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Abstract

We use a Hierarchical Partition of Unity Finite Element
Method (H-PUFEM) to represent and analyse the non-rigid
deformation fields involved in multidimensional image reg-
istration. We make use of the Ritz-Galerkin direct varia-
tional method to solve non-rigid image registration prob-
lems with various deformation constraints. In this method,
we directly seek a set of parameters that minimizes the
objective function. We thereby avoid the loss of informa-
tion that may occur when an Euler-Lagrange formulation
is used. Experiments are conducted to demonstrate the ad-
vantages of our approach when registering synthetic images
having little of or no localizing features. As a special case,
conformal mapping problems can be accurately solved in
this manner. We also illustrate our approach with an appli-
cation to Cardiac Magnetic Resonance temporal sequences.

1. Introduction
There are various motivations for making use of non-

rigid image registration depending on the application field.
Often, one just wishes to find a ‘reasonably smooth’ warp-
ing law which is such that a measure of dissimilarity be-
tween a reference image R and the warped template image
T is made as small as possible [1, 2]. However, it is some-
times useful to obtain an estimate of the warping law itself.
This is particularly hard if one cannot unambiguously match
corresponding localizing features in the images T and R.
For example, one may wish to register a pair of binary im-
ages containing objects with smooth contours and few or
no corners. The corresponding edges are curved lines in 2D
or smooth surfaces in 3D that should be matched together.
Given a particular edge point in R, one does not know off-
hand to which edge point in T it should be associated. The
related difficulty – known as the aperture problem [3] –

does not have a satisfactory solution but it can at least be
alleviated by injecting prior knowledge when estimating the
warping field. One way for doing this is to seek the warping
law that minimizes an objective function made up of a sum
of terms. One term measures the dissimilarity between the
reference image and the warped template and the others in-
troduce soft regularization constraints which should bias the
warping law towards a behaviour compatible with domain
knowledge. A reliable strategy has to be defined in order to
minimize this objective function without getting trapped in
local minima.

In Medical Imaging, one often wishes to get a reliable
warping field estimate from an image sequence (2D or 3D)
in order to deduce the strain to which an organ has been sub-
jected. For example, it is desirable to capture the myocard
strain including cardiac wall thickening from a temporal se-
quence of heart images (in 2D or 3D). In such cases, the
regularization constraint should provide robustness against
noise and other imaging artefacts without introducing an ar-
tificial bias in the estimated warping fields.

A large range of variational approaches exist today
to deal with non-rigid intensity-based image registration.
Many authors reduce the problem to solving the corre-
sponding Euler-Lagrange Partial Differential Equation (EL-
PDE) using a finite difference scheme (see for example [1]
and the references therein). Some authors make use of a
mesh-based Finite Element Method (FEM) to solve the EL-
PDE (see for example [5]). Others represent the warping
field with B-splines or a block wise affine model and ex-
press the objective function in terms of their representation
parameters. They then directly seek the parameters mini-
mizing their objective function (see for example [6, 7] and
the references therein). In the present paper, we propose
a new formulation of Non-Rigid Image Registration Vari-
ational problems inspired from the work of Melenk and
Babuška on the Partition of Unity Finite Element Method
[8, 9] which provides a generic framework for solving a
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large class of PDEs. As in [6, 7], we look for the parameters
of our model that directly optimize the objective function.
Such a direct method is referred to as the Ritz-Galerkin ap-
proach in the FEM terminology.

Unlike methods using finite differences for solving
PDEs, our problem formulation does not require imposing
unnatural conditions on the boundaries of the image domain
(of Dirichlet or Neumann type). Among other advantages,
this allows us to get reliable warping field estimations even
in the neighbourhood of the domain boundaries.

2. PUFEM Scalable Representation of the
Warping Field

Let Ω ⊂ Rd be a rectangular image domain and let us
consider a set of points, called nodes, distributed over Ω. To
each node n, we associate a compact subdomain Ωn ⊂ Rd,
and a non-negative window function ϕ(n)(x) which van-
ishes outside Ωn. The Partition of Unity condition imposes:

Ω ⊂
⋃
n

Ωn and ∀x ∈ Ω ,
∑

n

ϕ(n)(x) = 1 (1)

The warping field is defined as a mapping
(x 7→ x+ U(x)) associating a point x + U(x) in the do-
main of the template image T to any given point x in Ω, the
domain of the reference image R. Each component Ui(x)
of the displacement vector field U(x) ≡ (U1, ..., Ud)T is
approximated by a blending of local polynomials in the
form:

Ũi(x) =
∑

n

ϕ(n)(x) Ũ (n)
i (x) (2)

where each local polynomial Ũ (n)
i (x) is expanded in a local

basis
{
v
(n)
r

}
as:

Ũ
(n)
i (x) =

∑
r

A
(n)
i,r v

(n)
r (x) (3)

where the A(n)
i,r are the scalar coefficients of the expansion.

For any point x ∈ Ω, there are at most M window func-
tions such that ϕ(n)(x) 6= 0. For the sake of computational
efficiency, we choose our nodes over a regular rectangular
array with inter-node spacing hi along the ith coordinate
axis (i = 1, ..., d). In our implementation, we have M = 2d

as discussed below. Within a window n, the coordinates xi

of a point x are replaced by normalized local coordinates
ζ
(n)
i = (xi − ξ(n)

i )/hi for which the window centre coordi-
nates ξ(n)

i are taken as origin.
Each window function ϕ(n)(x) is taken as the product of

single-variable piecewise polynomial functions:

ϕ(n)(x) =
i=d∏
i=1

P (ζ(n)
i ) (4)

The function P (ζ) is designed in such a manner that P (ζ)+
P (1−ζ) = 1 and P (−ζ) = P (ζ) for 0 ≤ ζ ≤ 1, P (ζ) = 0
for ζ < −1 or ζ > 1. A piecewise polynomial expression
for P (ζ) which has a prescribed Ck continuity (k ≥ 0)
is readily found. For C0 continuity: P (ζ) = 1 − |ζ|, for
C1 continuity: P (ζ) = 1 − 3 |ζ|2 + 2 |ζ|3. Defining the
window functions from Eq.(4) is advantageous because they
are simple to compute and they automatically satisfy the
normalization condition

∑
n ϕ

(n)(x) = 1 with M = 2d

non-vanishing windows for any x. When selecting for P (ζ)
the C0 continuous expression, we just obtain the familiar
multi-linear interpolation window function (bilinear in 2D
and trilinear in 3D).

The different basis functions v(n)
r (x) associated with

node n are monomials of all orders up to a maximum
p, for example, if p = 2 and d = 2, there would be
six such monomials v

(n)
r (x) (r = 1 to 6) defined by

{1, ζ(n)
1 , ζ

(n)
2 , (ζ(n)

1 )2, ζ(n)
1 ζ

(n)
2 , (ζ(n)

2 )2}.

Global and Local Approximation Errors. We now
turn to the problem of approximating a given warping field
U(x) with the above representation Eqs.(2,3). We do this
by looking for the coefficients A(n)

i,r that, for each compo-
nent Ui of the warping field, minimize the L2 error Qi =∥∥∥Ui − Ũi

∥∥∥2

L2
incurred when replacing the given Ui(x) by

this representation. Using the partition of unity property∑
n ϕ

(n)(x) = 1, this can be written as:

Qi =
∫

Ω

(∑
n

ϕ(n)(x)
(
Ui(x)− Ũ

(n)
i (x)

))2

dx (5)

From Cauchy-Schwarz inequality, it is straightforward to
prove that (

∑
n gnzn)2 ≤ (

∑
n gn)(

∑
n gnz

2
n) provided

gn ≥ 0 for all n. Applying this inequality to the integrand,
we get an upper bound for the global quadratic error Qi in
the approximation of Ui(x) in the form:

Qi ≤
∑

n

Q
(n)
i (6)

where

Q
(n)
i =

∫
Ω

ϕ(n)(x)
(
Ui(x)− Ũ

(n)
i (x)

)2

dx (7)

In other words, in order to obtain a small global quadratic
approximation error Qi, it is sufficient to minimize the
local weighted quadratic errors Q(n)

i within each of the
windows n. We should recall that Q(n)

i according to (3)
depends only on the local coefficients A(n)

i,r in window n.

Minimizing Q(n)
i therefore boils down to a standard LMS

problem solvable using classical linear algebra techniques.



PUFEM Hierarchy. In order to obtain fast convergence
rates and to reduce the probability of getting trapped in lo-
cal minima, we have to deal with representations having
different levels of detail (coarse to fine). To do this, we
define a dyadic pyramid of PUFEM arrays. In our imple-
mentation, the array of a level has either identical node sep-
aration distances hi as those hi

fine of the next finer level
or has exactly twice those separations (hi = 2hi

fine for
i = 1, .., d). All levels of the pyramid cover the same rect-
angular domain Ω. The order p of the polynomial approx-
imation is also allowed to vary from one level to the other.
We have to design prolongation operators allowing to con-
vert a coarse level representation into the next finer level.
We also need restriction operators in order to realize the
reverse fine to coarse conversions. Both operators are real-
ized using the least square approximation procedure defined
above. In both types of prolongation and restriction opera-
tors, assume that an input displacement field Ui(x) is de-
fined by a node array with coefficients B(m)

i,s , window func-

tions ψ(m)(x) and monomials w(m)
s (x). The coefficient

A
(n)
i,r of the output representation are obtained by looking

for minimum quadratic errors Q(n)
i , leading to:

1
2
∂Q

(n)
i

∂A
(n)
i,r

=
∑

s

K(n)
r,s A

(n)
i,s − Z

(n)
i,r = 0 (8)

where K(n)
r,s =

∫
ϕ(n)v(n)

r v(n)
s dx (9)

and Z(n)
i,r =

∑
s,m

(∫
ψ(m)ϕ(n)w(m)

s v(n)
r dx

)
B

(m)
i,s (10)

For each output node n, the summation extends over all
labels s of input monomials w(m)

s (x) and over all input
nodes m having overlapping windows with n (i.e. such
that ψ(n)ϕ(n) is not identically zero). The resulting system
in Eqs.(8) is solvable by matrix inversion because the
matrices K(n)

r,s are positive definite. In Eqs.(9,10), we have
dropped the explicit dependence on (x) of the functions
ψ(m), ϕ(n), w(m)

s and v(n)
r . All matrix entries K(n)

r,s and
all coefficients of B(m)

i,s in the expression for Z(n)
i,r are

easily computed since they are dimensionally separable
integrals of piecewise polynomials. The coefficients of
the output representation A

(n)
i,r can now be expressed as

linear combinations of the input coefficients B(m)
i,s . All

matrix inversions are precomputed in order to avoid costly
computations within iterative algorithms.

PUFEM Global and Local Warping Field Deriva-
tives. Let F (x) stand for any component of the warping
displacement vector field Ũi(x) and let F (n)(x) = Ũ

(n)
i (x)

stand for the corresponding polynomial representation in

node n. We wish to evaluate the partial derivative ∂jF of
F with respect to jth component of the positional vector
x. To do this, we need to take into account the variation
of the window functions from Eq.(2). Dropping the explicit
mention of the independent variable (x) we get:

∂jF =
∑

n

ϕ(n)∂jF
(n) + χj (11)

where χj =
∑

n

(
F (n) −

∑
m

(
ϕ(m)F (m)

))
∂jϕ

(n)

as obtained by making use of the partition of unity proper-
ties

∑
m ϕ(m) = 1 and

∑
m ∂jϕ

(m) = 0. The first term in
the right hand side of the above equation is just the blend-
ing of local derivatives ∂jF

(n) using the window function
weighting. The second term χj involves |∂jϕ

(n)| the upper
bound of which can always be written as C/h where C is a
positive constant and h = mini∈[1,d]{hi}. This leads to the
inequality:

|χj(x)| ≤ C

h

∣∣∣∣∣∑
n

(
F (n)(x)−

∑
m

(
ϕ(m)F (m)(x)

))∣∣∣∣∣
≤ MC

h
max(m,n)

∣∣∣F (m)(x)− F (n)(x)
∣∣∣ (12)

where M is the number of non-zero window functions
ϕ(m) at point x while (m,n) stands for any pair of element
numbers for which ϕ(m)(x)ϕ(n)(x) > 0. Therefore ∂jF
can be expressed as a weighted combination of local
derivatives ∂jF

(n) provided that the different local approx-
imations F (m) agree in regions where the element windows
overlap. As noted by Melenk and Babuška [9], this is pos-
sible if we impose inter-element continuity (conformity)
and absorb those extra constraints by making use of a suf-
ficiently large approximation space (h small and/or p large).

Sobolev Non-Conformity Measures. From the above
discussion, the estimation of first derivatives from the lo-
cal polynomial representations is allowed provided their
values differ as little as possible within overlapping win-
dow regions. More generally, one may need to estimate
derivatives of higher orders DαF = ∂α1

1 ...∂αd

d F where
α = (α1, ..., αd) is the derivation order multi-index. The
above analysis can be easily generalized but then, inter-
element continuity of higher order derivatives of F (m) has
to be enforced. For the representation of F , we define the
non-conformity measure for any two adjacent nodes m and
n as a Sobolev Norm weighted by the product ϕ(m)ϕ(n) of
window functions:

S
(m,n)
k (F ) =

∑
|α|≤k

∫
ϕ(m)ϕ(n)

(
DαF (m) −DαF (n)

)2

dx

(13)



where |α| =
∑d

i=1 αi is the total derivation order while k is
the highest Sobolev differential smoothness order required.
For k = 0, we just get a weighted L2 non-conformity mea-
sure.

3. Ritz-Galerkin Variational Formulation for
PUFEM-based Image Registration

In our variational formulation of the image registration
problem, the objective function E to minimize can be writ-
ten as the sum of three terms:

E = M+ βSk + κD (14)

in this expression, M penalizes the mismatch between
the reference image R(x) and the warped template image
T (x+U), Sk penalizes the non-conformity of the PUFEM
representation of the warping field U(x). D is a deforma-
tion energy term which is meant to inject prior knowledge
about the expected spatial-behaviour of the deformation
field. The constants β and κ allow to control the relative
influence of the constraints Sk and D on the final result.
The Ritz-Galerkin method that we adopt consists in ex-
pressing the objective function E in terms of the coefficients
A

(n)
i,r representing the warping field U(x) in the PUFEM

framework. We then directly seek the combinations of
these parameters that minimize E . For a given node n
and a given displacement component, the parameters
are represented in the following by the column vector
Y(n)

i = [A(n)
i,1 , ..., A

(n)
i,ρ ]T where ρ is the number of

monomials v(n)
r used in the representation. The different

components for i = 1 to d are piled up to form the column
vector Y(n) = [Y(n)

1 , ...,Y(n)
d ]T which has ρd elements.

The Non Conformity Penalty Sk is the sum of pair-
wise non-conformity measures S(m,n)

k (Ui), from Eq.(13),
over all adjacent node-pairs (m,n) and all components of
Ui of the warping field. We recall that the suffix k stands for
the Sobolev continuity order. Each of the terms S(m,n)

k (Ui)
can be expressed as a non-negative definite quadratic func-
tion of Y(m) and Y(n) by replacing U (m)

i and U (n)
i by their

local expressions from Eq.(3). Writing this in terms of the
local coefficient vectors Y(m)

i and Y(n)
i , we obtain an ex-

pression of the form:

S
(m,n)
k (Ui) =

[
Y(m)

i

]T
S(m,n)

[
Y(m)

i

]
+

[
Y(n)

i

]T
S(n,m)

[
Y(n)

i

]
−2

[
Y(m)

i

]T
C(n,m)

[
Y(n)

i

]
(15)

where S(m,n),S(n,m) and C(n,m) are (ρd × ρd) square
matrices. It should be noted that this is a non-negative

quadratic expression of the two vectors Y(m)
i and Y(n)

i

because S(m,n)
k (Ui) is never negative. In particular, both

S(m,n) and S(n,m) are symmetric non-negative definite
matrices.

The Deformation Penalty D that can be dealt within
our Ritz-Galerkin formulation is any non-negative quadratic
functional of the warping field derivatives. It can, in general
be expressed as a sum of simple quadratic terms:

D =
∑

θ

∫
Ω

 ∑
i,α,|α|>0

γ
(θ)
i,αD

αUi

2

dx (16)

In our implementation, we deal with the case where the co-
efficients γ(θ)

i,α are considered constant within each of the
window function supports. If inter-node conformity is en-
forced, we may replaceDαUi by a blending of local deriva-
tives DαŨ

(n)
i . The reasoning leading to inequality (6) can

then be repeated and D is easily shown to have as upper
bound a sum of weighted local contributions

∑
nD(n), each

of which can be expressed as:

D(n) =
[
Y(n)

]T
D(n)

[
Y(n)

]
(17)

where D(n) is a symmetric non-negative definite matrix of
size (ρd× ρd).

The Image Mismatch Penalty M is defined by:

M =
∫

Ω

(T (x+ U)−R (x))2 dx (18)

where we select the sum of square grey-level difference
mismatch metric.

3.1. Optical Flow Step

In the form of Eq.(18), M cannot be directly expressed
as a sum of local quadratic functions of the coefficient vec-
tors Y(n). In order to allow us to use a standard quadratic
minimization procedure, we need to break down the ob-
jective function minimization into a succession of steps of
Optical Flow [3], within each of which U undergoes suf-
ficiently small changes as to allow linear approximations
of the grey level differences T (x + U) − R(x). Starting
from a previously obtained value or from an initial guess
for the warping field U(x), we look for the small incremen-
tal warping field u(x) needed to reduce M + βSk + κD.
At the end of the step, we update U(x) by adding the in-
crement found and repeat up to convergence. We use the
optical flow approximation [3] which consists in replacing
(T (x + U + u) − R(x)) by its first order Taylor series ap-



proximation resulting in:

M∼=
∫

Ω

(
T (x+ U)−R(x) +

∑
i

ui ∂iT |x+U

)2

dx

(19)
Assuming that the changes ui in Ui are small enough, the
reasoning leading to inequality (6), allows us to express the
change in M as a sum

∑
n

(
∆M(n)

)
of windowed con-

tributions. By expressing the increments ui in terms of the
difference Y(n)−Y(n)

o between the coefficient vector Y(n)

at the current step and that of the previous step Y(n)
o , we

have:

∆M(n) ∼=
[
Y(n) −Yo

(n)
]T

M(n)
[
Y(n) −Yo

(n)
]

−2
[
Y(n) −Yo

(n)
]T

V(n) (20)

where the entries of the (ρd × ρd) symmetric non-negative
definite square matrix M(n) and the size (ρd) vector V(n)

are given by:

M(n)
(i,r),(j,s) =

∫
ϕ(n)v(n)

r v(n)
s (∂iT∂jT ) |x+U dx

V(n)
(i,r) =

∫
ϕ(n)v(n)

r (R(x)− T (x+ U)) ∂iT |x+U dx (21)

From Eqs.(15, 17), βSk +κD is a quadratic function of vec-
tors Y(n). Within an optical flow step, the objective func-
tion E = M+ βSk + κD can therefore be put in the form:

E = C + YT GY − 2WT Y (22)

whereC is a constant, Y is a (Nρd) column vector obtained
by piling up the coefficient vectors Y(n) of all N elements
of the node array. The matrix G is a non-negative definite
symmetric matrix of size (Nρd × Nρd) whereas W is a
column vector of size (Nρd). Minimizing E in Eq.(22) is
equivalent to solving the linear system:

G Y = W (23)

which yields the new vector Y resulting from the optical
flow step. In practice, matrix G is sparse and can be very
large. We adopt the conjugate gradient algorithm which is
suited to solve such systems. The non-conformity energy
term βSk is found to have a stabilizing influence on the sys-
tem (23) because it prevents the condition number of matrix
G from being too large. In almost all the practical cases we
have studied, less than 5 optical flow steps with 4 conjugate
gradient iterations within each step are sufficient for con-
vergence. Slow convergence only occurs when the weight
κ of the deformation energy is so large that κD provides a
contribution to the trace of matrix G more than 100 times
larger than that of the other terms. In our experience, one
only need such a large κ weight when dealing with the hard
Cassini-Oval conformal mapping problem discussed below.

3.2. The Image Registration Algorithm Sequence

A PUFEM hierarchy is defined as explained in section 2.
To each level of the hierarchy, a Gaussian smoothing kernel
of size σ is associated. Both reference and template images
are smoothed with this kernel. We take σ to be a fraction
of the average inter-element separation distance h at each
level. For each level, the non-conformity penalty Sk and
the deformation penalty D are mapped to their coefficient
representations using the matrices S(m,n),S(n,m), C(n,m)

and D(n) as defined by Eqs.(15, 17). The entries of those
matrices turn out to be integral of polynomial expressions
over rectangular domains and are precomputed accurately.
The registration algorithm itself starts from the coarsest
level with associated coarse σ images. Once the objective
function has been minimized within a level, we apply the
prolongation operator defined in section 2 to get the initial
state at the next finer level. The procedure is resumed until
convergence at the finest level has been realized. Registra-
tion at each level is achieved using a number of optical flow
steps as described in section 3.1.

4. Interest of our Ritz-Galerkin Formulation

The variational formulation proposed above consists in
representing the objective function E as a function of the
parameters stored in Y (the column vector defined in sec-
tion 3.1). We then directly seek the vector Y that mini-
mizes E . An alternative approach often used in the litera-
ture [1, 2, 4], is to derive the Euler-Lagrange Partial Differ-
ential Equation (EL-PDE) and then find a solution by dis-
cretization. This can be achieved either using a finite differ-
ence method or by using the Petrov-Galerkin [8] formula-
tion within a Finite-Element framework. It must be stressed
that the EL-PDE is a necessary condition that may not be
sufficient to lead to a minimum of the objective function E .
This limitation of EL-PDE formulations is clear when deal-
ing with the registration of images with few or no localized
features. In this case, one needs to register pairs of smooth
object boundaries together. For example, when dealing with
a binary image pair representing rounded objects, we only
know that their edges should be matched together without
knowing beforehand the detailed correspondence between
individual edge-points. For illustration, we take two partic-
ular cases for the deformation penalty D, namely:

D1 =
∫

Ω

λ1

2

(∑
i

∂iUi

)2

+
µ1

4

∑
i,j

(∂iUj + ∂jUi)
2

 dx

D2 =
∫

Ω

λ2

2

(∑
i

∂iUi

)2

+
µ2

4

∑
i,j

(∂iUj − ∂jUi)
2

 dx

(24)



D1 is the Lamé elastic energy constraint [2] while D2 is
the div-curl regularizer which was first proposed by Suter
[10]. Each constraint is defined by two parameters (λ1, µ1)
for D1 and (λ2, µ2) for D2. The two constraints yield very
similar EL-PDE which can respectively be written as in [7]:

µ1∆U + (λ1 + µ1)∇∇ · U = γ (T (x+ U)−R (x))∇T
µ2∆U + (λ2 − µ2)∇∇ · U = γ (T (x+ U)−R (x))∇T (25)

where ∇T is evaluated at x + U , γ is a constant, ∆ is the
Laplacian operator and (∇∇·) is the grad-div operator. It is
noted that if µ2 = µ1 and λ2 = λ1 + 2µ1 the two above
EL-PDEs are identical. However, it is clear from Eq.(24)
that, provided µ1 = µ2 > 0, D1 penalizes the symmetri-
cal part 1

2 [∂iUj + ∂jUi] of the warping field Jacobian ma-
trix [∂iUj ] whereas D2 penalizes the anti-symmetric part
1
2 [∂iUj − ∂jUi]. One therefore expects radically different
spatial behaviours of the warping field obtained using D1

or D2. If one relies on the EL-PDE, this difference in be-
haviours cannot be captured because one would have iden-
tical PDEs to solve. To illustrate this point concretely, we
have compared our PUFEM-based Ritz-Galerkin results for
matching 2D binary image pairs with D1 and D2 penal-
ties respectively. In order to benefit from validation from
closed-form results, we take the particular cases µ1 = µ2 =
µ, λ1 = −µ, λ2 = µ. The special forms dealt with for D1

and D2 read:

D1 =
∫

Ω

µ

2

[
(∂1U2 + ∂2U1)

2 + (∂1U1 − ∂2U2)
2
]
dx

D2 =
∫

Ω

µ

2

[
(∂1U2 − ∂2U1)

2 + (∂1U1 + ∂2U2)
2
]
dx (26)

The respective EL-PDEs are identical: the grad-div terms
in the left-hand side of Eqs.(25) vanish, leaving only the
Laplacian ∆U term. In the numerical experiments, we used
for R and T images of size 512× 512. We took a hierarchy
of arrays with 7 pyramid-levels. The array size ranged from
6 × 6 for the coarsest level to 321 × 321 for the finest. For
all levels, the maximum polynomial order was p = 2 and
the inter-node conformity constraint was S2 (Sobolev order
k = 2 constraint).

Fig. 1, shows the results obtained for registering mu-
tually rotated ellipses. It is clear from the above expres-
sion (26) that D1 vanishes for any similarity transforma-
tion. The rotation R is correctly captured when using the
D1 penalty as seen in Fig. 1-(b). More generally, D1 van-
ishes for any angle-preserving Conformal Mapping [11]
for which the Cauchy-Riemann equations ∂1U1 = ∂2U2

and ∂1U2 = −∂2U1 are satisfied. As for the deforma-
tion penalty D2, it is minimal when the warping Jacobian
is symmetrical. To deal analytically with this case, we look
for a linear expression of the warping field in the form of a
symmetric transformation matrix S. Let x be the position

vector with the origin coinciding with the ellipse centroid.
The equation of the ellipse in the reference image R can be
expressed as xT Hx = 1 where H is a 2 × 2 diagonal ma-
trix with positive diagonal. The rotated ellipse (contour in
template image) satisfies the equation xT Hθx = 1 where
Hθ = RT HR. The symmetric matrix transformation S
needed to register those two ellipses must satisfy the matrix
equation SHS = Hθ. By right-multiplying with matrix H,
we get S = (HθH)1/2 H−1. As seen in Fig. 1-(c), using the
D2 deformation penalty yields a pure shear transformation
which coincides with the above closed form result. Fig. 2
shows the results obtained for registering a reference disk
image with a Cassini oval [12] with a corresponding shape
ratio b/a = 1.1. The unit disk to Cassini oval mapping has
been very frequently used for testing and evaluating Numer-
ical Conformal Mapping Methods [11]. The correspond-
ing numerical problem is challenging. In contrast with the
above case with ellipses, the deformation energy is taken in
account only within the interior of the contour of the ref-
erence image (i.e. inside the reference image disk region).
This is because, when using the D1 penalty, the mathemat-
ical ground truth for the warping field is just the conformal
mapping which has known singularities outside the disk. To
restrict the penalty to the disk region, we simply set the cor-
responding nodal penalties D(n) to zero whenever the node
centre lies outside the disk region. The result for the D1

penalty case depicted in Fig. 2-(b) behaves as predicted by
the exact closed-form expression. The displacement vec-
tors errors relative to ground-truth are found to be less than
2% of the disk radius. The D2 penalty case leads to a very
different warping field (Fig .2-c).

(a) (b) (c)

Figure 1. (a) Reference image contour (dark elliptic contour) and
rectangular grid with template image (white object). The refer-
ence ellipse is rotated by an angle θ = π/6 relative to that of the
template. The deformed reference contour and reference rectangu-
lar grid are displayed together with template image after algorithm
convergence using deformation penalty (b) D1, (c) D2.

5. Registering 2D Cardiac MR Images
In this experiment, we register pairs of 2D Cardiac MR

short-axis images using different regularization constraints.
To obtain a ground truth, we generate a synthetic warping
field emulating deformations observed in Cardiac tagged



(a) (b) (c)

Figure 2. (a) Reference image contour (dark circular contour) to-
gether with reference polar grid and template Cassini-oval (white
object). The deformed reference contour and reference polar grid
are displayed together with template image after algorithm con-
vergence using deformation penalty (b) D1, (c) D2.

MRI sequences. The template T is a frame extracted from
a cine MR sequence, and the reference R is synthesized as:

R(x) = T (x+ UGT (x)) (27)

where UGT is a synthetic, rotation-contraction displace-
ment field (Fig. 3).

Figure 3. Synthetic warping field UGT made up of rota-
tion+contraction

To visualize the deformation fields, we adopt here also
the method used in Fig. 2. We display a regular polar grid
in the reference image and warp it using the displacement
field U (Fig. 4-(a) and -(d), i.e. a point initially at position x
is moved to the position x + U(x)) to generate a deformed
polar grid in the template image.

We registered R and T using a 7-level pyramid. The
coarsest level uses a 3 × 3 array while the finest uses a
129 × 129 array. For all levels, the maximum polynomial
order was p = 2 and the inter-node conformity constraint
was S2 (Sobolev order k = 2 constraint). With a deforma-
tion cost D penalizing the divergence of the warping field
D =

∫
Ω
(∇ · U)2, the resulting displacement differs signif-

icantly from the ground truth (Fig. 4-(b) and -(e)). The fact
that introducing a penalty on the warping field divergence
(i.e. penalizing changes in area) produces departures from
ground truth is not surprising because, in such 2D short axis
cine sequences, the myocardial wall thickness changes ap-
preciably as well as the apparent ventricular region. We
also experimented with other deformation constraints and
obtained similar results. In contrast, when taking no defor-
mation constraints at all (i.e. D = 0 and using only the in-
trinsic Sobolev conformity constraint S2), the warping field

resulting from our algorithm is found to be very close to
ground-truth (Fig. 4-(c) and -(f)).

6. Summary and Conclusions

We have proposed a mesh-free Hierarchical Partition of
Unity Finite Element Method for solving variational prob-
lems related to non-rigid multidimensional image registra-
tion. Our objective function includes an image mismatch
penalty M and a deformation penalty D that are both ex-
pressed as a sum of local terms involving one node at a time.
In contrast to B-splines which have a built-in smoothness,
our warping field smoothness is controlled by including a
special term Sk to the objective function to minimize. This
term is non-local, it is defined as the sum of inter-node or-
der k Sobolev discontinuity measures S(m,n)

k . This enforces
inter-node smoothness for the warping field and all its par-
tial derivatives up to a predefined order k. The proposed
approach brings great flexibility since one can control the
degree of smoothness of the warping field by selecting suit-
able values for k, for the degree p of the polynomials used
and for the inter-element separations hi used for the finest
level of the PUFEM hierarchy.

Prior knowledge on the spatial behaviour of the warp-
ing field can be injected through the deformation penalty
D in addition to the Sk constraint. Experiments were made
for various deformation penaltiesD in the form of quadratic
function of first order warping field derivatives. Our scheme
proved effective and results agreed closely with ground-
truth (when available).

Another mode of operation of our scheme is to skip
totally the deformation energy D. In this case, the reg-
ularity of the warping field is controlled exclusively by
the Sobolev non-conformity penalty Sk. This mode is
more attractive in cases where we wish to extract the
warping field from the images without introducing any
artificial bias. The regularity constraint Sk is needed only
to reduce the influence of imaging artefacts or noise. Our
experiments with real and synthetic Cardiac MR temporal
sequences are promising in this respect.
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Figure 4. (a) Reference image and initial polar grid covering the myocardium. (b) Template image and deformed grid, with the constraint
penalty D =

∫
Ω
(∇ · U)2. (c) Same as (b) but with intrinsic internode Sobolev S2 constraint only. (d) Initial regular grid (black)

and ground truth deformed grid (gray). (e) Computed deformed grid (black) and ground truth (gray), with the elastic constraint penalty
D =

∫
Ω
(∇ · U)2. (f) Same as (e) with Sobolev S2 constraint only, evaluated warping field (black-grid) is close to ground-truth (gray).
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[9] J. M. Melenk and I. Babuška, “The Partition of Unity Finite
Element Method: Basic Theory and Applications”, Com-
puter Methods in Applied Mechanical Engineering, vol. 139,
no. 1-4, pp. 289-314, 1996.

[10] D. Suter, “Motion Estimation and Vector Splines”, in Pro-
ceedings of the CVPR Conference, Seattle USA, pp. 939-
942, 1994.

[11] T. K. Delillo, “The accuracy of Numerical Conformal Map-
ping Methods: A Survey of Examples and Results”, SIAM
Journal on Numerical Analysis, vol. 31, no. 3, pp. 788-812,
1994.

[12] E. W. Weisstein, “Cassini Ovals”, A Wolfram Web Resource,
http://mathworld.wolfram.com/CassiniOvals.html.


