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On the Kleinman-Martin integral equation method for
electromagnetic scattering by a dielectric body

M. Costabel, F. Le Louér
IRMAR, University of Rennes 1.

Abstract

The interface problem describing the scattering of time-harmonic electromagnetic
waves by a dielectric body is often formulated as a pair of coupled boundary integral
equations for the electric and magnetic current densities on the interface I'. In this
paper, following an idea developped by R. Kleinman and P. Martin [E] for acoustic
scattering problems, we consider methods for solving the dielectric scattering prob-
lem using a single integral equation over I' for a single unknown density. One knows
that such boundary integral formulations of the Maxwell equations are not uniquely
solvable when the exterior wave number is an eigenvalue of an associated interior
Maxwell boundary value problem. We obtain four different families of integral equa-
tions for which we can show that by choosing some parameters in an appropriate
way, they become uniquely solvable for all real frequencies.

Keywords : scattering problems, Maxwell equations, boundary integral equations,
Helmholtz decomposition.

1 Introduction

We consider the scattering of time-harmonic electromagnetic waves in R? by a bounded
obstacle with a smooth and simply connected boundary. We assume that the dielectric
permittivity and the magnetic permeability take constant, in general different, values
in the interior and in the exterior of the domain. This problem is described by the
system of Maxwell’s equations, valid in the sense of distributions in R®, which implies
two transmission conditions expressing the continuity of the tangential components of the
fields across the interface. The transmission problem is completed by the Silver-Miiller
radiation condition at infinity (see [R1] and [R3]).

It is well known that this problem can be reduced in several different ways to sys-
tems of two boundary integral equations for two unknown tangential vector fields on the
interface (see [fl, BZ]). These pairs of integral equations are not always uniquely solvable
for all values of the exterior wave number, although the underlying Maxwell interface
problem is uniquely solvable under standard assumptions on the material coefficients. It
can be desirable to solve a single integral equation for a single unknown, rather than a
system of two equations of two unknowns (see [fl], [§] and [J)).



In this paper, we study methods for solving the transmission problem using a single
boundary integral equation for a single unknown tangential vector field on the interface.
We follow ideas of [I§] where R. E. Kleinman and P. A. Martin considered the analogous
question for the acoustic interface scattering problem. The method consists of represent-
ing the solution in one domain by some combination of a single layer potential and a
double layer potential, and inserting this representation into the transmission conditions
and the Calderdén relations of the other domain. Several different integral equations of
the first kind or of the second kind, containing two arbitrary parameters, can be ob-
tained in this way, and in the scalar case, the parameters can be chosen in such a way
that no spurious real frequencies are introduced. Following the same procedure in the
electromagnetic case, one encounters two main difficulties:

The first problem is that some boundary integral operators that are compact in
the scalar case are no longer compact, and therefore arguments based on the theory
of Fredholm integral equations of the second kind have to be refined in order to show
well-posedness of the corresponding integral equations.

The second problem comes from a lack of ellipticity. The spurious frequencies are as-
sociated with the spectrum of a certain interior boundary value problem of the third kind,
and whereas in the scalar case this is an elliptic boundary value problem whose spectrum
can be moved off the real line by the right choice of parameters, in the Maxwell case this
boundary value problem is not elliptic, in general. Thus an additional idea is needed
to avoid real irregular frequences. Since the Kleinman-Martin method has similarities
to the combined field integral equation methods, we use a regularizer introduced by M.
Windisch and O. Steinbach in [2J] in the context of combined field integral equations for
the time-harmonic Maxwell equations. This regularizer is a positive definite boundary
integral operator with a similar structure as the operator of the electrical field integral
equation, but it is not a compact operator like those used in [[(] and [f] for regularizing
the exterior electromagnetic scattering problem. Its introduction changes the boundary
condition in the associated interior boundary value problem from a non-elliptic local
impedance-like condition to a non-local, but elliptic, boundary condition.

This work contains results from the thesis (] where this integral formulation of
the transmission problem is used to study the shape derivatives of the solution of the
dielectric scattering problem, in the context of a problem of optimising the shape of a
dielectric lens in order to obtain a prescribed radiation pattern.

In Section f] we recall briefly some results about traces and potentials for Maxwell’s
equations in Sobolev spaces, following the notation of [[f] and [f]. We also recall some
properties of the Laplace-Beltrami operator which will then be used for a Helmholtz
decomposition of the boundary energy space shown by A. De La Bourdonnaie in [1§].
In the following sections, this allows us to prove the invertibility of boundary integral
operators by using a new integral representation of the potential’s traces. Sections [| and
B contain the details of the method for solving the transmission problem using single
boundary integral equations. In Section [], we start from a layer representation for the
exterior field whereas in Section [, we use a layer representation for the interior field. In
either case, we derive two boundary integral equations of the second kind and we show
their unique solvability under suitable conditions on an associated interior boundary value



problem. Moreover, we show that the integral operators in each integral equation are
Fredholm of index zero. We also construct the solution of the transmission problem using
the solution of any of the four integral equations. We finally show how to choose the free
parameters so that the associated interior boundary value problem is uniquely solvable,
and as a consequence, we can construct an integral representation of the solution which
yields uniquely solvable boundary integral equations for all real frequencies.

2 The dielectric scattering problem

Let © denote a bounded domain in R? and let Q¢ denote the exterior domain R?*\Q. In
this paper, we will assume that the boundary I' of €2 is a smooth and simply connected
closed surface, so that €2 is diffeomorphic to a ball. Let n denote the outer unit normal
vector on the boundary I'.

In Q (resp. Q°) the electric permittivity ¢; (resp. €.) and the magnetic permeability
i (resp. pe) are positive constants. The frequency w is the same in  and in Q¢. The
interior wave number x; and the exterior wave number k. are complex constants of non
negative imaginary part.

Notation: For a domain G C R? we denote by H*(G) the usual L?-based Sobolev
space of order s € R, and by Hﬁ)c(@) the space of functions whose restrictions to any
bounded subdomain B of G belong to H*(B). Spaces of vector functions will be denoted
by boldface letters, thus

H(G) = (H*(@))"

If D is a differential operator, we write:

H(D,Q) = {uel?Q):Ducl?*Q)}
Hioe(D,9°) = {u € L, () : Du € L}, .(29)}

The space H(D, Q2) is endowed with the natural graph norm. This defines in particular
the Hilbert spaces H(curl, Q) and H(curl curl, Q).
The time-harmonic dielectric scattering problem is formulated as follows.

The dielectric scattering problem : Given an incident field E™° € Hj,.(curl, R3)
that satisfies curl curl E"** — k2E"™ = 0 in a neighborhood of 2, we seek two fields
E' € H(curl, Q) and E®* € Hj,.(curl, Q°) satisfying the time-harmonic Maxwell equations

curlcurl B! — x?E' =0 inQ 2.1
KA bl

curlcurl E* — k*E° =0 in QF,
the two transmission conditions,

n x E' = n x (E® + E™) onT (2.3)
;7 (n x curl EY) = p'n x curl(E* + E™¢) onT (2.4)



and the Silver-Miiller radiation condition:

lim |z| |curl E®(x) x % — ik E*(z)| = 0. (2.5)

|| —-+o0 ||

It is well known that this problem has at most one solution under some mild restric-
tions on the dielectric constants. We give sufficient conditions in the next theorem, and
for completeness we give its simple proof.

Theorem 2.1 Assume that the constants w;, ki, e and ke satisfy:

(1) ke is real and positive or Im(k.) > 0,

(ii) Im </<;e//je> <0 and Im (H,e%/ﬁ2> > 0.

7 7

Then the dielectric scattering problem has at most one solution.

PROOF. We use similar arguments as in the acoustic case [[§]. Assume that E™¢ = 0.
Let (E',E®) be a solution of the homogeneous scattering problem. Let Br be a ball of
radius R large enough such that QQ C Br and let ng the unit outer normal vector to Bg.
Integration by parts using the Maxwell equations (P.J) and (B-J) and the transmission

conditions (R.J) and (R.4) gives :
/ (curl E® x ng) / {| curl E¥|? — 2|E*|? }+'ue/{\curlE2]2 xZ|EY)?}
9Bp 5o

We multiply this by %¢ and take the imaginary part:

Im (w/ (curl E* x np) E_> — () / (| curl E¥)% + [ E*|2)
0BRr BR\Q

—i—Im( >/\curlE’]2 Im </£e'ue 2)/]E’]2

Under the hypotheses (i) and (ii), all terms on the right hand side are non-positive.
Thanks to the Silver-Miiller condition, we have

lim |curl E° x ng — ik E®|? =
R—+o00 OBg

Developping this expression, we get

lim | curl E¥ x ng|? + |k.E°|> — 2Re (curl E° x np- ineEs> =0.
R—+o00 9Bpr

As we have seen, we have

/ Re (curlEsan-H) =Im (/i_ecurlEsan'E) <.
O0BRr OBRr

4



It follows that

lim |E®|? = 0.
R—+00 9BRr

Thus, by Rellich’s lemma [0}, E®* = 0 in QC. Using the transmission conditions, we
obtain 7pE' =y, E' = 0. It follows that E" = 0 in €2. [ |

3 Traces and electromagnetic potentials

We use some well known results about traces of vector fields and integral representations
of time-harmonic electromagnetic fields. Details can be found in [f, i, B, i, .2, RZ].

Definition 3.1 For a vector function u € (€>°(Q))? and a scalar function v € €°°(Q)
we define the traces :

YU =),
ypu := (n x u),. (Dirichlet) and

n.u = k1 (n x curl u). (Neumann).

We introduce the Hilbert spaces H*(T") = ~ (HSJF% (Q)> ,and H (T') = vp <H5+% (Q)>
For s > 0, the traces
i H3(Q) — H(D),
1
Yo+ H2(Q) — Hi(T)
are then continuous. The dual of H*(I") and H$, (") with respect to the L? (or L?) scalar
product is denoted by H~*(I") and H *(T"), respectively.
We use the surface differential operators: The tangential gradient denoted by Vr, the

surface divergence denoted by divr, the tangential vector curl denoted by curlr and the
surface scalar curl denoted by curlp. For their definitions we refer to [{], [[Z] and [RZ].

Definition 3.2 We define the Hilbert space

Nl

_ _1
H. 2 (divp,T) = {j € H,?> (D), divrj € H‘é(F)}

endowed with the norm

I HH;%@hmr) =1 HH;%@) Fldveedl oy gy
The skew-symmetric bilinear form
B: HL*(divp,T) x HL2(divp,T) — C
(j,m) - B(j,m):/r(nxj)-mda

_1
defines a non-degenerate duality product on H, *(divp,T").



Lemma 3.3 The operators yp and vy are linear and continuous from (€°°(Q))? to
L2 (') and they can be extended to continuous linear operators from H(curl,Q) and

_1
H(curl, ) N H(curl curl, Q), respectively, to H,?(divy,T"). Moreover, for all u, v €

H(curl,Q), we have:

/Q [(curlu-v) — (u-curlv)]dx = B(ypu,ypv).

(3.1)

For u € Hy,(curl, Q¢) and v € Hy.(curlcurl, Q°)) we define ~vHu and S v in the

same way and the same mapping properties hold true.

Recall that we assume that the boundary I' is smooth and topologically trivial. For

a proof of the following result, we refer to [, [[2, BJ].
Lemma 3.4 Lett € R. The Laplace-Beltrami operator
Ar = divp Vi = — curlp curlp

is linear and continuous from H't2(T') to H'(T).
It is an isomorphism from H'™2(T')/R to the space HL(T') defined by

we H() <= uEHt(F)and/u:O.
r

We note the following equalities:
curlp Vr = 0 and divp curly =0
divp(n x j) = —curlpj and curlp(n x j) = divpj
Let k be a complex number such that Im(x) > 0 and let

eiﬁ‘x_y‘
G(k, |z —y|) = m

be the fundamental solution of the Helmholtz equation
Au + K*u = 0.

The single layer potential 1), is given by :

() () = /F Glr |z — y)u()do(y) =€ RAT,

and its trace by

Veu(x) = /F Gk |z — yhul)doly) zeT.

For a proof of the following well-known result, see [[7, P3].

(3.3)

(3.4)



Lemma 3.5 The operators

Yo :H3() — H}

loc

(R?)
() — H2(I)

~
=
[NIES

are continuous.
_1
We define the electric potential ¥, generated by j € H, 2 (divp,I") by
Vg, j = Kb j+r TV, divej

This can be written as ¥g,_j := ! curl curl ), j because of the Helmholtz equation and
the identity curlcurl = —A + V div (cf [[]).

We define the magnetic potential ¥, generated by m € H;%(divr, I') by
¥ m = curly,,m.
These potentials satisfy
kleurl Wy =W, and ks lcurl¥,, = Vg .
We denote the identity operator by L.

_1
Lemma 3.6 The potentials Vg, et Uy are continuous from H. ? (divy, T') to Hioc(curl, R3).
_1
For je H, *(divp,I') we have

(curlcurl —x*T)¥g, j = 0 and (curl curl —x* )Ty, m = 0 in R3\T
and Vg,_j and Wy m satisfy the Silver-Miiller condition.

It follows that the traces yp, Yn,, 7p and 74, can be applied to Vg, and Wy, , resulting
1

in continuous mappings from H, 2 (divr,T') to itself satisfying

YW.YE, =70¥m, and NPy, =7DVE, -

Defining
1
ol = w-7p.  {w} = —50p+7),
1
[/}/Nn] = ’yNn - /}/ZCVK7 {IVNR} = _5 (/}/Nn + ’7]6\7&) °
we have the following jump relations (see [H]):
[/}/D] \PER = 07 I:/}/NFL:I \IIE;{ = _17



Now assume that E € L2 (R?) belongs to H(curl, ) in the interior domain and to

Hloc(curl,W) in the exterior domain and satisfies the equation

(curlcurl —+*T) E = 0

(3.5)

in R*\ " and the Silver-Miiller condition. Then if we set j = [y, ]E, m = [yp]E, we have

on R3\ I the Stratton-Chu integral representation

E= —\I’Eﬂj—\I’Mﬂm.

Special cases of (B.6) are: If (E’, E®) solves the dielectric scattering problem, then

c s cps —E° ze€0Q°
— WENe’YNNeE - \PMKG’YDE — { O T E Q
c s inc c s inc E®
WEﬁenyme (E +E ) + WMKS’YD (E +E ) = { _Einc
i i 0 zeqe
_\I,E'%ny"@iE — \IlM,%’YDE = { EZ Tc Q

We can now define the main boundary integral operators:

Cﬁ - {fyD}\IIEK = {,.YNK}WMN7

My = {0}V um, = { . }VE,-

1
These are bounded operators in H, ?(divp,I').
As tools, we will need variants of these operators:

1

(3.6)
(3.7)
x e N°
x € (3:8)
(3.9)

Definition 3.7 Define the operators Cy o and C§ for j € H, 2 (divp,T) by :

Ceoj=—rknxVyj +x 1 curlp Vo divr j
Cy i=nxVy j+curlp Vo divpj

Note that Cj differs from C ¢ by the relative sign of the two terms.
The following theorem is proved in [R9] section 5.5.

_1
Theorem 3.8 The operators C,—C, o and M, are compact operators from H, * (divp,T")

to itself.

1
The Calderén projectors for the time-harmonic Maxwell system (B.5) are P = EI—l—AR

and P°¢ = %I — A, where

Mli K
ao (e



We have P o P°¢ = 0 and therefore

1
C? = ZI — M?2. (3.10)

It follows that the operator Cy is Fredholm of index zero.
The following theorem was proved in [BJ].

Lemma 3.9 The operator C is self-adjoint and elliptic for the bilinear form B and
1

invertible on H, 2 (divr, T).

[NIES

Indeed, for j € H, ?(divp,T') we have

BG.C3) = / {§-Vo] + divej Vo dive )
T

and the result follows from the H _%(F)—ellipticity of the scalar single layer potential
operator Vj.

4 Integral equations 1

In this section, we present the first method for solving the dielectric problem, following
the procedure of R. E. Kleinman and P. A. Martin [[§]: We use a layer ansatz on the
exterior field to construct two alternative boundary integral equations.

In the scalar case, one represents the exterior field as a linear combination of a single
layer potential and a double layer potential, both generated by the same density. It turns
out that this simple idea does not suffice in the electromagnetic case if one wants to avoid
irregular frequencies. Our approach is related to the idea of “modified combined field
integral equations”: We compose one of the electromagnetic potential operators with an
elliptic and invertible boundary integral operator, namely C{j. More precisely, we assume
that E® admits the following integral representation :

E’(z) = —a(¥Yg,, j)(z) — bV, Cpj)(x) for x € Q°. (4.1)

_1
Here j € H, ?(divp,I') is the unknown density and @ and b are arbitrary complex con-
stants.

Wesetpzuﬁ

elvg .. .. .
——. The transmission conditions can be rewritten :

K

1've

YpE" = 7HE® + ypE™ and yy, E' = p~! (’Y?vﬁe E* + 7w, EW) :
Using this in the integral representation formula (B.9) in Q, we get:

. 1 . ,
B = i, (W, ' E7) — W, (BT 0E™) Q. (42)



We take traces in (L)) and obtain the Calderén relations

V5 ES = {aoﬁe b (%1 - Mﬁe> Og}j — L.jonT, (4.3)
v, E* = {—a <%I - M,{e> + bC,{ng}j = NgjonTl. (4.4)
On the other hand, taking traces in ([L.2) gives:

p <—%I + Mm> (v5HE® + ypE™) + Cy, (’y]cvﬂe E°+n,, E“) =0onT, (4.5)
<—%1 n MHZ.) (ﬁvﬁe E* + .. E") + pCl (VHE* +pE™) =0onT.  (4.6)
We can now substitute (JE3) and (f.4) into (.§) and get our first integral equation:
Si=p (—%1 T M) LitCuNej=f (47)
where f = —p (—%I + M,{i> ypE™E — Cr; VN, Ei"e, (4.8)

If we substitute ([.3) and (f4) into ({.§), we get our second integral equation:
Ti=pCuleit (~514 00, ) N =g (1.9
where g = —pC,,ypE™ — <—%I + M,ﬂ.> YNeo E™e. (4.10)

Thus we obtain two boundary integral equations for the unknown j. Having solved
either one, we construct E® using ([.1) and E* using (£.2), (£3), (E4):

B = — (i, O, B4 i) = (Van 0™+ L)) (@)

_1 .
Theorem 4.1 If j € H, ?(divy,T) solves (I.7) or (1.9), then E® and E' given by (1)
and (E11)) solve the transmission problem.

PROOF. We know that E* and E* satisfy the Maxwell equations and the Silver-Miiller
condition. It remains to verify that E* and E’ satisfy the transmission conditions (2.3
and (B4). Using the integral representation (f£)) and (fEJ) of E* and E’, a simple
computation gives: ‘ ‘
p(YHE® + ypE"C —pE') =Sj—f (4.12)
and
V5. E* + N, E" = pyn, B =Tj—g (4.13)

We deduce that
- if j solves ([L.7), then relation (f.13) proves that the condition (R.3) is satisfied,

a
- if j solves (f.9), then relation ([.13

1) proves that the condition (.4) is satisfied.
Now we show that (J.7) and (f.9) are in fact equivalent. Define :

10



u(@) = Wi, {3, B+ N jH) - pWas, (pE™ + Lej}(s)  for 2 € 9

This field u is in Hjc(curl, Q¢) and satisfies the Maxwell system

curlcurlu — x?u = 0 (4.14)

in ©2¢. On the boundary I' we have:
Ypu=Sj—f and A u=Tj—g
Since u solves ({.14) in Q¢ and satisfies the Silver-Miiller condition, it follows:
j satisfies (E7) = 7Hu=0=u=0in Q° = T, u = 0= j satisfies ({L.9).

j satisfies (L9) = 7§, u=0=u=0in Q° = yHu =0 = j satisfies [{.7).

As a consequence, if j solves one of the two integral equations, it solves both, and then
both transmission conditions (R.J) and (R.4) are satisfied. [ |

The next theorem is concerned with the uniqueness of the solutions of the boundary
integral equations ([£.7) and ([.9), i.e., with the existence of nontrivial solutions of the
following homogeneous forms of (£.7) and ([.9):

1
p <_§I + Ml‘%) LejO +CHiNej0 = 07 (415)
1
pCmLe.iO + <—§I + M'ﬂ) Nej() = 0. (416)

As in the scalar case [[[§], we associate with the dielectric scattering problem a new
interior boundary value problem, the eigenvalues of which determine uniqueness for the
integral equations.

Associated interior problem: For a,b € C, consider the boundary value problem

curlcurlu — s>u=0 in Q, aypu — bCiyv,u=0 onT. (4.17)

Lemma 4.2 . Let a,b € C\O0. If Img # 0, then the associated interior problem ([L17)

does not admit any real eigenvalue.

PROOF. Let 2 be an eigenvalue of the interior problem such that k. € R and let u # 0
be an eigenfunction. Using Green’s theorem we have:

ke

/ ]curlu\2 — /ig/ \u\2 = KeB(YN,, u,7pU) = ; B((C{;)_l(’ypu),’ypﬁ) ifb#£0
Q Q

b .
= () B . i, W) if a0

11



Taking the imaginary part, under the hypothesis of the lemma if follows
B((C§)~" (ypu),ypt) = 0 and B(yw,, u, G5 (n,, W) = 0.

As () is elliptic for the bilinear form B, the traces ypu and vy, u then vanish. Thanks
to the Stratton-Chu representation formula (B.6) in Q, we deduce that u = 0, which
contradicts the initial assumption. |

Remark 4.3 Note that this associated interior problem is not an impedance problem (or
Robin problem) as in the scalar case [1§]. If we replace in (1) the operator C§ by the
identity, we obtain a “pseudo-impedance” type problem. This is a non-elliptic problem,
about whose spectrum we have no information. That the problem is non-elliptic can be
seen as follows: If it were elliptic, its principal part would be elliptic, too. This would be
the vector Laplace operator with the “Neumann” condition yn, u = 0. Any gradient of a
harmonic function in H'(Q) will satisfy the homogeneous problem, which therefore has
an infinite-dimensional nullspace, contradiciting ellipticity. Note that the issue here is
not the apparent non-elliptic nature of the interior Mazwell curl curl operator, which can
easily be remedied by the usual regularization that adds —V div, but the manifestly non-
elliptic nature of the Mazwell “Neumann” boundary operator. For a “true” impedance
problem, the operator C§ would have to be replaced not by the identity, but by the rotation
1

operator j — n x j. This operator leads out of the space H, % (divr), however, which rules
it out for our purposes.

For our integral equations, the problem (JL.17) plays the same role as the Robin
problem for the scalar case in [[[J].

Theorem 4.4 Assume that the hypotheses of Theorem 2.3 are satisfied. Then for (a,b) #
(0,0), the homogeneous integral equations (f.15) and (4.16) admit nontrivial solutions if
and only if K2 is an eigenvalue of the associated interior problem.

PROOF. Assume that j, # 0 solves ([EL15) or ({.16).

We construct ug and uy as follows:
uz(z) = —a¥g, jo(x) — bW, Cfjo(x) for x € Q°
1 . .
uy(z) = —;‘PEni(NeJo)(w) — W, (Lefo) () for z € O
By Theorem [T, u; and uy together solve the transmission problem with E™"c = 0.
Since this problem admits at most one solution, we have us = 0 in Q¢ and u; =0 in .

Now we set u(z) = —aV¥g,_jo(z) — bV, Cgjo(x) for € Q.
We have on I' :

ypu2 —ypu = by jo, (4.18)

YN, U2 — YN, U = afg - (4.19)

12



Since YHuz =75, uz = 0 on I', we find
aypu — bCyyn, u=0onT.

Thus u is an eigenfunction associated with the eigenvalue x2 of the interior problem or
u = 0. But this latter possibility can be eliminated since it implies that ypu = vy, u = 0,
whence j, = 0 by ([:1§) and (f19), which is contrary to the assumption.

Conversely, assume that 2 is an eigenvalue of the associated interior problem. Let vg # 0
be a corresponding eigenfunction. The Calderén relations in 2 imply that :

2

1
(51 - Mne> YN, V0 — Cr,YDvo = 0.

1
—Cﬁe’YNneUO + <—I — Mﬁe> YDVo = 0,

Using the equality aypvg — b Ciyn,, vo = 0, we obtain
Le(C3) typvo =0,  Ne(CF)'ypvo =0, Leyn,, vo=0, Neyw,, vo=0.

If b # 0 then ypvy # 0, and j, = (C)~typup is a nontrivial solution of (f.1§) and ([£16).
If b = 0 then vy, vo # 0, and jy = Y, vo is a nontrivial solution of (.13) and ([L16). W

Theorem 4.5 Assume that the constants a, b, e, Wi, ke and K; satisfy:

2
(bke + 2a) # 0, <1+%> #0, (b—2ake) # 0 and (14—#6':;) £ 0.

_1
Then S is a Fredholm operator of index zero on H, ? (divp,T').
PrROOF. We can rewrite S as follows:
1 1 1
S = prCg — §bp(M,%. + M, )C§ + bpM,, M, C§ — §GP(Cne —Cio0)

1 1
_5(1(01@- - Cni,O) - ga(PCHe,O + Cﬁi,O) +apMy,Cy, + aCy, M,

+b(Cl; — Cy,0)Cr. Cg 4+ bC, 0(Crp — Cr0)CG + 0Cy, 0C, 0C -

Thus S is a compact perturbation of the operator

1 1
S, =b <Zp1 + Cﬁi,ocne,o> CS — §a (pC,.@e,() + C,.@i,o) .

We have to show that the operator S; is Fredholm of index zero. For this we use the
1

Helmholtz decomposition of H, % (divr,T) :

[SIE

H 2 (divy,T') = VrH2 (') @ curlp H2(T). (4.20)
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For a detailed proof of (f.20) see [[f]. Note that we are assuming that Q has trivial
topology.

_1
The terms in the decomposition j = Vrp + curlr ¢ for j € H, 2 (divp,I') are obtained

by solving the Laplace-Beltrami equation (see Lemma [.4):
pZAfldivrj, q:—Aflcurlpj )

The mapping
_1
H, ?(divp,I) — H2(T)/Rx Hz(T)/R
(4.21)
')
q

is an isomorphism. 3Using this iﬁomorphism, we can rewrite the operator S; as an operator
S defined from H2 (T')/R x H2(I")/R into itself. Then to show that Sy it is Fredholm of
index zero it suffices to show that &; has this property. Let us begin by rewriting Cj and

C.0 as operators Cj and Cy o defined on H%(F)/R X H%(F)/R We have to determine
Py € H2(T)/R and Qo € H2(T')/R such that C;(Vrp + curlpq) = VP + curlp Qp,

and this defines C by:
* p PO
C = .
’ ( q > ( Qo )

Py = Apt divr C3(Vrp + curlr q)

j=Vrp+curlprgq — <

We have

and
Qo = —Afl curlp C5(Vrp + curlr g).

Using the integral representation of Cj and the equalities (B-) and (B.4) we obtain:

o — < Cn Ci2 >
0 Co1,1 +Ca12 Ca2 )’

where
Cii = —Af'ewlrVyVp, Cip = —Ap'curlr Vg eurlp,
Cng = —Ap'diveVoVr, Cyp = —Ap'dive Vg curlr,
Caz2 = WAr.

Some of these operators are of lower order than what a simple counting of orders (with
-1 for the order of V;) would give:

Lemma 4.6 The operators curlp VoV and divr Vg curlr are linear and continuous from
HY(T) into itself.

PROOF. These results are due to the equalites (B-3). One can write (see [P3, page 240)):

curlp VoVru(z) = / n(z) - curl® {G(0, |x — y|)Vru(y)} do(y)

r
= | {(n(z) = n(y)) x V*G(0, [z —y[)} - Vru(y)do(y)

—Vp curlr Vru.
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The second term on the right hand side vanishes, and the kernel
(n(z) —n(y)) x V*G(0, |z — yl)

has the same weak singularity as the fundamental solution G(0, |z — y|). We deduce the
lemma using similar arguments for the other operator. |

As a consequence, the operators C11 and Cag are of order -2, the operators C12 and Ca; 1 are
of order -1 and the operator Co; 2 is of order 1. Therefore, Cj is a compact perturbation

of
(en. )
Ca12 O

By definition of Cj o, the operator C, o can be written as:

c _ —KC11 —rC12
w0 —KCo11 + K 1Co12 —HKCoo

k0 Npe (0 0
(O “_1>CO (et s )<C21,1 C22>'

The second term on the right hand side is compact on H%(F)/]R x H? (T)/R.
Since Cy o is a compact perturbation of

-k 0 *
<0 /{—1 >C07

the sum C,, o + pCp, o is a compact perturbation of
— (ki + pre) 0 C*
0 ) )

1
Lemma 4.7 The operator 032 is a compact perturbation of _ZI'

ProOF. It suffices to consider the principal part of (B.1(0). |
Thus the operator Cy;, 0Cx, 0 is a compact perturbation of

1 Kkt 0
4 0 /{;1/{6 ’

Collecting all the results, we found that S; is a compact perturbation of

1 1
10(p + mirct) = Salks + pre) 0

1 _ 1, _ _
0 Zb(p + R; 1/{6) + §a(’{i ! + PRe 1)

15



M. The matrix written above is invertible if:

HiKe

We recall that p =

1 1 1 i
Zb(p R 5(1(/@- +pke) #0 & Z(b — 2ake) <1 + M—) #0

e
and
1 _ 1, _ _ 1 k2
Zb(p + Ky Y Re) + §a(“i Lypeshy#0 © Z(bﬂae + 2a) (1 + MZ—H?> # 0.
Since the operator C is invertible, we conclude that under the conditions of the theorem
the operator S; is Fredholm of index zero and therefore S too. |

Using similar arguments we obtain the following theorem.
Theorem 4.8 Assume that the constants a, b, e, [, ke €t k; Satisfy:
<a(1+ peri +i(1+&)> : <a(1+&) - %(H“e—“z)) #0
Hikg 2Ke i Hi 2 Hikg
Then T s a Fredholm operator of index zero on H;%(din, r).
Note that under standard hypotheses on the materials and for real frequencies, the ma-

. He Ne/%z
terial factors such as (1 + —) and (1 + 5
i Hike

) are always non-zero.

5 Integral equations 2

The second method is based on a layer ansatz for the interior field: We assume that
the interior electric field E* can be represented either by ¥ B, J or by Uy, j where the

_1
density j € H, ?(divp,I') is the unknown function we have to determine. We begin with

the Stratton-Chu representation formula (B.§) in Q¢
E*(z) = VgsR,, (E°+E™) (2) + Yar, 7p (E°+E™) (x) 2€Q° (5.1)
We then apply the exterior traces v and 74, and use on both sides of (B1) the

transmission conditions. The result is a relation between the traces of E! on T

. . . 1 .
vpE' —pE" = —pCy N, E' + <—§I + M,{e> ~vpE’, (5.2)

p’YNKi E'— /}/ZCV,QG E"¢ = -— ne/}/DEZ +p <—§I + MHE> ’}/Nﬁi E". (53)

In the scalar case, to construct the integral equations one would simply take a linear
combination of (f.J) and (p.J). Here we multiply (5.J) by a and (5-3J) by bC¢ and
subtract to obtain:

pLeyn,, E'— NypE' =h sur I’ (5.4)

1

where the operators L. and N! are defined for all j € H, % (divr,T) by :
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Lj= {aC’HE - bC; <%I + Mne> }j,
1
Nii={=a (g1 + M) + 6C5C

and
. . _1
h = aypE™ — bCSVNKe E"¢ e H, ?(divp,T). (5.5)
1

If E' is represented by the potential ¥ B, applied to a density j € H, 2 (divp,T) :
Eir) = (g, (@), zeQ, (56)
we obtain :
ypE! = Ch, and YNy, E' = <%I + MRZ>J onT (5.7)
Substituting (5.7) in (5.4), we obtain a first integral equation:
S'j= {pL; <%I + MRZ.) - N;Cm}j =h on I’ (5.8)
1

This is an integral equation for the unknown j € H, ?(divr,I"). Having solved this
equation, we construct E' and E® by the representations (f.4) in © and :

ES=p <\IJE (%I + Mm)j> () + (Uar,, Cud) (@) x€Q° (5.9)

. _1
If E* is represented by the potential W), applied to a density m € H, ? (divp,T) :
E'(z) = —(¥n, m)(z), z€9Q, (5.10)

we obtain:
. 1 ,
vpE' = <§I + M,.gi) m and VN, E'=C,m on I (5.11)
Substituting (B.11) in (5.4), we obtain a second integral equation:

1
Tm= {pL/eCM. —Né <§I+M,ﬂ.>}m:h on I'. (5.12)

_1
This is an integral equation for the unknown m € H,?(divr,I'). Having solved this
equation, we construct E' and E® by the representations (5.10) in  and:

1
E°(z) = p (g, Crm) (z) + <\I’Mﬁe (51 + M,{i)m> (z), x € Q°. (5.13)
Contrary to the preceding method from the previous section, the two integral equa-

tions are not equivalent, in general. The following theorem corresponds to Theorem [.1].
The proof is similar to the scalar case.
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Theorem 5.1 We assume that k2 is not an eigenvalue of the associated interior problem

@1a).

If j € H, 2 (divy,T) solves (5.), E' and E®, given by (5.6) et (5.9) respectively, solve the

dielectric scattering problem.
1

If m € H ?(divy,T) solves (5.12), E' and E®, given by (5.10) and (5.13) respectively,

solve the dielectric scattering problem.

PROOF. In each case the integral representations of E' and E° satisfy the Maxwell
equations and the Silver-Miiller condition. It remains to prove that the tranmission
conditions are satisfied. We prove it for the equation (F.19), the arguments being similar

for (B.§).

Assume that m solves (5.13) which we rewrite as :

1 1 .
a {pCﬁeCnim + (51 + Mﬁe> <§I + MRZ.) m — yDEmc}

1 1 (5.14)
_bCE]k {p <§I + Mlie> Cﬂim + Cne <§I + M/@Z> m— N, Elnc} —0.

Then, using the integral representation (p.13) of E*, we obtain :
. . 1 1 .
(’YE}ES + ,YEEznc _ PYDEZ) = —pC,ieCM.m — <§I + Mﬁe> <§I + Mfﬂ) m +’YDEZnC,

('VJCVM B+ 'VJCVM — PYNs, E')=—p <§I + Mne> Coym —C, (51 + Mm) m + 'VJCV,€€ E™.

We have to show that the right hand sides of these equalities vanish.
We introduce the function v defined on € by:

1 )
V(@) = —pp,, Crm — Uy, <§1 ; M> ——

By equation (p.14) we have aypv — bCgyn, v = 0. Since E™° satisfies the Maxwell
system curlcurlv — k?v = 0 in Q, v satisfies it, too. By hypothesis, 2 is not an
eigenvalue of the associated interior problem, which implies v = 0 in Q. In particular,
YpV et N, v vanish, which shows that the above right hand sides are indeed zero and

that the transmission conditions are satisfied. |

Theorem 5.2 Assume that the hypotheses of Theorem [.3 are satisfied and that K2 s
not an eigenvalue of the associated interior problem (L.17). Then the operators S’ and
T’ are injective.

PROOF. We prove the result for the operator T’, similar arguments being valid for S’.

_1
Assume that mp € H, *(divr,I') solves the homogeeous equation :

1
T'mg = pL'.C,.mg — N/ <§I + MM> mg = 0. (5.15)
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We want to show that my = 0.
We construct v and vy as follows:

va(z) = p(VE,, Ck,mo)(x) + <\I/M,@e {%I + M,.%} m0> (x), x € 0°,
and
vi(z) = = (¥, mo)(z), x €.

By Theorem p.J], these functions solve the homogeneous scattering problem (i.e. when
E"¢ = 0), and therefore vi =0 in Q and vy =0 in Q°. Now we define

v(z) = —(Var, mo)(z) x € Q°
We have 7§, v = Cy;mg = YN, V1 = 0. Since v satisfies the Silver-Miiller condition, we

have v =0 in Q¢ Thus v =0 is R? and [yp]v = mg = 0. [ |

Remark 5.3 The operators S’ and T’ are the dual operators of S and T, respectively, for
the bilinear form B. Therefore they are Fredholm of index zero under the same hypotheses
as those given in Theorems [[.3 and [L.§.

In order that each of the four integral equations admit a unique solution for all positive
real values of k., we will now give an example of how to choose the constants a and b
such that the associated interior problem does not admit any real eigenvalue.

We sumarize all the previous results by the final theorem.

Theorem 5.4 Assume that:
(i) ke is a positive real number,

(ii) a =1 and b =in with n € R\{0},

2

i MeK/i
i) — # —1, # —1.

( ) He ,ui’{g

Then the operators S, T, S" and T' are invertible. Moreover, given E™ € Hio.(curl, R?),

the integral representations {(E1), (E11)}, {(E8), (£:9)} and {(E10), (F13)} of E' et E?

give the solution of the dielectric scattering problem for all positive real values of ke.

6 Conclusion

In this paper we have described and analyzed modified boundary integral equations to
solve a radiation problem for the Maxwell system that are stable for all wave numbers.
In Section [ we have derived two boundary integral equations using an ansatz for the
exterior field and in Section ] we have derived two integral equations using an ansatz
for the interior field. Note that if it is only the exterior field that is of interest, one can
choose an integral equation which gives a simple representation for E*, e.g. ({.7) or (£.9).
This choice was used in the PhD thesis [R(] for an application in an optimization problem
concerning the far field pattern. For numerical results using this method, we refer to [20].
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