u n , v n )) n as follows:

{ u n+1 = u n + α (u d -v n -Π λK1 (u d -v n ) -u n ) v n+1 = v n + α (u d -u n -Π µK2 (u d -u n ) -v n ) .
• Step 3 : if a stopping criterion is not satisfied, set k := k + 1 and go back to 2.

We are not able to prove the convergence of this algorithm, but we observed that, numerically, it always converges for appropriate values of α. Nevertheless, we propose in [START_REF] Piffet | Modèles variationnels pour l'extraction de textures 2D[END_REF] another algorithm which convergence is rigorously proved .

Numerical tests and comments

We test the model on two images: The first one is a synthetic image wher texture has been artificially added, and the second one is the well known "Barbara" benchmark, often used in texture extraction. We perform many tests with respect to the different parameters. We only present here the most significant : α = 0.6, λ = 0.5 and µ = 100. Let us first report on the iterations number effect with image (a).

If we are only interested in the texture part, we can observe in fig 2 that we get back all the texture. Unfortunately, most of geometrical information (that we don't want to get back here) is also kept, and we observe the involved geometric part is getting more important as the iteration number is growing. In addition, we see that the too many geometrical information remains together with the texture in the oscillating part: this is a bad point. Nevertheless, our main goal is to locate the texture and we don't need to work with the cartoon part anymore once it has been identified. We do not need to recover all the texture but only a significant part to identify it. In that case, we propose a method that permits to improve the results significantly: we modify the hessian operator to make it anisotropic. More precisely, we reinforce chosen directions. As texture is made of oscillating information, we hope that we shall keep most of it while many contour lines disappear. We specially, act on the vertical and horizontal components of the hessian operator. To deal with non vertical and horizontal lines, we just have to let the image rotate. In the following test, we have replaced the hessian operator by the operator H defined for all v ∈ X 4 by : ∀(i, j) ∈ {1, ..., N } 2 , (H v) i,j = ( 0, (Hv) 12 i,j , (Hv) 21 i,j , 0

) . 

Conclusion

The model permits to extract texture from an image, but the texture part still contains too much geometric information. Thus, to recover what we are interested in, we have to use the algorithm with a limited number of iterations. Moreover, we have noticed that we recover too many contour lines as well. The asset of this model is that we can make it anisotropic, modifying the hessian operator in an appropriate way. Therefore we get rid of geometrical information, but we lose part of the texture as well. Nevertheless, if our goal is just to locate texture on an image, this loss remains acceptable.
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