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Phenotypic diversity and population growth in fluctuating

environment: a MBPRE approach.

Clément Dombry∗, Christian Mazza† and Vincent Bansaye‡

December 7, 2009

Abstract

Organisms adapt to fluctuating environments by regulating their dynamics, and by adjusting
their phenotypes to environmental changes. We model population growth using multitype branching
processes in random environments, where the offspring distribution of some organism having trait
t ∈ T in environment e ∈ E is given by some (fixed) distribution Υt,e on N. Then, the phenotypes
are attributed using a distribution (strategy) πt,e on the trait space T . We look for the optimal
strategy πt,e, t ∈ T , e ∈ E maximizing the net growth rate or Lyapounov exponent, and characterize
the set of optimal strategies. This is considered for various models of interest in biology: hereditary
versus non-hereditary strategies and strategies involving or not involving a sensing mechanism. Our
main results are obtained in the setting of non-hereditary strategies: thanks to a reduction to simple
branching processes in random environment, we derive an exact expression for the net growth rate
and a characterisation of optimal strategies. We also focus on typical genealogies, that is, we consider
the problem of finding the typical lineage of a randomly chosen organism.

Key words: branching process in random environment, phenotypic diversity, Lyapounov exponent,
optimal strategy, exctinction, typical genealogy.
AMS Subject classification. Primary: 60J80 Secondary: 60K37, 62D25.

1 Introduction

Organisms adapt to fluctuating environments by regulating their intrinsic dynamics, and adjust their
phenotypes or traits to the random environment. Observations reveal that most cell populations are
heterogeneous, that is, are composed of various phenotypes. In [9], [10] and [13] basic models are
provided to explain this heterogeneity: Time is continuous, and the related stochastic processes can be
seen as birth processes for the different phenotypes with migration processes between them in fluctuating
environments. We first present the models considered in [10], and then turn to our new setting. In [10],
the trait space T is finite, and the environment space E is such that E = T , the idea being that trait i has

the fastest growth rate in environment e = i. The migration rate matrix H(k) = (H
(k)
ij )i,j∈T gives the

switching rates H
(k)
ij from phenotype j to i in environment e = k. The changing environment is modeled

as an alternating renewal process. The migration rates H
(k)
ij defines possible strategies to overcome the

uncertain future. [10] considered two basic strategies: stochastic switching and responsive switching. In
the first case, the organisms decide to switch the phenotypes independently of the running environment,

they do not use sensors, so that the migration rates can be written as H
(k)
ij = Hij . Responsive switching

assumes strong use of sensors, at a certain cost, and the extreme way of responding to environmental
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changes is obtained by assuming migration rates of the form H
(k)
kj = Hm when j 6= k, and H

(k)
ij = 0 when

i 6= k and j 6= i. In this last situation, organisms opt always for the most favourable phenotype in the
running environment, that is for the trait having the largest growth rate. Denoting by Xi(t) the mean
number of organisms having phenotype i at time t, the average X(t) is solution of the random differential
equation dX(t)/dt = AE(t)X(t), where AE(t) denotes the rate matrix composed of the various growth
and migration rates in environment E(t) at time t. The authors then estimate the related Lyapounov
exponent ln(N(t))/t as t → ∞, where N(t) =

∑
i∈E Xi(t) is the average total population size. The

computations are performed under the assumption that the environment changes slowly, so that, the
process has the time to attain an equilibrium during each phase, see [10] for more details. A similar
model was also considered by [13] for two phenotypes and two environments. The model was studied using
Monte-Carlo simulations, which indicate that responsive switching is sometimes not the optimal strategy.
The average proportion of cells having the fastest growth rate is maximized for strategies using a sensing
mechanism allowing migration to the unfavourable state, leading to heterogeneous populations, providing
in this way a rationale for population diversification. These models were then studied analytically in [7].
Modifications of these models were also considered more recently in [14] where catastrophic events are
modeled.

In the present work, we treat similar problems using discrete time multitype branching processes in
random environments, denoted by MBPRE in what follows, which offer alternatives to the above birth
with migration processes. The advantage of multitype branching processes is that one can separate more
clearly the birth and migration phases. We can for example treat in this way populations composed of
organisms where birth occurs in a very precise period. When this is not the case, discrete time modeling
still provides relevant informations for population growth. We will also consider the problem of finding
optimal strategies to maximize the random Lyapounov exponent. Our mathematical approach also
permits to treat situations where the trait and environment spaces T and E are continuous: all of our
results are valid in very general situations, like the models considered in [9]. To be useful for scientists
not familiar with too advanced mathematics, we first illustrate some results and provide examples when
both T and E are finite.

1.1 Results

Assume that T = {t1, · · · , tq} and that E = {e1, · · · , ep}. The process of interest (Zn)n≥0 is written
as a random vector Zn = (Zt

n)t∈T , where Zt
n denotes the number of organisms having trait t ∈ T at

generation n. The transition between generations n and n+1 is modeled as a two step procedure. First,
for given t ∈ T , each of the i = 1, · · · , Zt

n organisms having trait t gives birth to a random number
of descendants given by a random variable ξt,ωn

i,n , where the index ωn ∈ E models the environmental

state at generation n. In the second phase, each of the j = 1, · · · , ξt,ωn

i,n new individuals is assigned to a

random trait τ t,ωn

i,j,n ∈ T . As usual in such processes, we assume that all of these random variables are

independent, with i.i.d. ξt,ωn

i,n and i.i.d. τ t,ωn

i,j,n . We further assume that the environmental process (ωn)n≥0

is fixed, and is supposed to be the realization of a stationary 1 and ergodic process 2 taking values in
E . Let Υt,e and πt,e be distributions of the ξt,e

i,n and τ t,e
i,j,n for a trait t ∈ T in environment e ∈ E . We

will often use the first moment mt,e of Υt,e, giving the average number of descendants for an organism
having trait t in environment e. Optimal strategies will be considered for fixed distributions Υt,e, that
is, we will maximize the population growth rate as a function of the distributions πt,e. Sections 3, 4 and
5 consider extinction and optimal growth questions. Section 6 deals with typical genealogies, that is, we
consider the question of finding the typical lineage of an individual chosen randomly at generation n.
We also illustrate these notions both for finite spaces T and E and for continuous ones.

As stated in the previous Section, the authors in [10] distinguish between stochastic and responsive
switching. In the first case, the distributions πt,e on T depends on t but not on e, so that we can
write πt,e ≡ πt. Concerning the second family of strategies, πt,e depends on e but not on t. We will
also distinguish between several natural situations, namely between strategies involving or not a sensing
mechanism, and strategies πt,e depending or not depending on t, called hereditary and non-hereditary
in what follows. We illustrate some results when both T and E are finite, and for

1i.e. for all i ∈ N, (w0, w1, ...) is distributed as (wi, wi+1, ...)
2i.e. for all bounded Borel function f , P(f(w0, w1, ...) = f(w1, w2, ...)) = 1 implies f(w0, w1, ...) is constant.
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1. non-hereditary strategies with no sensing mechanism, where πt,e ≡ p, for some probability measure
on T ,

2. and for non-hereditary strategies using a sensing mechanism, of the form πt,e = pe, where p̄ =
(pe)e∈E is a family of probability measures on T . This second family contains responsive switching
strategies.

We will describe the optimal set for non-hereditary strategies, that is, we will characterize the set of
distributions (πt,e) yielding the fastest growth rate. We assume that the random environment (ωn)n≥0

is a stationary process taking values in E .

1.1.1 The non-hereditary with no sensing mechanism case

We first prove in Proposition 1 that

lim
n→∞

1

n
log Eω[|Zn|] = γ(p),

where the Lyapounov exponent γ(p) is given by

γ(p) = E[log mp,ω0
],

and mp,e is the first moment or average value of the mean distribution

Υp,e =

∫

T

Υt,ep(dt).

Let P(T ) be the set of probability measures on T and γ∗ = sup{γ(p); p ∈ P(T )} be the top Lyapounov
exponent. We denote by P∗ the subset of P(T ) containing the distributions p maximizing the Lyapounov
exponent, i.e. γ∗ = γ(p). We show in Proposition 3 that p ∈ P∗ if and only if

∫

E

mt,e

mp,e
ν1(de) ≤ 1, ∀t ∈ T .

where ν1 is the law of the stationary random environment. A strategy is called pure if it is concentrated
on a single t ∈ T , that is, takes the form p = δt. It then follows that a pure strategy p = δt is optimal if
and only if ∫

E

mt′,e

mt,e
ν1(de) ≤ 1, ∀t′ ∈ T .

When T = {t1, · · · , tq} and E = {e1, · · · , ep}, with q ≥ p, we also prove that there is a unique maximizer
in P∗ which is supported by a set containing at most p elements.

As a further illustration, we consider the simplest case when p = q = 2.

1. p∗ = δt2 and γ∗ = ν1(e1) log(mt2,e1
) + ν1(e2) log(mt2,e2

) when
ν1(e1)mt1,e1

mt2,e1

+
ν1(e2)mt1,e2

mt2,e2

≤ 1,

2. p∗ = δt1 and γ∗ = ν1(e1) log(mt1,e1
) + ν1(e2) log(mt1,e2

) when
ν1(e1)mt2,e1

mt1,e1

+
ν1(e2)mt2,e2

mt1,e2

≤ 1.

3. Otherwise p∗ is given by

p∗ =

(
ν1(e1)mt2,e2

mt2,e2
− mt1,e2

+
ν1(e2)mt2,e1

mt2,e1
− mt1,e1

)
δt1 +

(
ν1(e1)mt1,e2

mt1,e2
− mt2,e2

+
ν1(e2)mt1,e1

mt1,e1
− mt2,e1

)
δt2

with

γ∗ = log |mt1,e1
mt2,e2

− mt1,e2
mt2,e1

| − ν1(e1) log |mt2,e2
− mt1,e2

| − ν1(e2) log |mt2,e1
− mt1,e1

|
+ν1(e1) log(ν1(e1)) + ν1(e2) log(ν1(e2)).
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As a numerical example, consider the case ν1(e1) = ν1(e2) = 1/2 and

mt1,e1
= 1.5, mt2,e1

= 0.6, mt1,e2
= 0.6, mt2,e2

= 1.5.

The two environments are equiprobable, with type t1 better fitted to environment e1, and a symmetry
in the model. In this case, the Lyapounov exponent for the population without mutation is given by

γ(δt1) = γ(δt2) = 0.5(log(1.5) + log(0.6)) ≈ −0.053.

This implies that both types are subcritical and that the corresponding homogeneous populations extinct
almost surely. The optimal strategy is then p∗ = (0.5, 0.5) and the corresponding Lyapounov exponent
is

γ∗ = log(0.5 ∗ (1.5 + 0.6)) ≈ 0.049.

With this optimal strategy, γ∗ > 0 and the population explodes with positive probability almost surely.
This is one of the simplest example when polymorphism is a necessary condition for survival (see section
3.3).

1.1.2 The non-hereditary with sensing mechanism case

Assume that πt,e = pe for some strategy p̄ = (pe)e∈E . It turns out that the relevant piece of environment
is given by the pair process ω(2) = ((ωn−1, ωn))n≥1 ∈ E2, of stationary measure ν2(de1, de2). Consider
the average distribution

Υp̄,(e1,e2) =

∫

T

Υt,e2
pe1

(dt),

of expected value

mpe1
,e2

=

∫

T

mt,e2
pe1

(dt).

When the following integral exists

γ(p̄) =

∫

E2

log(mpe1
,e2

)ν2(de1, de2),

we prove in Proposition 7 that

lim
n→∞

n−1 log Eω[|Zn|] = γ(p̄) almost surely.

Let γ∗∗ be the optimal growth rate, that is, the supremum of γ(p̄) among all possible families p̄, and
denote by P∗∗ the related set of optimal strategies. Let νe1

(de2) be the conditional distribution of ω2

given that ω1 = e1. We prove in Proposition 9 that p̄ is optimal if and only if
∫

E

mt,e2

mpe1
, e2

νe1
(de2) ≤ 1, ∀t ∈ T ,

ν1(de1) a.s. An interesting consequence is that there is no gain to be expected using a sensing mechanism
when the random environment has some independence property: If ω1 and ω2 are independent, then
γ∗ = γ∗∗. The information one can gather on the present environmental state using sensors does not
help when dealing with future events.

Next, we develop further the simplest case when E = {e1, e2} and T = {t1, t2}. We suppose that the
distribution for the environment ν is a Markov chain with transitions

ν(ωn+1 = e1|ωn = e1) = 1 − q1 ν(ωn+1 = e2|ωn = e1) = q1

ν(ωn+1 = e1|ωn = e2) = q2 ν(ωn+1 = e2|ωn = e2) = 1 − q2

where qi ∈ (0, 1) denotes the probability that the environment switches in the next step when it is
currently in state ei. The sequence ω is then ergodic and stationary distribution

ν1 =
q2

q1 + q2
δe1

+
q1

q1 + q2
δe2

.
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We suppose furthermore that the Markov chain is started from the steady state, i.e. ω0 has distribution
ν1, so that the sequence ω is stationary. Then, the conditional distributions of ω1 given ω0 is precisely
given by the transition of the Markov chain. The optimal strategy with sensing is then such that

1. p∗∗e1
= δt2 when

(1−q1)mt1,e1

mt2,e1

+
q1mt1,e2

mt2,e2

≤ 1,

2. p∗∗e1
= δt1 when

(1−q1)mt2,e1

mt1,e1

+
q1mt2,e2

mt1,e2

≤ 1,

3. and otherwise,

p∗∗e1
=

(
(1 − q1)mt2,e2

mt2,e2
− mt1,e2

+
q1mt2,e1

mt2,e1
− mt1,e1

)
δt1 +

(
(1 − q1)mt1,e2

mt1,e2
− mt2,e2

+
q1mt1,e1

mt1,e1
− mt2,e1

)
δt2 ,

with similar equations for p∗∗e2
. Rather than giving a general formula, we consider the numerical case

when q1 = q2 = q so that the stationary distribution is given by ν1(e1) = ν1(e2) = 1/2 and we use the
same values for the number of offspring as in Section 1.1.1, that is we set

mt1,e1
= 1.5, mt2,e1

= 0.6, mt1,e2
= 0.6, mt2,e2

= 1.5.

Using the above results, we obtain that the optimal strategy p∗∗ is given by:

p∗∗e1
= δt1 and p∗∗e2

= δt2 when q ≤ 2

7

p∗∗e1
= δt2 and p∗∗e2

= δt1 when q ≥ 5

7

p∗∗e1
=

5 − 7q

3
δt1 +

7q − 2

3
δt2 and p∗∗e2

=
7q − 2

3
δt1 +

5 − 7q

3
δt2 if

2

7
≤ q ≤ 5

7
.

We see three different environmental regimes, corresponding to low, intermediate and high frequency
switching rates. When the environment fluctuates slowly, with q ≤ 2

7 , the optimal strategy is pure and
corresponds to what [10] called responsive switching. In the intermediate regime, the optimal strategy
is a mixture of pure strategies. In the high frequency regime where environment fluctuates quickly
(q ≥ 5/7), the optimal strategy is a pure one, where organisms being in the favorable state are pushed
to the unfavorable state.

We deduce the optimal growth rate

γ∗∗ =






log 3
2 − q log 5

2 if q ≤ 2
7

q log q + (1 − q) log(1 − q) + log 21
10 if 2

7 ≤ q ≤ 5
7

log 3
5 − q log 5

2 if q ≥ 5
7

.

When q = 1/2, the sequence ω is an independent sequence, so that γ∗∗(1/2) = γ∗(1/2) ≈ 0.049, the
optimal strategy is a strategy without sensing. When q ≈ 1 (resp. q ≈ 0), the environment in the next
step is very likely to stay the same (resp. to switch), so that we can determine with high probability
which type will be fitted in the next generation. We observe indeed that

lim
q→0

γ∗∗(q) = lim
q→1

γ∗∗(q) = log
3

2
≈ 0.176.

2 Definition of the Multitype Branching Process in Random

Environment and of optimal strategies

First, we recall that ωn represents the environment at time n, Zn the trait-structured population, Zt
n the

number of individuals with trait t and |Zn| the total number of individuals at time n. Moreover ξt,ωn

i,n

gives the size of the offspring of the i-th individual with trait t at time n in environment ωn, and τ t,ωn

i,j,n

gives the trait of the j-th descendant of this individual.
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Let us give now the formal definition of the process.
Let (Ω,F ,P) be a probability space and T be a metric space and E be a Polish space.
For each pair (t, e) ∈ T ×E , let Υt,e and πt,e be distributions on N and T respectively and suppose that
Υt,e has a finite first moment denoted by mt,e.

Let ω = (ωn)n≥0 be a E-valued stationary ergodic random process with distribution ν on EN.

Denoting by N
T

the set of almost null N-valued functions on T and (1t)t∈T the canonical basis, the

stochastic process Zn = (Zt
n : t ∈ T ) with values in N

T
can be defined as:






Z0 = N0,

Zn+1 =
∑

t∈T

Zt
n∑

i=1

ξt,ωn
i,n∑

j=1

1τ t,ωn
i,j,n

, n ≥ 0,
(1)

where

• N0 is a N
T

-valued random variable giving the population at time 0,

• {ξi,n; i ≥ 1, n ≥ 0} and {τi,j,n; i ≥ 1, j ≥ 1, n ≥ 0} are infinite arrays of iid random variables with

values in N
T ×E

and T T ×E respectively and common distribution

Υ = ⊗
(t,e)∈T ×E

Υt,e, π = ⊗
(t,e)∈T ×E

πt,e

respectively,

• N0, {ξi,n; i ≥ 1, n ≥ 0}, {τi,j,n; i ≥ 1, j ≥ 1, n ≥ 0} and ω = (ωn)n≥0 are independent.

Thus Υ corresponds to the offspring distribution and π to the distribution of trait of the offspring.
Both distributions a priori depend on the trait of the parent and on the environment.
We put |Zn| =

∑
t∈T Zt

n, n ≥ 0 (an empty sum is equal to zero).

Our attention will be focused on the role of the trait distribution π and how it affects the evolution
of the population. The offspring distribution Υ will hence be considered as given and fixed, whereas
the trait distribution π will be considered as a parameter. The intuitive idea is that i) the local fitness
of an individual is determined by its trait and its environment and corresponds to its mean number
of descendants, ii) the intergenerational variability of the traits has to be tuned so as to maximize the
global fitness of the whole population.

The trait distribution π can be seen as the strategy used by the population to maximize its growth.
We measure the performance of the strategy π by the long term growth of the corresponding population
(Zn)n≥0: let

γ(π) = lim
n→∞

n−1 log Eω,N0
[|Zn|] .

Here Eω,N0
denotes conditional expectation given the environment and the initial population. As will

be precised in the sequel, fairly general assumptions ensures that this limit exists and does not depend
on the environment and initial population. Note that it is important here to consider the quenched
model (i.e. conditionally on the environment) and note the averaged one (i.e. averaged on all possible
environments): the criteria γ(π) measures if the population behaves well in a typical environment. An
averaged criteria would be biased by unlikely environments where the population grows unusually faster.

Several mechanisms can induce the intergenerational variability of the traits and leads to different
assumption on the trait distribution π.

3 The non-hereditary case with no sensing mechanism

According to the approach set out in the previous paragraph, we begin by studying the simplest case
of non-hereditary traits in absence of sensing mechanism, meaning that the trait distribution of the

6



offspring depends neither on the trait of the parent nor on the environment. We thus suppose that Zn

evolves according to model (1) with πt,e ≡ p for some distribution p on T , and let π = π(p) be the
corresponding product trait distribution.

3.1 Reduction to a simple BPRE

In some sense, the non-hereditary assumption makes the structure of the population trivial: the trait
distribution is given by p whatever the past evolution of the process was. In mathematical terms, we
take advantage of some stochastic independence:

Lemma 1. For any n ≥ 1, the population structure is conditionally independent of the past population
process given the size of the population, i.e.

Zn

∣∣∣|Zn|
∐

(Z0, · · · , Zn−1)
∣∣∣|Zn|.

Proof. It is easily seen from the assumptions on the model (1) and from the non-hereditary assump-
tion π = π(p) that the distribution of Zn given (Z0, · · ·Zn−1) and |Zn| is equal to the distribution
of
∑

1≤i≤|Zn| 1τi
with τi an iid sequence with distribution p. This distribution does not depend on

(Z0, · · · , Zn−1), this proves the conditional independence. �

It is worth noting that the result also holds for the quenched model (i.e. conditionally on the
environment ω). The Lemma implies that the distribution of the population process (Zn)n≥1 is easily
recovered from the size process (|Zn|)n≥1. This latter process turns out to be a simple BPRE and this
allows us to compute the performance γ(p) of the strategy p.

Proposition 1. The size process (|Zn|)n≥1 is a simple BPRE with offspring distribution in environment
e given by

Υp,e =

∫

T

Υt,ep(dt), e ∈ E .

Conditionaly to ω, the expected population size at time n is

Eω[|Zn|] = Eω0
[|Z1|]

n−1∏

k=1

mp,ωk

with mp,e the first moment of Υp,e. If γ(p) = E [log mp,ω0
] exists, then

lim
n→∞

n−1 log Eω[|Zn|] = γ(p) almost surely.

Proof. According to Lemma 1, given (|Z1|, · · · , |Zn|), the population Zn has the same distribution as∑
1≤i≤|Zn| 1τi

with τi an iid sequence with distribution p. Intuitively, the i-th individual has type τi

chosen randomly on T with distribution p. The size of the next generation |Zn+1| is then
∑

1≤i≤|Zn| ξ
τi,ωn

n,i

where ξτi,ωn

n,i is the offspring of the i-th individual of type τi in environment en. From this two step
procedure i) random choice of the type t, ii) reproduction with random offspring in environment e,
we obtain the effective offspring distribution Υp,e in environment e: it is the mixture of the offspring
distributions Υt,e, with mixing distribution p. This proves the branching property for (|Zn|)n≥1. The
other properties follow: the branching property implies the recursive formula

Eω[|Zn+1|] = E(ω0,··· ,ωn−1)[|Zn|]mp,ωn

and we get the formula for Eω[|Zn|] follows. Taking the logarithm, we have

n−1 log Eω [|Zn|] = n−1 log Eω0
[|Z1|] + n−1

n−1∑

k=1

log mp,ωk

which converges to γ(p) almost surely according to the ergodic theorem and the integrability assump-
tions. �
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For the sake of simplicity, we suppose in what follows that the initial population consists in a single
individual with random trait with distribution p. The whole process (|Zn|)n≥0 is then a simple BPRE
with offspring distribution Υp and initial condition |Zn| = 1. Simple branching processes in random
environment have been introduced by Smith-Wilkinson [11] and Athreya-Karlin [2, 3] and have been
studied rather intensively since then [12, 8, 1]. We recall here some important results concerning the
asymptotic behaviour of such processes (see e.g. the classification Theorem in [12]): it states conditions
under which either the population becomes extinct or explodes at geometric rate.

To avoid the trivial case of a constant population, we suppose that Υp,ω0
is not almost surely equal

to δ1. We suppose also that γ(p) = E [log mp,ω0
] exists and is finite. We say that extinction occurs if

Zn → 0 as n → ∞ (in which case the sequence vanishes eventually), and that the population survives
otherwise. Let q(ω) = Pω [Zn → 0] be the probability of extinction given the environment.

Theorem 1. (classification theorem)

1. In both subcritical case γ(p) < 0 and critical case γ(p) = 0, the population becomes extinct almost
surely, i.e. P [q(ω) = 1] = 1

2. In the supercritical case γ(p) > 0, if furthermore E [− log (1 − Υp,ω0
({0}))] < ∞, then the popula-

tion can survive with positive probability in almost every environment, i.e. P [q(ω) < 1] = 1.
Furthermore, conditionally on nonextinction, the population explodes at a geometric rate:

lim
n→∞

n−1 log Zn = γ(p) almost surely on {∀n ≥ 0, Zn > 0}.

3.2 Optimal strategies

We now focus on optimal strategies: i.e. what choice of the distribution p allows for the fastest growth
of the population ? As discussed in Section 2, the performance of the strategy π = π(p) is measured
by the Lyapounov exponent γ(p). In the non-hereditary case with no sensing, an explicit formula for
γ(p) has been derived in Proposition 1. The question naturally arise to determine the supremum of
γ(p) for p varying in P(T ) the space of distribution on T and the set of optimal strategies p∗ in the
case when this supremum is reached. Let γ∗ = sup{γ(p); p ∈ P(T )} be the optimal growth rate and
P∗ = {p∗ ∈ P(T ); γ(p∗) = γ∗} the set of optimal strategies. A strategy p is called pure if p = δt for
some t ∈ T (i.e. all individual in the population have the same trait t) or mixed otherwise. One ask
further whether optimal strategies are pure or mixed.

We now precise conditions under which existence of optimal strategies are ensured. We suppose that:

(C1) there is some M > 0 such that mt,e ≤ M for all (t, e) ∈ T × E ,

(C2) for all e ∈ E , the application t 7→ mt,e is continuous on T ,

(C3) for all e ∈ E and ε > 0, there is a compact set K ⊂ T such that mt,e ≤ ε for all t ∈ T \ K

Condition (C1) is rather relevant from the biological point of view since an individual could hardly have
arbitrary high number of offsprings in a fixed amount of time. Conditions (C2) and (C3) are related with
the topology of T : individuals with close traits are supposed to have approximately the same behaviour,
and traits close to infinity are supposed to have a poor fitness.

Proposition 2. Under conditions (C1) − (C3), optimal strategies exists and form a closed convex set
i.e. the set P∗ is nonempty closed and convex in P(T ) endowed with the topology of weak convergence.
If furthermore the family M = {e 7→ mt,e; t ∈ T } ⊂ L∞(E , ν1) is linearly independent, then the optimal
strategy is unique.

Proof. First, we prove that the map γ : P(T ) → R defined by

γ(p) =

∫

E

log (mp,e) ν1(de) with mp,e =

∫

T

mt,ep(dt) (2)

is concave and upper semi-continuous on P(T ) with respect to the topology of weak convergence. Let
pn converging weakly to p in P(T ). Using conditions (C1) and (C2), we see that mpn,e → mp,e for all
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e ∈ E . Define fn(e) = log(M)− log (mpn,e) be non-negative measurable functions on E and apply Fatou’s
Lemma: we get ∫

E

lim inf fn(e)ν1(de) ≤ lim inf

∫

E

fn(e)ν1(de).

Equivalently,

lim sup

∫

E

log (mpn,e) ν1(de) ≤
∫

E

log (mp,e) ν1(de).

Hence lim sup γ(pn) ≤ γ(p) and this states the upper semicontinuity of the application γ. The concavity
of the application γ on P(T ) is a direct consequence from the concavity of the logarithm and the linearity
of integration: first for p1, p2 ∈ P(T ), λ ∈ [0, 1] and e ∈ E , we have

log
(
mλp1+(1−λ)p2,e

)
= log (λmp1,e + (1 − λ)mp2,e) ≥ λ log (mp1,e) + (1 − λ) log (mp2,e) .

This implies γ(λp1 + (1 − λ)p2) ≥ λγ(p1) + (1 − λ)γ(p2).
We then prove that P∗ is nonempty closed and convex. The closeness and convexity properties are

straightforward since P∗ can be seen as the level set {p ∈ P(T ); γ(p) ≥ p∗} of the concave uppersemi-
continuous application γ. It remains to check non-emptiness and we use compactness arguments. In the
case when T is a compact space, then P(T ) is also compact with respect to the weak topology and the
upper semicontinuous map γ reaches its maximum on P(T ) so that P∗ is non-empty. In the case when

T is non-compact, we consider its compactification T̂ = T ∪ {∞}. We extend the definition of m by
m∞,e = 0 for all e ∈ E . Condition (C3) ensures that this extension is continuous on T̂ . Then the map

γ extends on the compact space P(T̂ ), is uppersemicontinuous and hence reaches its maximum at some
point p∗ ∈ P(T̂ ). It remains to check that p∗({∞}) = 0 so that p∗ can be seen as an element of P(T ).
It is straightforward since p∗({∞}) > 0 would imply γ(p∗) = −∞.

At last, we prove the uniqueness in the case when the family M is linearly independent. Let p∗1 and
p∗2 be two points where γ reaches its maximum. Using the strict concavity of the logarithm, we see that
necessarily mp∗

1
,e = mp∗

2
,e ν1(de)-almost everywhere. Using the linear independence, this in turn implies

p∗1 = p∗2. �

The following characterization of optimal strategies can be useful:

Proposition 3. A strategy p is optimal if and only if
∫

E

mt,e

mp,e
ν1(de) ≤ 1, ∀t ∈ T .

Proof. The strategy p is optimal if and only if

γ((1 − ε)p + εp′) − γ(p) ≤ 0 for all p′ and 0 < ε < 1.

Using concavity and differentiability, this is equivalent to

d

dε
[γ(p + ε(p′ − p)]|ε=0 ≤ 0,

which can be rewritten as

d

dε

[∫

E

log (mp,e + ε(mp′,e − mp,e)) ν1(de)

]

|ε=0

=

∫

E

mp′,e − mp,e

mp,e
ν1(de) ≤ 0.

Thus a necessary and sufficient condition is
∫

E

mp′,e

mp,e
ν1(de) ≤ 1 , ∀p ∈ P(T ).

It is easily seen that it is equivalent to test the condition for p′ = δt, t ∈ T and this proves the announced
result. �

As a direct application of Proposition 3, we can answer the question wether there is a pure optimal
strategy:
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Corollary 1. The pure strategy p = δt is optimal if and only if

∫

E

mt′ ,e

mt,e
ν1(de) ≤ 1 , ∀t

′ ∈ T .

This gives us a simple criterion for the existence of optimal pure strategies.

3.3 Extinction

According to Theorem 1, on the one hand the population becomes extinct in the case when γ(p) ≤ 0
and on the other hand (under additional technical conditions) the population survives and explodes with
positive probability when γ(p) > 0. For the population’s survival, strategies p with γ(p) > 0 are of
highest importance. This leads to the definition of the set S of strategies that allow the population to
survive:

S = {p ∈ P(T ); γ(p) > 0}.
The following property holds:

Proposition 4. If γ∗ ≤ 0, the set S is empty. If γ∗ > 0, S is a nonempty convex set containing P∗.

Proof. From the definition of γ∗, γ(p) ≤ γ∗ for all strategy p. Hence S is empty if γ∗ ≤ 0. If γ∗ > 0,
then every optimal strategy p∗ ∈ P∗ satisfies γ(p∗) = γ∗ > 0 and hence P∗ ⊂ S. The map p 7→ γ(p) is
concave function so that the level set S = {p ∈ P(T ); γ(p) > 0} is convex. �

In some cases, a striking phenomenon may happen: no pure strategy can allow for survival, i.e. every
homogeneous population with a single trait t suffers from extinction; but some mixed strategies may
prevent from extinction, i.e. some polymorphic populations may survive forever. In this case, we should
say that polymorphism is a necessary condition for survival. This phenomenon occurs when γ(δt) ≤ 0
for all t ∈ T whereas γ∗ > 0.

The intuitive idea is the following: extinction occurs when the environment is bad for almost all the
individuals in the population and hence a diversification of the traits in the population should imply a
smaller number of environments that are bad for almost all individuals. This can be seen as a consequence
of the concavity property: suppose that for all trait t, γ(δt) ≡ γ, i.e. homogeneous population have the
same growth rate no matter the trait t. Then for any strategy p, γ(p) ≥

∫
T γ(t)p(dt) = γ, i.e. any

polymorphic population has a better growth rate than any homogeneous population. See the examples
below for further illustration of this phenomenon.

3.4 Example: finite-dimensional case

We consider the case when the vectorial space spanned by the family M = {e 7→ mt,e, t ∈ T } in L∞(E , ν1)
has finite dimension denoted by d. This occurs in particular as soon as:
- either the environment space is finite: E = {e1, · · · , ep} and ν1 is a discrete measure such that ν1(ei) > 0
for all i ∈ {1, · · · , p}. In this case L∞(E , ν1) is of dimension p and d ≤ p;
- or the trait is finite: T = {t1, · · · , tq}. Then d ≤ q and conditions (C1) − (C3) are automatically
satisfied.
For convenience, we require furthermore that the following conditions holds:

(H) for any pairwise distinct t1, · · · , td ∈ T , the family of functions {e 7→ mti,e; 1 ≤ i ≤ d} is linearly
independent in L∞(E , ν1).

This property will be convenient because it ensures the uniqueness of the optimal strategy. More precisely,

Proposition 5. Suppose that spanM has dimension d and that conditions (C1) − (C3) and (H) hold.
Then:

• there exists a unique optimal strategy p∗ ∈ P(T ),

• p∗ is a discrete probability on T supported by at most d different types.
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Proof. Existence of an optimal strategy is a consequence of Proposition 2. However it is worth noting that
in this finite-dimensional case, it is a consequence of standard analysis. We denote by Conv(M) the closed
convex hull of M in L∞(E , ν1) which can be seen as a closed convex set in a d-dimensional vector space.
Note that Conv(M) is equal to the set of functions {mp : e 7→ mp,e; p ∈ P(T )} where mp,e is defined in
equation (2). Introduce the application Θ : Conv(M) → [−∞,∞) defined by Θ(m) =

∫
E log(m(e))ν1(de)

(with the convention that log(u) = −∞ if u ≤ 0). With these notations, we easily see that γ(p) = Θ(mp)
and maximizing γ on P(T ) is equivalent to maximizing Θ on Conv(M). Next we observe that the func-
tion Θ is uppersemicontinuous and strictly concave, so that it reaches its maximum at a unique point m∗

on the compact set conv(M). Furthermore the gradient of Θ never vanishes so that the extremum must
be reached on a boundary point of Conv(M) and m∗ ∈ ∂Conv(M). The boundary of Conv(M) consists
in extremal types (type t such that mt : e 7→ mt,e is an extremal point of the convex set Conv(M)) and
of k-dimensional faces determined by the convex hull of k + 1 extremal types, with 0 ≤ k ≤ n. If m∗

belongs to such a k-dimensional face, then m∗ = mp∗ where p∗ is a discrete probability on T supported
by the k + 1 corresponding extremal types, with k + 1 ≤ d. The uniqueness property comes then from
assumption (H). Indeed, under this assumption, a k dimensional face determined by k+1 extremal types
does not contain any other point of M so that the decomposition in barycentric coordinates are unique. �

It is worth noting that the application Θ has always a unique minimizer m∗ in the above proof. Condition
(H) ensures that there is a unique strategy p∗ such that mp∗ = m∗. In absence of this condition, there
might be several mixing distribution p such that mp = m∗ and then several optimal strategies.

An appealing particular case is the case when both E = {e1, · · · , ep} and T = {t1, · · · , tq} are finite
with q ≥ p. In this case L∞(E , ν1) is of dimension d = p, and a generic configuration will always satisfy
assumption (H) (in the sense that an exact linear relation between the types is very unlikely from a
biological point of view). Then, according to Proposition 5, there exists a unique optimal strategy mix-
ing at most p different types. This shows that the number of types involved in the optimal strategy is
less than the number of different environments. This is reminiscent from a rule in ecology stating that
the number of species in an ecosystem is bounded above by the numbers of different niche in the sense
that two species cannot occupy the same niche for a long time (competitive exclusion principle). From
a practical point of view, in this finite settings, the optimal strategy can be computed using standard
numerical convex optimization (see [6] for instance). For more illustrations in this setting, see Section
1.1.1.

3.5 Example: Gaussian distributions

This example is due to Haccou and Iwasa [9]: the environment space is the set of real numbers E = R,
the environment ω is supposed to be a Gaussian stationary ergodic sequence with stationary distribution
ν1 = N (µ, σ2

2) the Gaussian distribution with mean µ ∈ R and variance σ2
2 > 0. The dynamic for the

environment is irrelevant in the no-sensing case. The trait space is the set of real numbers T = R and
the mean offspring number of an individual of trait t in environment e has the gaussian form

mt,e =
C√
2πσ2

1

exp

(
− (t − e)2

2σ2
1

)

for some parameters C > 0 and σ2
1 > 0. In environment e, individuals with trait value t = e are the

best fitted. Note that conditions (C1)− (C3) are fulfilled so that Proposition 2 holds: optimal strategies
exist. Furthermore, the family M = {e 7→ mt,e; t ∈ T } is linearly independent so that unicity hold:
there is a unique optimal strategy p∗ depending a priori on µ, σ1, σ2 and C.

First we easily compute the fitness of a pure strategy

γ(δt) =

∫

E

log(mt,e)ν1(de) = log C − 1

2
log(2πσ2

1) −
(µ − t)2 + σ2

2

2σ2
1

and the optimal pure strategy is equal to δµ. Then according to Corollary 1, we test if this pure strategy
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is optimal in the set of all mixed strategies. For this we compute

∫

E

mt,e

mµ,e
ν1(de) =

∫

E

exp

(
µ2 − t2 + 2e(t − µ)

2σ2
1

)
ν1(de) = exp

(
(t − µ)2(σ2

2 − σ2
1)

2σ4
1

)

and check that it is less than one when σ2 ≤ σ1. Hence if the fluctuations of the environment are small
(σ2 ≤ σ1), then the pure strategy δµ is optimal.

Gaussian strategies p = N (µp, σ
2
p) yield easy computations: recalling that a Gaussian mixture of

Gaussian distributions is a again Gaussian, we compute

mp,e =

∫

T

mt,ep(dt) =
C√

2π(σ2
1 + σ2

p)
exp

(
− (µp − e)2

2(σ2
1 + σ2

p)

)

and then

γ(p) =

∫

E

log(mt,e)ν1(de) = log C − 1

2
log(2π(σ2

1 + σ2
p)) − (µ − µp)

2 + σ2
2

2(σ2
1 + σ2

p)
.

We find that γ(p) is maximal (among Gaussian strategies) for µp = µ and

σ2
p =

{
0 if σ2

2 ≤ σ2
1

σ2
2 − σ2

1 if σ2
2 > σ2

1
.

We have seen that this is the optimal strategy in the case when σ2
2 ≤ σ2

1 . This is still the case when
σ2

2 > σ2
1 : we compute indeed for t ∈ T and p∗ = N (µ, σ2

2 − σ2
1)

∫

E

mt,e

mp∗,e
ν1(de) =

∫

E

1

C
mt,ede = 1

and this characterizes the optimal strategy according to Proposition 3.
We have proven so far that:

Proposition 6. the optimal strategy is

p∗ =

{
δµ if σ2

2 ≤ σ2
1

N (µ, σ2
2 − σ2

1) if σ2
2 ≥ σ2

1
, (3)

and the optimal growth rate

γ∗ =

{
log C − 1

2 log(2πσ2
1) − σ2

2

2σ2
1

if σ2
2 ≤ σ2

1

log C − 1
2 log(2πσ2

2) − 1
2 if σ2

2 ≥ σ2
1

. (4)

An interesting quantity is the relative gain of the best mixed strategy over the best pure strategy:
it gives an indication of the strength of the selection pressure on mixed as opposed to pure strategies.
From the above computation, denoting by χ = σ2

2/σ2
1 , we get

γ(p∗) − γ(δµ) =

{
0 if χ ≤ 1
1
2 (χ − 1 − log χ) if χ ≥ 1

This is the log-ratio of the expected long-term growth rates of individuals playing the different types of
strategies. It is non-decreasing with respect to χ: when the environmental variance σ2

2 is large compared
to σ2

1 , there is a strong advantage in playing a mixed strategy.
Next we illustrate the phenomenon discussed in section 3.3 when polymorphism is a necessary condi-

tion for survival. This happens when the optimal pure strategy δµ leads to almost sure extinction of the
population (γ(δµ) ≤ 0) whereas the optimal mixed strategy p∗ allows the population to survive (γ∗ > 0).
This phenomenon occurs when σ2 > σ1 for every C belonging to the following non empty interval:

1

2
log(2πσ2

2) +
1

2
< log C ≤ 1

2
log(2πσ2

1) +
σ2

2

2σ2
1

.
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4 The non-hereditary case with sensing mechanism

We now study the case of non-hereditary traits when some sensing-mechanism is available: we mean
that the trait distribution of the offspring does not depends on the trait of the parent, but does depend
on the environment because the individuals get some information about the environment they evolve in
and are able to adapt suitably the trait distribution of their offspring. We thus suppose in this section
that Zn evolves according to model (1) with πt,e ≡ pe for some family p̄ = (pe)e∈E of distributions on T
and let π = π(p̄) be the corresponding product distribution.

4.1 Reduction to a simple BPRE

In a similar way as in the non-hereditary case with no sensing, the non-hereditary assumption makes
the structure of the population very simple: the trait distribution at time n is given by the strategy the
parents followed at time n− 1 in environment ωn−1, that is pωn−1

. This is the expressed in the following
Lemma:

Lemma 2. For any n ≥ 1, the population structure is conditionally independent of the past population
process given the size of the population and the environment, i.e.

Zn

∣∣∣(|Zn|, ωn−1)
∐

(Z0, · · · , Zn−1)
∣∣∣(|Zn|, ωn−1).

Proof. It is easily seen from the assumptions on the model (1) and from the non-hereditary assumption
π = π(p̄) that the distribution of Zn given (Z0, · · ·Zn−1), |Zn| and ωn−1 is equal to the distribution

of
∑|Zn|

i=1 1τi
with τi an iid sequence with distribution pωn−1

. This distribution does not depend on
(Z0, · · · , Zn−1), this proves the conditional independence. �

The Lemma implies that given the environmental sequence ω, the distribution of the population
process (Zn)n≥1 is easily recovered from the size process (|Zn|)n≥1. Once again, this latter process turns
out to be a simple BPRE and this allows us to compute the performance γ(p̄) of the strategy p̄. Let
ω(2) = ((ωn−1, ωn))n≥1 denote the pair-environment with values in E2. It is also stationary and ergodic
and we denote by ν2 its stationary distribution, which is the distribution of the pair (ω1, ω2).

Proposition 7. The size process (|Zn|)n≥1 is a simple branching process in environment ω(2) with
offspring distribution

Υp̄,(e1,e2) =

∫

T

Υt,e2
pe1

(dt).

Conditionaly to ω, the expected population size at time n is

Eω[|Zn|] = Eω0
[|Z1|]

n−1∏

k=1

mpωk−1,ωk

with mpe1
,e2

=
∫
T mt,e2

pe1
(dt) the first moment of Υp̄,(e1,e2). Suppose the following integral exists,

γ(p̄) =

∫

E2

log
(
mpe1

,e2

)
ν2(de1, de2),

then
lim

n→∞
n−1 log Eω[|Zn|] = γ(p̄) almost surely.

Proof. According to Lemma 2, given (|Z1|, · · · , |Zn|) and ωn−1, the population Zn has the same distri-

bution as
∑|Zn|

i=1 1τi
with τi an iid sequence with distribution pωn−1

. Intuitively, the i-th individual has
type τi chosen randomly on T with distribution pωn−1

. The size of the next generation |Zn+1| is then
∑|Zn|

i=1 ξτi,ωn

n,i where ξτi,ωn

n,i is the offspring of the i-th individual of type τi in environment ωn. From this
two step procedure i) random choice of the traits t according to pωn−1

, ii) reproduction with random
offspring in environment ωn, we obtain the effective offspring distribution Υpωn−1

,ωn
in environment
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ω
(2)
n = (ωn−1, ωn): it is the mixture of the offspring distributions Υt,ωn

, with mixing distribution pωn−1
.

Other properties are proved as in Proposition 1. �

Note that the classification Theorem 1 applies in this case as well and gives criteria for extinction
or explosion of the population.

4.2 Optimal strategies

We now describe the set of optimal strategies when sensing is allowed. Is is also interesting to evaluate the
gain between optimal strategy with or without sensing mechanisms. Optimality when sensing mechanism
are allowed will be denoted with a double asterix whereas we keep a simple asterix for optimality without
sensing. Let γ∗∗ = sup{γ(p̄); p̄ ∈ P(T )E} be the optimal growth rate when sensing is allowed and P∗∗ =
{p̄ ∈ P(T )E ; γ(p̄) = γ∗∗} be the set of optimal strategies. Let νe1

(de2) be the conditional distribution
of ω2 given ω1 = e1, so that ν2(de1, de2) = ν1(de1)νe1

(de2). Note that conditional distributions are
well-defined since E is assumed to be a Polish space. From the previous section, the set of optimal
strategies without sensing is denoted by P∗. It depends implicitly on the environment distribution ν1

and we write P∗(ν1) to emphasize this dependence. Suppose assumptions of Proposition 2 hold. Then
optimal strategies with sensing are related with optimal strategies without sensing in the following way:

Proposition 8. A strategy p̄ is optimal if and only if

pe1
∈ P∗(νe1

) ν1(de1) almost everywhere.

If conditions (C1) − (C2) hold, then optimal strategies exists and form a closed convex set i.e. P∗∗ is
nonempty closed and convex.
If the family M = {e 7→ mt,e; t ∈ T } is linearly independent, there is a unique optimal strategy p̄∗∗.

Proof. Using the explicit formula for γ(p̄) given in Proposition 7 and conditional probabilities, we
compute

γ(p̄) =

∫

E2

log
(
mpe1

,e2

)
ν2(de1, de2)

=

∫

E

ν1(de1)

∫

E

log
(
mpe1

,e2

)
νe1

(de2)

=

∫

E

γ(pe1
, νe1

)ν1(de1)

whith γ(pe1
, νe1

) =
∫
E

log
(
mpe1

,e2

)
νe1

(de2) the growth rate associated with strategy pe1
in environment

νe1
. Hence γ(p̄) is optimal if we choose pe1

so that γ(pe1
, νe1

) is maximal, i.e. pe1
∈ P∗(νe1

) almost
surely. The properties of P∗∗ and the uniqueness follow from the similar results for P∗ (cf Proposition
2). �

Then, the characterization of optimal strategies in the no-sensing case given in Proposition 3 directly
extends to strategies with sensing as follows:

Proposition 9. A strategy with sensing p̄ ∈ P(T )E is optimal if and only if

∫

E

mt,e2

mpe1
,e2

νe1
(de2) ≤ 1, for all t ∈ T and ν1(de1) − almost everywhere.

Proof. The characterization follows directly from Proposition 3 and Proposition 8 together.

An interesting corollary states that no gain has to be expected from sensing mechanisms if the
environment has some independence property. More precisely,

Corollary 2. Suppose that ω1 and ω2 are independent (i.e. ν2 = ν1 ⊗ ν1), then the optimal growth rate
with or without sensing are equal, i.e. γ∗ = γ∗∗.
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Proof. In this product case, the conditional distribution are trivial, i.e. νe1
≡ ν1 almost surely. Hence

an optimal strategy is such that p∗∗e1
∈ P∗(ν1) and hence γ(p∗∗e1

, ν1) = γ∗. Integrating with respect to
ν1(de1), we obtain

γ∗∗ =

∫

E

γ(p∗∗e1
, ν1)ν1(de1) = γ∗.

This proves the result. �

Note that this result is rather intuitive: the sensing mechanism gives to the individual some infor-
mation about the current environment state, but from the independence property, this is not useful for
inference to the future environment state; hence the information is useless to decide which traits will be
well-fitted in the next environment.

4.3 Example: Finite dimensional case continued

The results for optimal strategies without sensing developed in Section 3.4 together with Proposition
8 allow us to easily deduce the following properties for optimal strategies with sensing in the finite
dimensional case.

Proposition 10. Suppose that spanM has dimension d and that conditions (C1)− (C3) and (H) hold.
Then there exists a unique optimal strategy with sensing p̄∗∗ ∈ P(T )E such that

p∗∗(e) = p∗(νe)

where p∗(νe) is the optimal strategy without sensing from associated when the environment has marginal
distribution νe.

Recall furthermore from Proposition 5 that p∗(νe) is a discrete probability measure on T with at
most d extremal types (that may depend on e). See Section 1.1.2 for more examples.

4.4 Exemple: Haccou and Iwasa’s example continued

This is the sequel of subsection 3.5, the example by Haccau and Iwasa. Recall that the environment is
given by a Gaussian stationary ergodic sequence ω = (ωn)n≥0 with stationary distribution ν1 = N (µ, σ2

2).
Let ρ ∈ (−1, 1) be the pair correlation ρ = corr(ω0, ω1). The case ρ = 0 corresponds to independent
environments, i.e. ν2 = ν1 ⊗ ν1. Otherwise dependence holds and standard Gaussian computations give
the conditional distribution νe1

= N (µ+ρ(e1−µ), (1−ρ2)σ2
2). A particular realization of such a sequence

is the Ornstein-Uhlenbeck sequence defined by

{
ω0 = µ + σ2η0

ωn = µ + ρ(ωn−1 − µ) +
√

1 − ρ2σ2ηn, n ≥ 1
,

for i.i.d. standard normal innovations (ηn)n≥0 (Gaussian white noise).
We have seen in section 3.5 that the optimal strategy without sensing is Gaussian (possibly degener-

ated) and we have given explicit formulas for the parameters (3) and for the corresponding growth rate
(4). According to Proposition 8, we deduce the optimal strategy when sensing is allowed:

Proposition 11. There exists a unique optimal strategy with sensing, which is denoted by p̄∗∗ and
satisfies ν1(de)-a.e.

p∗∗e =

{
δµ+ρ(e−µ) if (1 − ρ2)σ2

2 ≤ σ2
1

N (µ + ρ(e − µ), (1 − ρ2)σ2
2 − σ2

1) if (1 − ρ2)σ2
2 ≥ σ2

1
. (5)

The corresponding optimal growth rate is given by

γ∗∗ =

{
log C − 1

2 log(2πσ2
1) − (1−ρ2)σ2

2

2σ2
1

if (1 − ρ2)σ2
2 ≤ σ2

1

log C − 1
2 log(2π(1 − ρ2)σ2

2) − 1
2 if (1 − ρ2)σ2

2 ≥ σ2
1
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Finally, we can evaluate the relative gain of strategies with sensing over strategies without sensing: it
gives an indication of the benefit that can be expected from sensing mechanisms. Let χ = σ2

2/σ2
1 . Then

γ∗∗ − γ∗ =






1
2ρ2χ if χ ≤ 1
1
2 log χ − 1

2 (1 − ρ2)χ + 1
2 if 1 ≤ χ ≤ (1 − ρ2)−1

− 1
2 log(1 − ρ2) if χ ≥ (1 − ρ2)−1

.

It is worth noting that this is an increasing function of the square correlation ρ2: this indicates that the
more correlated the random environment is, the more useful sensing mechanisms are. The intuitive idea
is that higher correlations allows for more accurate prevision for the next environment and hence for a
better fitted offspring trait distribution in the environment to come.

5 The hereditary case

In the hereditary case, the trait distribution πt,e ∈ P(T ) might depends on the trait of the parents.
This dependency makes the study of the Lyapounov exponent γ = γ(π) much more difficult because no
reduction to a simple branching process in random environment is available. We have no explicit formula
for γ(π) in this case and determining the optimal strategy π∗ and the optimal growth rate γ(π∗) might
be very challenging.

Nevertheless, we propose an interesting representation of the ”finite time” growth rate

γn(ω, π0) = n−1 log Eω,π0
[|Zn|]

in environment ω and initial population consisting of a single individual with random trait with distri-
bution π0. The representation is in term of a functional of the T -valued Markov chain T = (Tn)n≥0 in
environment ω such that:

{
Pπ0,ω(T0 ∈ · ) = π0( · )
Pπ0,ω(Tk ∈ · |T0 = t0, · · · , Tk−1 = tk−1) = πtk−1,ωk−1

( · ) , 1 ≤ k ≤ n
. (6)

The Markov chain Tn in random environment ω is time-heterogeneous because the transitions depend on
time n through the value of the environment ωn. However, in the no-sensing case when the transitions
πt,e ≡ πt do not depend on e, the Markov chain T is time-homogeneous. The result is the following:

Proposition 12. The finite time growth rate in environment ω and initial population consisting in a
single individual with trait distributed according to π0 is given by

γn(ω, π0) = n−1 log Eω,π0
[Mn(T, ω)]

with

Mn(T, ω) =
n−1∏

k=0

mTk,ωk
.

For the sake of clarity and conciseness, this proposition will be proved together with Theorem 2
below. To our best knowledge, there is no simple way to deal with the asymptotics behaviour of γn and
this issue might be challenging. We provide a lower bound for the growth rate γn(ω, π0) that might be
more tractable. The lower bound for γn(ω, π0) is obtained using Jensen’s inequality (with the concave
function log):

γn(ω, π0) = n−1 log Eω,π0
[Mn(T, ω)] ≥ n−1Eω,π0

[log Mn(T, ω)].

The advantage here is that the lower bound

n−1Eω,π0
[log Mn(T, ω)] = n−1

n−1∑

k=0

Eω,π0
[log mTk,ωk

]

can be written as an additive functional of the environment ω and we can then use the ergodic theorem to
control the convergence. Note that this technique can be refined using changes of measures. Let π̃t,e any

kernel family and denote by T̃ the T -valued Markov chain in environment ω starting from distribution π0
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and with transitions given by π̃t,e (given by equations similar to (6)). We suppose that πt,e is absolutely
continuous with respect to π̃t,e, i.e. πt,e(dt′) = ft,e(t

′)π̃t,e(dt′) where ft,e stands for the density of πt,e

with respect to π̃t,e. Then, using changes of measures, we have

Eω,π0
[Mn(T, ω)] = Eω,π0

[M̃n(T̃ , ω)]

with

M̃n(T̃ , e) =

n−1∏

k=0

mT̃k,ωk
fT̃k,ωk

(T̃k+1).

Using this, the lower bound becomes

γn(ω, π0) = n−1Eω,π0
[log M̃n(T̃ , ω)] ≥ n−1

n−1∑

k=0

Eω,π0

[
log
(
mT̃k,ωk

fT̃k,ωk
(T̃k+1)

)]
.

6 Typical genealogies: a mean field approach

6.1 Convergence of the typical genealogy in the infinite population limit

As explained in Baake and Georgii [4, 5], the evolution of a branching population can be studied from
two possible perspectives: either forward or backward in time. So far, we have focused on the first point
of view and mainly studied the growth rate of the population after a large numbers of generations. By
way of contrast, the backwards or retrospective aspect of the population concerns the lineages extending
back into past from the presently living individuals and asks for the characteristics of the ancestors
along such lineages. We now turn to this second perspective and wonder what is the typical lineage or
genealogy (backward in time) of an individual chosen at random in the n-th generation.

Some definitions are needed here. The right formalism to keep track of the genealogy is the formalism
of labeled rooted trees and forests, where the trees stands for the descendence of each ancestor represented
by a root, and labels keep track of the traits of the individuals. However we keep this formalism to its
minimum. Let Gn denote the population at the n-th generation. To each individual g ∈ Gn, we associate
its lineage or genealogy ℓ(g) = (t0, · · · , tn) ∈ T n+1 with the interpretation that tn is the trait of g, and
tk the trait of his ancestor in the k-th generation Gk, 0 ≤ k ≤ n − 1. The typical genealogy is defined
as the genealogy of an individual chosen at random in the n-th generation. This obviously requires the
n-generation to be non empty, in which case we adopt the convention that the typical genealogy is ∅.
The distribution of the typical genealogy is given by

πn =

{
1

cardGn

∑
g∈Gn

δℓ(g) if Gn 6= ∅
δ∅ if Gn = ∅ .

This is a random measure on T n+1 ∪ {∅}. We denote by PN,π0,ω the probability measure corresponding
to a population evolving in environment ω, starting a time 0 from N individuals with traits i.i.d. with
distribution π0. In the following, we focus on the typical genealogy in the infinite population limit
N → ∞. Recall the definition of the Markov chain T = (Tn)n≥0 given by equation (6). We have the
following mean field result:

Theorem 2. Under the probability PN,π0,ω, the typical genealogy distribution πn almost surely weakly
converges as N → ∞ to the distribution π̂n,π0,ω defined by

π̂n,π0,ω(A) =
Eω,π0

[Mn(T, ω)1(T0,··· ,Tn)∈A]

Eω,π0
[Mn(T, ω)]

, A ⊂ T n+1.

Recall from Proposition 12 that Eω,π0
[Mn(T, ω)] = exp(nγn(π0, ω)) is the mean number of individuals

in the n-th generation of a population evolving in environment ω and starting from a single individual
with random trait with distribution π0.
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Proof of Theorem 2 and Proposition 12. Let A = A0 × · · · × An be a product subset of T n+1. The
number of individuals in the n-th generation with genealogy in A is

Nn(A) =
∑

g∈Gn

δℓ(g)(A)

and Nn(T n+1) denotes the total number of individuals in Gn. We can see Nn as a non-normalized
measure and πn is the probability measure associated with by the relation

πn =
1

Nn(T n+1)
1{Nn(T n+1)>0}Nn + 1{Nn(T n+1)=0}δ∅.

From the branching property, the distribution of Nn(A) under PN,π0,ω is equal to the sum of N inde-

pendent copies
∑N

i=1 N
(i)
n (A) under P

⊗N
1,π0,ω. As a consequence of the weak law of large numbers, the

distribution of 1
N Nn(A) under PN,π0,ω weakly converge to E1,π0,ω(Nn(A)). The results also holds for

A = T n+1 and taking the quotient, we see that under PN,π0,ω, πn(A) weakly converge to

π̂n,π0,ω(A) =
E1,π0,ω(Nn(A))

E1,π0,ω(Nn(T n+1))

provided the denominator is non zero. Note that

γn(ω, π0) = n−1 log E1,π0,ω(Nn(T n+1)).

The theorem and the proposition (letting A = T n) are then a consequence of

E1,π0,ω(Nn(A)) =

∫

A

π0(dt0)

n−1∏

k=0

mtk,ωk
πtk,ωk

(dtk+1)

= Eω,π0
[Mn(T, ω)1(T0,··· ,Tn)∈A].

This last relation is proven by induction: individuals in the n-th generation with genealogy in A are the
offsprings with traits in An of individuals in the n − 1 generation with genealogy in A0 × · · · × An−1.
This yields

E1,π0,ω(Nn(A)) =

∫

An−1×An

E1,π0,ω(Nn−1(A0 × · · · × An−2 × dtn−1))mtn−1,ωn−1
πtn−1,ωn−1

(dtn).

For n = 0, E1,π0,ω(N0(A0)) = π0(A). It remains to note that E1,π0,ω(Nn(T n+1)) 6= 0 and this implies
that the mass of ∅ vanishes in the limit. �

6.2 The typical genealogy in the non-hereditary case

When the traits are non-hereditary, the trait distributions πt,e do not depend on t and the mean field
typical genealogy distribution π̂n,ω,π0

has a very simple form. The following Proposition is given in the
context of a population with a sensing mechanism π = π((pe)e∈E). The no-sensing case corresponds to
the particular case when pe ≡ p.

Proposition 13. In the non-hereditary case, the typical genealogy distribution π̂n,ω,π0
is the product

measure on T n+1 defined by
π̂n,ω,π0

(dt0, · · · , dtn) = ⊗n
i=0π̂i,ωi

(dti)

where 




π̂0,ω0
(dt0) =

mt0,ω0

mπ0,ω0

π0(dt0),

π̂i,ωi
(dti) =

mti,ωi

mpωi−1
,ωi

pωi−1
(dti), 1 ≤ i ≤ n − 1,

π̂n,ωn
(dtn) = pωn−1

(dtn)

.
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Proof. In the non-hereditary case, the Markov chain in random environment ω defined by equation (6)
is simple because conditionally on the environment ω, the random variables T0, · · · , Tn are independent
with T0 distributed as π0 and, for 1 ≤ i ≤ n, Ti distributed according to pωi−1

. Let A = A0 × · · · ×An ⊂
T n+1. Using independence and Theorem 2, we compute:

π̂n,π0,ω(A) =
Eω,π0

[Mn(T, ω)1(T0,··· ,Tn)∈A]

Eω,π0
[Mn(T, ω)]

=
Eω,π0

[mT0,ω0
1T0∈A0

] × · · · × Eω,π0
[mTn−1,ωn−1

1Tn−1∈An−1
]Eω,π0

[1Tn∈An
]

Eω,π0
[mT0,ω0

] × · · · × Eω,π0
[mTn−1,ωn−1

]
.

This proves the independence property and gives the marginal distributions:

π̂i(Ai) =
Eω,π0

[mTi,ωi
1Ti∈Ai

]

Eω,π0
[mTi,ωi

]
, 1 ≤ i ≤ n − 1.

�

The interpretation of the above proposition is the following: the mean field typical genealogy in en-
vironment ω consists in independent traits T̂0, · · · , Tn where
- the distribution of T̂0 is a biased version of π0(dt0) with bias function equal to mt0,ω0

the mean number
of offspring’s of an individual of type t0,
- the distribution of T̂i is a biased version of pωi

(dti) with bias function equal to mti,ωi
,

- the distribution of T̂n is pωi
(dti) (there is no bias because the offspring of the last generation Gn is not

involved since the population is considered until time n only).

6.3 The typical genealogy in a hereditary case: Haccou and Isawa’s example

continued

Recall that T = E = R, ω is a Gaussian stationary ergodic sequence with stationary distribution N (µ, σ2
2)

and mt,e is given by

mt,e =
C√
2πσ2

1

exp

(
− (t − e)2

2σ2
1

)
.

It remains to precise the trait distributions πt,e and π0. To make the model explicitly solvable, we require
the Markov chain T = (T0, · · · , Tn) in environment ω to be multivariate Gaussian. This impose that the
transition πt,e are of the form πt,e = N (αet + βe, θe) with

E[T1|ω0 = e, T0 = t] = αe + βet and Var[T1|ω0 = e, T0 = t] = θ2
e .

Let π0 = N (µ0, s
2
0) be the initial distribution. Alternatively, we have the representation in environment

ω {
T0 = µ0 + s0N0,
Tk+1 = αωk

+ βωk
Tk + θωk

Nk+1 0 ≤ k ≤ n − 1,

with N0, · · · , Nn independent standard normal variable. We introduce the (n + 1) × 1 vectors

T =





T0

T1

...
Tn




, N =





N0

N1

...
Nn




, Aω =





µ0

αω0

...
αωn−1





and the (n + 1) × (n + 1) matrices

Cω =





0 0 · · · 0 0
βω0

0 · · · 0 0
0 βω1

0 0 0

0 0
. . . 0 0

0 0 · · · βωn−1
0




, Sω =





s2
0 0 · · · 0 0
0 θ2

ω0
· · · 0 0

0 0 θ2
ω1

0 0

0 0 · · · . . . 0
0 0 · · · 0 θ2

ωn−1




.
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With these notations, the recursive relation turns into

T = Aω + CωT + SωN

and this yields
T = (Id − Cω)−1(Aω + SωN).

We deduce the mean µ and covariance matrix Σ for the Gaussian vector T

µ = (Id − Cω)−1Aω and Σ = (Id − Cω)−1Sω(Id − C
′

ω)−1.

Suppose that Sω is invertible, then T has density

fT (t) = (2π)−(n+1)/2 det(Σ)−1/2 exp

(
−1

2
(t − µ)′Σ−1(t − µ)

)
.

Denote by T̂ = (T̂0, · · · , T̂n) a random vector with distribution π̂n,ω,π0
. According to Theorem 2, T̂ is a

biased version of T and has a density given by

fT̂ (t) = e−nγn(ω,π0)Mn(t, ω)fT (t)

= e−nγn(ω,π0)Cnσ−n
1 (2π)−n−1/2 det(Σ)−1/2 exp

(
−1

2
(t − µ)′Σ−1(t − µ) − 1

2σ2
1

n−1∑

i=0

(ωi − ti)
2

)
.

Introducing Jn,1 the diagonal matrix Jn,1 = (δ0≤i=j≤n−1)0≤i,j≤n and Vn,ω the column vector Vn,ω =
(ω0, · · · , ωn−1, 0)′, the last exponential factor rewrites

exp

(
−1

2
t′(Σ−1 + σ−2

1 Jn,1)t + (Σ−1µ + σ−2
1 Vn,ω)′t − 1

2
µ′Σ−1µ − 1

2
σ−2

1 V ′
n,ωVn,ω

)
.

We recognize that fT̂ is a multivariate Gaussian density with mean µ̂ and covariance matrix Σ̂ of the
form

fT̂ (t) = (2π)−(n+1)/2 det(Σ̂)−1/2 exp

(
−1

2
(t − µ̂)′Σ̂−1(t − µ̂)

)
.

Identifying both expressions, we obtain after simplification

Σ̂ =
(
Σ−1 + σ−2

1 Jn,1

)−1
, (7)

µ̂ = Σ̂
(
Σ−1µ + σ−2

1 Vn,ω

)
=
(
Σ−1 + σ−2

1 Jn,1

)−1 (
Σ−1µ + σ−2

1 Vn,ω

)
, (8)

γn(ω, π0) = log
C√
2πσ1

− 1

2n
log det(In+1 + σ−2

1 Jn,1Σ) +
1

2n

(
µ̂′Σ̂−1µ̂ − µ′Σµ − σ−2

1 V ′
n,ωVn,ω

)
.(9)

These computations prove the following result:

Proposition 14. In the Haccou and Isawa model with Markov Gaussian environment, the typical geneal-

ogy distribution π̂n,ω,π0
is the Gaussian distribution on R

n+1
with mean µ̂ given by (8) and covariance

matrix Σ̂ given by (8). Furthermore, the finite time growth rate γn(ω, π0) is given by (9).
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