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On the Kleinman-Martin integral equation method for

electromagnetic scattering by a dielectric body

M. Costabel, F. Le Louër

IRMAR, University of Rennes 1.

Abstract

The interface problem describing the scattering of time-harmonic electromagnetic
waves by a dielectric body is often formulated as a pair of coupled boundary integral
equations for the electric and magnetic current densities on the interface Γ. In this
paper, following an idea developped by R. Kleinman and P. Martin [18] for acoustic
scattering problems, we consider methods for solving the dielectric scattering prob-
lem using a single integral equation over Γ for a single unknown density. One knows
that such boundary integral formulations of the Maxwell equations are not uniquely
solvable when the exterior wave number is an eigenvalue of an associated interior
Maxwell boundary value problem. We obtain four different families of integral equa-
tions for which we can show that by choosing some parameters in an appropriate
way, they become uniquely solvable for all real frequencies.

Keywords : scattering problems, Maxwell equations, boundary integral equations,
Helmholtz decomposition.

1 Introduction

We consider the scattering of time-harmonic electromagnetic waves in R
3 by a bounded

obstacle with a smooth and simply connected boundary. We assume that the dielectric
permittivity and the magnetic permeability take constant, in general different, values
in the interior and in the exterior of the domain. This problem is described by the
system of Maxwell’s equations, valid in the sense of distributions in R

3, which implies
two transmission conditions expressing the continuity of the tangential components of the
fields across the interface. The transmission problem is completed by the Silver-Müller
radiation condition at infinity (see [21] and [22]).

It is well known that this problem can be reduced in several different ways to sys-
tems of two boundary integral equations for two unknown tangential vector fields on the
interface (see [7, 22]). These pairs of integral equations are not always uniquely solvable
for all values of the exterior wave number, although the underlying Maxwell interface
problem is uniquely solvable under standard assumptions on the material coefficients. It
can be desirable to solve a single integral equation for a single unknown, rather than a
system of two equations of two unknowns (see [1], [8] and [23]).
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In this paper, we study methods for solving the transmission problem using a single
boundary integral equation for a single unknown tangential vector field on the interface.
We follow ideas of [18] where R. E. Kleinman and P. A. Martin considered the analogous
question for the acoustic interface scattering problem. The method consists of represent-
ing the solution in one domain by some combination of a single layer potential and a
double layer potential, and inserting this representation into the transmission conditions
and the Calderón relations of the other domain. Several different integral equations of
the first kind or of the second kind, containing two arbitrary parameters, can be ob-
tained in this way, and in the scalar case, the parameters can be chosen in such a way
that no spurious real frequencies are introduced. Following the same procedure in the
electromagnetic case, one encounters two main difficulties:

The first problem is that some boundary integral operators that are compact in
the scalar case are no longer compact, and therefore arguments based on the theory
of Fredholm integral equations of the second kind have to be refined in order to show
well-posedness of the corresponding integral equations.

The second problem comes from a lack of ellipticity. The spurious frequencies are as-
sociated with the spectrum of a certain interior boundary value problem of the third kind,
and whereas in the scalar case this is an elliptic boundary value problem whose spectrum
can be moved off the real line by the right choice of parameters, in the Maxwell case this
boundary value problem is not elliptic, in general. Thus an additional idea is needed
to avoid real irregular frequences. Since the Kleinman-Martin method has similarities
to the combined field integral equation methods, we use a regularizer introduced by M.
Windisch and O. Steinbach in [23] in the context of combined field integral equations for
the time-harmonic Maxwell equations. This regularizer is a positive definite boundary
integral operator with a similar structure as the operator of the electrical field integral
equation, but it is not a compact operator like those used in [10] and [6] for regularizing
the exterior electromagnetic scattering problem. Its introduction changes the boundary
condition in the associated interior boundary value problem from a non-elliptic local
impedance-like condition to a non-local, but elliptic, boundary condition.

This work contains results from the thesis [20] where this integral formulation of
the transmission problem is used to study the shape derivatives of the solution of the
dielectric scattering problem, in the context of a problem of optimising the shape of a
dielectric lens in order to obtain a prescribed radiation pattern.

In Section 3 we recall briefly some results about traces and potentials for Maxwell’s
equations in Sobolev spaces, following the notation of [7] and [6]. We also recall some
properties of the Laplace-Beltrami operator which will then be used for a Helmholtz
decomposition of the boundary energy space shown by A. De La Bourdonnaie in [16].
In the following sections, this allows us to prove the invertibility of boundary integral
operators by using a new integral representation of the potential’s traces. Sections 4 and
5 contain the details of the method for solving the transmission problem using single
boundary integral equations. In Section 4, we start from a layer representation for the
exterior field whereas in Section 5, we use a layer representation for the interior field. In
either case, we derive two boundary integral equations of the second kind and we show
their unique solvability under suitable conditions on an associated interior boundary value
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problem. Moreover, we show that the integral operators in each integral equation are
Fredholm of index zero. We also construct the solution of the transmission problem using
the solution of any of the four integral equations. We finally show how to choose the free
parameters so that the associated interior boundary value problem is uniquely solvable,
and as a consequence, we can construct an integral representation of the solution which
yields uniquely solvable boundary integral equations for all real frequencies.

2 The dielectric scattering problem

Let Ω denote a bounded domain in R
3 and let Ωc denote the exterior domain R

3\Ω. In
this paper, we will assume that the boundary Γ of Ω is a smooth and simply connected
closed surface, so that Ω is diffeomorphic to a ball. Let n denote the outer unit normal
vector on the boundary Γ.

In Ω (resp. Ωc) the electric permittivity ǫi (resp. ǫe) and the magnetic permeability
µi (resp. µe) are positive constants. The frequency ω is the same in Ω and in Ωc. The
interior wave number κi and the exterior wave number κe are complex constants of non
negative imaginary part.

Notation: For a domain G ⊂ R
3 we denote by Hs(G) the usual L2-based Sobolev

space of order s ∈ R, and by Hs
loc(G) the space of functions whose restrictions to any

bounded subdomain B of G belong to Hs(B). Spaces of vector functions will be denoted
by boldface letters, thus

Hs(G) = (Hs(G))3 .

If D is a differential operator, we write:

H(D,Ω) = {u ∈ L2(Ω) : Du ∈ L2(Ω)}

Hloc(D,Ωc) = {u ∈ L2
loc(Ω

c) : Du ∈ L2
loc(Ω

c)}

The space H(D,Ω) is endowed with the natural graph norm. This defines in particular
the Hilbert spaces H(curl,Ω) and H(curl curl,Ω).

The time-harmonic dielectric scattering problem is formulated as follows.

The dielectric scattering problem : Given an incident field Einc ∈ Hloc(curl,R3)
that satisfies curl curlEinc − κ2

eE
inc = 0 in a neighborhood of Ω, we seek two fields

Ei ∈ H(curl,Ω) and Es ∈ Hloc(curl,Ωc) satisfying the time-harmonic Maxwell equations

curl curlEi − κ2
i E

i = 0 in Ω, (2.1)

curl curlEs − κ2
eE

s = 0 in Ωc, (2.2)

the two transmission conditions,

n × Ei = n × (Es + Einc) on Γ (2.3)

µ−1
i (n × curlEi) = µ−1

e n × curl(Es + Einc) on Γ (2.4)
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and the Silver-Müller radiation condition:

lim
|x|→+∞

|x|

∣

∣

∣

∣

curlEs(x) ×
x

|x|
− iκeE

s(x)

∣

∣

∣

∣

= 0. (2.5)

It is well known that this problem has at most one solution under some mild restric-
tions on the dielectric constants. We give sufficient conditions in the next theorem, and
for completeness we give its simple proof.

Theorem 2.1 Assume that the constants µi, κi, µe and κe satisfy:

(i) κe is real and positive or Im(κe) > 0,

(ii) Im

(

κe
µe

µi

)

≤ 0 and Im

(

κe
µe

µi
κ2

i

)

≥ 0.

Then the dielectric scattering problem has at most one solution.

Proof. We use similar arguments as in the acoustic case [18]. Assume that Einc = 0.
Let (Ei,Es) be a solution of the homogeneous scattering problem. Let BR be a ball of
radius R large enough such that Ω ⊂ BR and let nR the unit outer normal vector to BR.
Integration by parts using the Maxwell equations (2.1) and (2.2) and the transmission
conditions (2.3) and (2.4) gives :
∫

∂BR

(curlEs × nR) · Es =

∫

BR\Ω

{| curlEs|2 − κ2
e|E

s|2} +
µe

µi

∫

Ω
{| curlEi|2 − κ2

i |E
i|2}

We multiply this by κe and take the imaginary part:

Im

(

κe

∫

∂BR

(curlEs × nR) · Es

)

= Im(κe)

(

∫

BR\Ω
{| curlEs|2 + |κeE

s|2}

)

+ Im

(

κe
µe

µi

)∫

Ω
| curlEi|2 − Im

(

κe
µe

µi
κ2

i

)∫

Ω
|Ei|2.

Under the hypotheses (i) and (ii), all terms on the right hand side are non-positive.
Thanks to the Silver-Müller condition, we have

lim
R→+∞

∫

∂BR

| curlEs × nR − iκeE
s|2 = 0.

Developping this expression, we get

lim
R→+∞

∫

∂BR

| curlEs × nR|
2 + |κeE

s|2 − 2Re
(

curlEs × nR · iκeE
s
)

= 0.

As we have seen, we have
∫

∂BR

Re
(

curlEs × nR · iκeE
)

= Im

∫

∂BR

(

κe curlEs × nR · E
)

≤ 0.

4



It follows that

lim
R→+∞

∫

∂BR

|Es|2 = 0.

Thus, by Rellich’s lemma [10], Es = 0 in Ωc. Using the transmission conditions, we
obtain γDEi = γNκi

Ei = 0. It follows that Ei = 0 in Ω. �

3 Traces and electromagnetic potentials

We use some well known results about traces of vector fields and integral representations
of time-harmonic electromagnetic fields. Details can be found in [3, 4, 5, 7, 12, 22].

Definition 3.1 For a vector function u ∈ (C ∞(Ω))3 and a scalar function v ∈ C∞(Ω)
we define the traces :

γv = v|Γ ,

γDu := (n × u)|Γ (Dirichlet) and

γNκ
u := κ−1(n × curl u)|Γ (Neumann).

We introduce the Hilbert spacesHs(Γ) = γ
(

Hs+ 1

2 (Ω)
)

, and Hs
×(Γ) = γD

(

Hs+ 1

2 (Ω)
)

For s > 0, the traces

γ : Hs+ 1

2 (Ω) → Hs(Γ),

γD : Hs+ 1

2 (Ω) → Hs
×(Γ)

are then continuous. The dual of Hs(Γ) and Hs
×(Γ) with respect to the L2 (or L2) scalar

product is denoted by H−s(Γ) and H−s
× (Γ), respectively.

We use the surface differential operators: The tangential gradient denoted by ∇Γ, the
surface divergence denoted by divΓ, the tangential vector curl denoted by curlΓ and the
surface scalar curl denoted by curlΓ. For their definitions we refer to [5], [12] and [22].

Definition 3.2 We define the Hilbert space

H
− 1

2

× (divΓ,Γ) =

{

j ∈ H
− 1

2

× (Γ),divΓ j ∈ H− 1

2 (Γ)

}

endowed with the norm

|| · ||
H

−
1
2

×
(divΓ,Γ)

= || · ||
H

−
1
2

×
(Γ)

+ ||divΓ ·||
H−

1
2 (Γ)

.

The skew-symmetric bilinear form

B : H
− 1

2

× (divΓ,Γ) × H
− 1

2

× (divΓ,Γ) → C

( j,m) → B( j, m) =

∫

Γ
(n × j) · m dσ

defines a non-degenerate duality product on H
− 1

2

× (divΓ,Γ).
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Lemma 3.3 The operators γD and γN are linear and continuous from (C∞(Ω))3 to
L2
×(Γ) and they can be extended to continuous linear operators from H(curl,Ω) and

H(curl,Ω) ∩ H(curl curl,Ω), respectively, to H
− 1

2

× (divΓ,Γ). Moreover, for all u, v ∈
H(curl,Ω), we have:

∫

Ω
[(curl u · v) − (u · curl v)] dx = B(γDu, γDv). (3.1)

For u ∈ Hloc(curl,Ωc) and v ∈ Hloc(curl curl,Ωc)) we define γc
Du and γc

Nv in the
same way and the same mapping properties hold true.

Recall that we assume that the boundary Γ is smooth and topologically trivial. For
a proof of the following result, we refer to [3, 12, 22].

Lemma 3.4 Let t ∈ R. The Laplace-Beltrami operator

∆Γ = divΓ ∇Γ = − curlΓ curlΓ (3.2)

is linear and continuous from Ht+2(Γ) to Ht(Γ).
It is an isomorphism from Ht+2(Γ)/R to the space Ht

∗(Γ) defined by

u ∈ Ht
∗(Γ) ⇐⇒ u ∈ Ht(Γ) and

∫

Γ
u = 0.

We note the following equalities:

curlΓ ∇Γ = 0 and divΓ curlΓ = 0 (3.3)

divΓ(n × j) = − curlΓ j and curlΓ(n × j) = divΓ j (3.4)

Let κ be a complex number such that Im(κ) ≥ 0 and let

G(κ, |x − y|) =
eiκ|x−y|

4π|x− y|

be the fundamental solution of the Helmholtz equation

∆u+ κ2u = 0.

The single layer potential ψκ is given by :

(ψκu)(x) =

∫

Γ
G(κ, |x − y|)u(y)dσ(y) x ∈ R

3\Γ,

and its trace by

Vκu(x) =

∫

Γ
G(κ, |x − y|)u(y)dσ(y) x ∈ Γ.

For a proof of the following well-known result, see [17, 22].
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Lemma 3.5 The operators

ψκ : H− 1

2 (Γ) → H1
loc(R

3)

Vκ : H− 1

2 (Γ) → H
1

2 (Γ)

are continuous.

We define the electric potential ΨEκ
generated by j ∈ H

− 1

2

× (divΓ,Γ) by

ΨEκ
j := κψκ j+κ−1∇ψκ divΓ j

This can be written as ΨEκ
j := κ−1 curl curlψκ j because of the Helmholtz equation and

the identity curl curl = −∆ + ∇ div (cf [3]).

We define the magnetic potential ΨMκ
generated by m ∈ H

− 1

2

× (divΓ,Γ) by

ΨMκ
m := curlψκm.

These potentials satisfy

κ−1 curlΨEκ
= ΨMκ

and κ−1 curlΨMκ
= ΨEκ

.

We denote the identity operator by I.

Lemma 3.6 The potentials ΨEκ
et ΨMκ

are continuous from H
− 1

2

× (divΓ,Γ) to Hloc(curl,R3).

For j ∈ H
− 1

2

× (divΓ,Γ) we have

(curl curl−κ2I)ΨEκ
j = 0 and (curl curl−κ2I)ΨMκ

m = 0 in R
3\Γ

and ΨEκ
j and ΨMκ

m satisfy the Silver-Müller condition.

It follows that the traces γD, γNκ
, γc

D and γc
Nκ

can be applied to ΨEκ
and ΨMκ

, resulting

in continuous mappings from H
− 1

2

× (divΓ,Γ) to itself satisfying

γNκ
ΨEκ

= γDΨMκ
and γNκ

ΨMκ
= γDΨEκ

.

Defining

[γD] = γD − γc
D, {γD} = −

1

2
(γD + γc

D) ,

[γNκ
] = γNκ

− γc
Nκ
, {γNκ

} = −
1

2

(

γNκ
+ γc

Nκ

)

.

we have the following jump relations (see [4]):

[γD] ΨEκ
= 0, [γNκ

] ΨEκ
= −I,

[γNκ
] ΨMκ

= −I, [γD] ΨMκ
= 0.
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Now assume that E ∈ L2
loc(R

3) belongs to H(curl,Ω) in the interior domain and to
Hloc(curl,Ωc) in the exterior domain and satisfies the equation

(curl curl−κ2I)E = 0 (3.5)

in R
3 \Γ and the Silver-Müller condition. Then if we set j = [γNκ

]E, m = [γD]E, we have
on R

3 \ Γ the Stratton-Chu integral representation

E = −ΨEκ
j−ΨMκ

m. (3.6)

Special cases of (3.6) are: If (Ei,Es) solves the dielectric scattering problem, then

− ΨEκe
γc

Nκe
Es − ΨMκe

γc
DEs =

{

−Es x ∈ Ωc

0 x ∈ Ω
(3.7)

ΨEκe
γc

Nκe

(

Es + Einc
)

+ ΨMκe
γc

D

(

Es + Einc
)

=

{

Es x ∈ Ωc

−Einc x ∈ Ω
(3.8)

−ΨEκi
γNκi

Ei − ΨMκi
γDEi =

{

0 x ∈ Ωc

Ei x ∈ Ω
(3.9)

We can now define the main boundary integral operators:

Cκ = {γD}ΨEκ
= {γNκ

}ΨMκ
,

Mκ = {γD}ΨMκ
= {γNκ

}ΨEκ
.

These are bounded operators in H
− 1

2

× (divΓ,Γ).
As tools, we will need variants of these operators:

Definition 3.7 Define the operators Cκ,0 and C∗
0 for j ∈ H

− 1

2

× (divΓ,Γ) by :

Cκ,0 j = −κ n × V0 j +κ−1 curlΓ V0 divΓ j

C∗
0 j = n × V0 j+ curlΓ V0 divΓ j

Note that C∗
0 differs from C1,0 by the relative sign of the two terms.

The following theorem is proved in [22] section 5.5.

Theorem 3.8 The operators Cκ−Cκ,0 and Mκ are compact operators from H
− 1

2

× (divΓ,Γ)
to itself.

The Calderón projectors for the time-harmonic Maxwell system (3.5) are P =
1

2
I+Aκ

and P c =
1

2
I −Aκ where

A =

(

Mκ Cκ

Cκ Mκ

)

.
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We have P ◦ P c ≡ 0 and therefore

C2
κ =

1

4
I −M2

κ . (3.10)

It follows that the operator Cκ is Fredholm of index zero.
The following theorem was proved in [23].

Lemma 3.9 The operator C∗
0 is self-adjoint and elliptic for the bilinear form B and

invertible on H
− 1

2

× (divΓ,Γ).

Indeed, for j ∈ H
− 1

2

× (divΓ,Γ) we have

B(j, C∗
0 j) =

∫

Γ

{

j ·V0 j + divΓ j V0 divΓ j
}

and the result follows from the H− 1

2 (Γ)-ellipticity of the scalar single layer potential
operator V0.

4 Integral equations 1

In this section, we present the first method for solving the dielectric problem, following
the procedure of R. E. Kleinman and P. A. Martin [18]: We use a layer ansatz on the
exterior field to construct two alternative boundary integral equations.
In the scalar case, one represents the exterior field as a linear combination of a single
layer potential and a double layer potential, both generated by the same density. It turns
out that this simple idea does not suffice in the electromagnetic case if one wants to avoid
irregular frequencies. Our approach is related to the idea of “modified combined field
integral equations”: We compose one of the electromagnetic potential operators with an
elliptic and invertible boundary integral operator, namely C∗

0 . More precisely, we assume
that Es admits the following integral representation :

Es(x) = −a(ΨEκe
j)(x) − b(ΨMκe

C∗
0 j)(x) for x ∈ Ωc . (4.1)

Here j ∈ H
− 1

2

× (divΓ,Γ) is the unknown density and a and b are arbitrary complex con-
stants.

We set ρ =
µeκi

µiκe
. The transmission conditions can be rewritten :

γDEi = γc
DEs + γDEinc and γNκi

Ei = ρ−1
(

γc
Nκe

Es + γNκe
Einc

)

.

Using this in the integral representation formula (3.9) in Ω, we get:

Ei = −
1

ρ
ΨEκi

(

γc
Nκe

Es + γNκe
Einc

)

− ΨMκi

(

γc
DEs + γDEinc

)

in Ω. (4.2)
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We take traces in (4.1) and obtain the Calderón relations

γc
DEs =

{

aCκe
− b

(

1

2
I −Mκe

)

C∗
0

}

j = Le j on Γ, (4.3)

γc
Nκe

Es =

{

−a

(

1

2
I −Mκe

)

+ bCκe
C∗

0

}

j = Ne j on Γ. (4.4)

On the other hand, taking traces in (4.2) gives:

ρ

(

−
1

2
I +Mκi

)

(

γc
DEs + γDEinc

)

+ Cκi

(

γc
Nκe

Es + γNκe
Einc

)

= 0 on Γ, (4.5)

(

−
1

2
I +Mκi

)

(

γc
Nκe

Es + γNκe
Einc

)

+ ρCκi

(

γc
DEs + γDEinc

)

= 0 on Γ. (4.6)

We can now substitute (4.3) and (4.4) into (4.5) and get our first integral equation:

S j = ρ

(

−
1

2
I +Mκi

)

Le j+Cκi
Ne j = f (4.7)

where f = −ρ

(

−
1

2
I +Mκi

)

γDEinc − Cκi
γNκe

Einc. (4.8)

If we substitute (4.3) and (4.4) into (4.6), we get our second integral equation:

T j = ρCκi
Le j+

(

−
1

2
I +Mκi

)

Ne j = g (4.9)

where g = −ρCκi
γDEinc −

(

−
1

2
I +Mκi

)

γNκe
Einc. (4.10)

Thus we obtain two boundary integral equations for the unknown j. Having solved
either one, we construct Es using (4.1) and Ei using (4.2), (4.3), (4.4):

Ei = −
1

ρ

(

ΨEκi
{γNκe

Einc +Ne j}
)

−
(

ΨMκi
{γDEinc + Le j}

)

. (4.11)

Theorem 4.1 If j ∈ H
− 1

2

× (divΓ,Γ) solves (4.7) or (4.9), then Es and Ei given by (4.1)
and (4.11) solve the transmission problem.

Proof. We know that Ei and Es satisfy the Maxwell equations and the Silver-Müller
condition. It remains to verify that Es and Ei satisfy the transmission conditions (2.3)
and (2.4). Using the integral representation (4.1) and (4.2) of Es and Ei, a simple
computation gives:

ρ(γc
DEs + γDEinc − γDEi) = S j−f (4.12)

and
γc

Nκe
Es + γNκe

Einc − ργNκi
Ei = T j−g (4.13)

We deduce that
- if j solves (4.7), then relation (4.12) proves that the condition (2.3) is satisfied,
- if j solves (4.9), then relation (4.13) proves that the condition (2.4) is satisfied.

Now we show that (4.7) and (4.9) are in fact equivalent. Define :
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u(x) = −ΨEκi
{γNκe

Einc +Ne j}(x) − ρΨMκi
{γDEinc + Le j}(x) for x ∈ Ωc.

This field u is in Hloc(curl,Ωc) and satisfies the Maxwell system

curl curl u − κ2
i u = 0 (4.14)

in Ωc. On the boundary Γ we have:

γc
Du = S j−f and γc

Nκi

u = T j−g.

Since u solves (4.14) in Ωc and satisfies the Silver-Müller condition, it follows:

j satisfies (4.7) ⇒ γc
Du = 0 ⇒ u ≡ 0 in Ω

c
⇒ γc

Nκi

u = 0 ⇒ j satisfies (4.9).

j satisfies (4.9) ⇒ γc
Nκi

u = 0 ⇒ u ≡ 0 in Ωc ⇒ γc
Du = 0 ⇒ j satisfies (4.7).

As a consequence, if j solves one of the two integral equations, it solves both, and then
both transmission conditions (2.3) and (2.4) are satisfied. �

The next theorem is concerned with the uniqueness of the solutions of the boundary
integral equations (4.7) and (4.9), i.e., with the existence of nontrivial solutions of the
following homogeneous forms of (4.7) and (4.9):

ρ

(

−
1

2
I +Mκi

)

Le j0 +Cκi
Ne j0 = 0, (4.15)

ρCκi
Le j0 +

(

−
1

2
I +Mκi

)

Ne j0 = 0. (4.16)

As in the scalar case [18], we associate with the dielectric scattering problem a new
interior boundary value problem, the eigenvalues of which determine uniqueness for the
integral equations.

Associated interior problem: For a, b ∈ C, consider the boundary value problem

curl curl u − κ2
eu = 0 in Ω, aγDu − bC∗

0γNe
u = 0 on Γ. (4.17)

Lemma 4.2 . Let a, b ∈ C \ 0. If Im
b

a
6= 0 , then the associated interior problem (4.17)

does not admit any real eigenvalue.

Proof. Let κ2
e be an eigenvalue of the interior problem such that κe ∈ R and let u 6= 0

be an eigenfunction. Using Green’s theorem we have:

∫

Ω
| curl u|2 − κ2

e

∫

Ω
|u|2 = κeB(γNκe

u, γDu) =
aκe

b
B((C∗

0 )−1(γDu), γDu) if b 6= 0

= κe

(

b

a

)

B(γNκe
u, C∗

0 (γNκe
u)) if a 6= 0

11



Taking the imaginary part, under the hypothesis of the lemma if follows

B((C∗
0 )−1(γDu), γDu) = 0 and B(γNκe

u, C∗
0 (γNκe

u)) = 0.

As C∗
0 is elliptic for the bilinear form B, the traces γDu and γNκe

u then vanish. Thanks
to the Stratton-Chu representation formula (3.6) in Ω, we deduce that u = 0, which
contradicts the initial assumption. �

Remark 4.3 Note that this associated interior problem is not an impedance problem (or
Robin problem) as in the scalar case [18]. If we replace in (4.17) the operator C∗

0 by the
identity, we obtain a “pseudo-impedance” type problem. This is a non-elliptic problem,
about whose spectrum we have no information. That the problem is non-elliptic can be
seen as follows: If it were elliptic, its principal part would be elliptic, too. This would be
the vector Laplace operator with the “Neumann” condition γNκe

u = 0. Any gradient of a
harmonic function in H1(Ω) will satisfy the homogeneous problem, which therefore has
an infinite-dimensional nullspace, contradiciting ellipticity. Note that the issue here is
not the apparent non-elliptic nature of the interior Maxwell curl curl operator, which can
easily be remedied by the usual regularization that adds −∇ div, but the manifestly non-
elliptic nature of the Maxwell “Neumann” boundary operator. For a “true” impedance
problem, the operator C∗

0 would have to be replaced not by the identity, but by the rotation

operator j 7→ n× j. This operator leads out of the space H
− 1

2

× (divΓ), however, which rules
it out for our purposes.

For our integral equations, the problem (4.17) plays the same role as the Robin
problem for the scalar case in [18].

Theorem 4.4 Assume that the hypotheses of Theorem 2.3 are satisfied. Then for (a, b) 6=
(0, 0), the homogeneous integral equations (4.15) and (4.16) admit nontrivial solutions if
and only if κ2

e is an eigenvalue of the associated interior problem.

Proof. Assume that j0 6= 0 solves (4.15) or (4.16).
We construct u2 and u1 as follows:

u2(x) = −aΨEκe
j0(x) − bΨMκe

C∗
0 j0(x) for x ∈ Ωc

u1(x) = −
1

ρ
ΨEκi

(Ne j0)(x) − ΨMκi
(Le j0)(x) for x ∈ Ω

By Theorem 4.1, u1 and u2 together solve the transmission problem with Einc = 0.
Since this problem admits at most one solution, we have u2 ≡ 0 in Ωc and u1 ≡ 0 in Ω.
Now we set u(x) = −aΨEκe

j0(x) − bΨMκe
C∗

0 j0(x) for x ∈ Ω.
We have on Γ :

γc
Du2 − γDu = bC∗

0 j0, (4.18)

γc
Nκe

u2 − γNκe
u = a j0 . (4.19)

12



Since γc
Du2 = γc

Ne
u2 = 0 on Γ, we find

aγDu − bC∗
0γNκe

u = 0 on Γ.

Thus u is an eigenfunction associated with the eigenvalue κ2
e of the interior problem or

u ≡ 0. But this latter possibility can be eliminated since it implies that γDu = γNκe
u = 0,

whence j0 = 0 by (4.18) and (4.19), which is contrary to the assumption.
Conversely, assume that κ2

e is an eigenvalue of the associated interior problem. Let v0 6≡ 0
be a corresponding eigenfunction. The Calderón relations in Ω imply that :

−Cκe
γNκe

v0 +

(

1

2
I −Mκe

)

γDv0 = 0,
(

1

2
I −Mκe

)

γNκe
v0 −Cκe

γDv0 = 0.

Using the equality aγDv0 − b C∗
0γNκe

v0 = 0, we obtain

Le(C
∗
0 )−1γDv0 = 0, Ne(C

∗
0 )−1γDv0 = 0, LeγNκe

v0 = 0, NeγNκe
v0 = 0.

If b 6= 0 then γDv0 6= 0, and j0 = (C∗
0 )−1γDv0 is a nontrivial solution of (4.15) and (4.16).

If b = 0 then γNκe
v0 6= 0, and j0 = γNκe

v0 is a nontrivial solution of (4.15) and (4.16). �

Theorem 4.5 Assume that the constants a, b, µe, µi, κe and κi satisfy:

(bκe + 2a) 6= 0,

(

1 +
µe

µi

)

6= 0, (b− 2aκe) 6= 0 and

(

1 +
µeκ

2
i

µiκ2
e

)

6= 0.

Then S is a Fredholm operator of index zero on H
− 1

2

× (divΓ,Γ).

Proof. We can rewrite S as follows:

S =
1

4
bρC∗

0 −
1

2
bρ(Mκi

+Mκe
)C∗

0 + bρMκi
Mκe

C∗
0 −

1

2
aρ(Cκe

− Cκe,0)

−
1

2
a(Cκi

−Cκi,0) −
1

2
a(ρCκe,0 + Cκi,0) + aρMκi

Cκe
+ aCκi

Mκe

+b(Cκi
− Cκi,0)Cκe

C∗
0 + bCκi,0(Cκe

− Cκe,0)C
∗
0 + bCκi,0Cκe,0C

∗
0 .

Thus S is a compact perturbation of the operator

S1 = b

(

1

4
ρI + Cκi,0Cκe,0

)

C∗
0 −

1

2
a (ρCκe,0 + Cκi,0) .

We have to show that the operator S1 is Fredholm of index zero. For this we use the

Helmholtz decomposition of H
− 1

2

× (divΓ,Γ) :

H
− 1

2

× (divΓ,Γ) = ∇ΓH
3

2 (Γ) ⊕ curlΓH
1

2 (Γ) . (4.20)
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For a detailed proof of (4.20) see [16]. Note that we are assuming that Ω has trivial
topology.

The terms in the decomposition j = ∇Γp+ curlΓ q for j ∈ H
− 1

2

× (divΓ,Γ) are obtained
by solving the Laplace-Beltrami equation (see Lemma 3.4):

p = ∆−1
Γ divΓ j , q = −∆−1

Γ curlΓ j .

The mapping

H
− 1

2

× (divΓ,Γ) → H
3

2 (Γ)/R ×H
1

2 (Γ)/R

j = ∇Γp+ curlΓ q 7→

(

p
q

)

(4.21)

is an isomorphism. Using this isomorphism, we can rewrite the operator S1 as an operator
S1 defined from H

3

2 (Γ)/R×H
1

2 (Γ)/R into itself. Then to show that S1 it is Fredholm of
index zero it suffices to show that S1 has this property. Let us begin by rewriting C∗

0 and

Cκ,0 as operators C∗
0 and Cκ,0 defined on H

3

2 (Γ)/R × H
1

2 (Γ)/R. We have to determine

P0 ∈ H
3

2 (Γ)/R and Q0 ∈ H
1

2 (Γ)/R such that C∗
0 (∇Γp + curlΓ q) = ∇ΓP0 + curlΓQ0,

and this defines C∗
0 by:

C∗
0

(

p
q

)

=

(

P0

Q0

)

.

We have
P0 = ∆−1

Γ divΓ C
∗
0 (∇Γp+ curlΓ q)

and
Q0 = −∆−1

Γ curlΓ C
∗
0(∇Γp+ curlΓ q).

Using the integral representation of C∗
0 and the equalities (3.3) and (3.4) we obtain:

C∗
0 =

(

C11 C12

C21,1 + C21,2 C22

)

,

where
C11 = −∆−1

Γ curlΓ V0∇Γ, C12 = −∆−1
Γ curlΓ V0 curlΓ,

C21,1 = −∆−1
Γ divΓ V0∇Γ, C22 = −∆−1

Γ divΓ V0 curlΓ,
C21,2 = V0∆Γ.

Some of these operators are of lower order than what a simple counting of orders (with
-1 for the order of V0) would give:

Lemma 4.6 The operators curlΓ V0∇Γ and divΓ V0 curlΓ are linear and continuous from
Ht(Γ) into itself.

Proof. These results are due to the equalites (3.3). One can write (see [22, page 240]):

curlΓ V0∇Γu(x) =

∫

Γ
n(x) · curlx {G(0, |x − y|)∇Γu(y)} dσ(y)

=

∫

Γ
{(n(x) − n(y)) ×∇xG(0, |x − y|)} · ∇Γu(y)dσ(y)

−V0 curlΓ ∇Γu.
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The second term on the right hand side vanishes, and the kernel

(n(x) − n(y)) ×∇xG(0, |x − y|)

has the same weak singularity as the fundamental solution G(0, |x− y|). We deduce the
lemma using similar arguments for the other operator. �

As a consequence, the operators C11 and C22 are of order -2, the operators C12 and C21,1 are
of order -1 and the operator C21,2 is of order 1. Therefore, C∗

0 is a compact perturbation
of

(

0 C12

C21,2 0

)

By definition of Cκ,0, the operator Cκ,0 can be written as:

Cκ,0 =

(

−κC11 −κC12

−κC21,1 + κ−1C21,2 −κC22

)

=

(

−κ 0
0 κ−1

)

C∗
0 − (κ+ κ−1)

(

0 0
C21,1 C22

)

.

The second term on the right hand side is compact on H
3

2 (Γ)/R ×H
1

2 (Γ)/R.

Since Cκ,0 is a compact perturbation of

(

−κ 0
0 κ−1

)

C∗
0 ,

the sum Cκi,0 + ρCκe,0 is a compact perturbation of

(

−(κi + ρκe) 0

0 (κ−1
i + ρκ−1

e )

)

C∗
0 .

Lemma 4.7 The operator C∗2
0 is a compact perturbation of −

1

4
I.

Proof. It suffices to consider the principal part of (3.10). �

Thus the operator Cκi,0Cκe,0 is a compact perturbation of

1

4

(

κiκ
−1
e 0

0 κ−1
i κe

)

.

Collecting all the results, we found that S1 is a compact perturbation of







1

4
b(ρ+ κiκ

−1
e ) −

1

2
a(κi + ρκe) 0

0
1

4
b(ρ+ κ−1

i κe) +
1

2
a(κ−1

i + ρκ−1
e )






C∗

0 .
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We recall that ρ =
µeκi

µiκe

. The matrix written above is invertible if:

1

4
b(ρ+ κiκ

−1
e ) −

1

2
a(κi + ρκe) 6= 0 ⇔

1

4
(b− 2aκe)

(

1 +
µi

µe

)

6= 0

and

1

4
b(ρ+ κ−1

i κe) +
1

2
a(κ−1

i + ρκ−1
e ) 6= 0 ⇔

1

4
(bκe + 2a)

(

1 +
µiκ

2
e

µeκ2
i

)

6= 0.

Since the operator C∗
0 is invertible, we conclude that under the conditions of the theorem

the operator S1 is Fredholm of index zero and therefore S too. �

Using similar arguments we obtain the following theorem.

Theorem 4.8 Assume that the constants a, b, µe, µi, κe et κi satisfy:
(

a
(

1 +
µeκ

2
i

µiκ2
e

)

+
b

2κe

(

1 +
µe

µi

)

)

·

(

a
(

1 +
µe

µi

)

−
bκe

2

(

1 +
µeκ

2
i

µiκ2
e

)

)

6= 0

Then T is a Fredholm operator of index zero on H
− 1

2

× (divΓ,Γ).

Note that under standard hypotheses on the materials and for real frequencies, the ma-

terial factors such as
(

1 +
µe

µi

)

and
(

1 +
µeκ

2
i

µiκ2
e

)

are always non-zero.

5 Integral equations 2

The second method is based on a layer ansatz for the interior field: We assume that
the interior electric field Ei can be represented either by ΨEκi

j or by ΨMκi
j where the

density j ∈ H
− 1

2

× (divΓ,Γ) is the unknown function we have to determine. We begin with
the Stratton-Chu representation formula (3.8) in Ωc:

Es(x) = ΨEsγc
Nκe

(

Es + Einc
)

(x) + ΨMκe
γc

D

(

Es + Einc
)

(x) x ∈ Ωc (5.1)

We then apply the exterior traces γc
D and γc

Nκe
and use on both sides of (5.1) the

transmission conditions. The result is a relation between the traces of Ei on Γ:

γDEi − γc
DEinc = −ρCκe

γNκi
Ei +

(

−
1

2
I +Mκe

)

γDEi, (5.2)

ργNκi
Ei − γc

Nκe
Einc = −Cκe

γDEi + ρ

(

−
1

2
I +Mκe

)

γNκi
Ei. (5.3)

In the scalar case, to construct the integral equations one would simply take a linear
combination of (5.2) and (5.3). Here we multiply (5.2) by a and (5.3) by bC∗

0 and
subtract to obtain:

ρL′
eγNκi

Ei −N ′
eγDEi = h sur Γ (5.4)

where the operators L′
e and N ′

e are defined for all j ∈ H
− 1

2

× (divΓ,Γ) by :
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L′
e j =

{

aCκe
− bC∗

0

(

1

2
I +Mκe

)}

j,

N ′
e j =

{

−a

(

1

2
I +Mκe

)

+ bC∗
0Cκe

}

j,

and

h = aγDEinc − bC∗
0γNκe

Einc ∈ H
− 1

2

× (divΓ,Γ). (5.5)

If Ei is represented by the potential ΨEκi
applied to a density j ∈ H

− 1

2

× (divΓ,Γ) :

Ei(x) = −(ΨEκi
j)(x), x ∈ Ω, (5.6)

we obtain :

γDEi = Cκi
j and γNκi

Ei =

(

1

2
I +Mκi

)

j on Γ (5.7)

Substituting (5.7) in (5.4), we obtain a first integral equation:

S′ j =

{

ρL′
e

(

1

2
I +Mκi

)

−N ′
eCκi

}

j = h on Γ (5.8)

This is an integral equation for the unknown j ∈ H
− 1

2

× (divΓ,Γ). Having solved this
equation, we construct Ei and Es by the representations (5.6) in Ω and :

Es = ρ

(

ΨEκe

(1

2
I +Mκi

)

j

)

(x) +
(

ΨMκe
Cκi

j
)

(x) x ∈ Ωc. (5.9)

If Ei is represented by the potential ΨMκi
applied to a density m ∈ H

− 1

2

× (divΓ,Γ) :

Ei(x) = −(ΨMκi
m)(x), x ∈ Ω, (5.10)

we obtain:

γDEi =

(

1

2
I +Mκi

)

m and γNκi
Ei = Cκi

m on Γ. (5.11)

Substituting (5.11) in (5.4), we obtain a second integral equation:

T′m =

{

ρL′
eCκi

−N ′
e

(

1

2
I +Mκi

)}

m = h on Γ. (5.12)

This is an integral equation for the unknown m ∈ H
− 1

2

× (divΓ,Γ). Having solved this
equation, we construct Ei and Es by the representations (5.10) in Ω and:

Es(x) = ρ
(

ΨEκe
Cκi

m
)

(x) +

(

ΨMκe

(1

2
I +Mκi

)

m

)

(x), x ∈ Ωc. (5.13)

Contrary to the preceding method from the previous section, the two integral equa-
tions are not equivalent, in general. The following theorem corresponds to Theorem 4.1.
The proof is similar to the scalar case.
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Theorem 5.1 We assume that κ2
e is not an eigenvalue of the associated interior problem

(4.17).

If j ∈ H
− 1

2

× (divΓ,Γ) solves (5.8), Ei and Es, given by (5.6) et (5.9) respectively, solve the
dielectric scattering problem.

If m ∈ H
− 1

2

× (divΓ,Γ) solves (5.12), Ei and Es, given by (5.10) and (5.13) respectively,
solve the dielectric scattering problem.

Proof. In each case the integral representations of Ei and Es satisfy the Maxwell
equations and the Silver-Müller condition. It remains to prove that the tranmission
conditions are satisfied. We prove it for the equation (5.12), the arguments being similar
for (5.8).
Assume that m solves (5.12) which we rewrite as :

a

{

ρCκe
Cκi

m +

(

1

2
I +Mκe

)(

1

2
I +Mκi

)

m − γDEinc

}

−bC∗
0

{

ρ

(

1

2
I +Mκe

)

Cκi
m +Cκe

(

1

2
I +Mκi

)

m − γNκe
Einc

}

= 0.

(5.14)

Then, using the integral representation (5.13) of Es, we obtain :

(γc
DEs + γc

DEinc − γDEi) = −ρCκe
Cκi

m −

(

1

2
I +Mκe

)(

1

2
I +Mκi

)

m + γDEinc,

(γc
Nκe

Es + γc
Nκe

− ργNκi
Ei) = −ρ

(

1

2
I +Mκe

)

Cκi
m − Cκe

(

1

2
I +Mκi

)

m + γc
Nκe

Einc.

We have to show that the right hand sides of these equalities vanish.
We introduce the function v defined on Ω by:

v(x) = −ρΨEκe
Cκi

m − ΨMκe

(

1

2
I +Mκi

)

m − Einc.

By equation (5.14) we have aγDv − bC∗
0γNκe

v = 0. Since Einc satisfies the Maxwell
system curl curl v − κ2

ev = 0 in Ω, v satisfies it, too. By hypothesis, κ2
e is not an

eigenvalue of the associated interior problem, which implies v ≡ 0 in Ω. In particular,
γDv et γNκe

v vanish, which shows that the above right hand sides are indeed zero and
that the transmission conditions are satisfied. �

Theorem 5.2 Assume that the hypotheses of Theorem 2.3 are satisfied and that κ2
e is

not an eigenvalue of the associated interior problem (4.17). Then the operators S′ and
T′ are injective.

Proof. We prove the result for the operator T′, similar arguments being valid for S′.

Assume that m0 ∈ H
− 1

2

× (divΓ,Γ) solves the homogeeous equation :

T′m0 = ρL′
eCκi

m0 −N ′
e

(

1

2
I +Mκi

)

m0 = 0. (5.15)
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We want to show that m0 = 0.
We construct v1 and v2 as follows:

v2(x) = ρ(ΨEκe
Cκi

m0)(x) +

(

ΨMκe

{

1

2
I +Mκi

}

m0

)

(x), x ∈ Ωc,

and

v1(x) = −(ΨMκi
m0)(x), x ∈ Ω.

By Theorem 5.1, these functions solve the homogeneous scattering problem (i.e. when
Einc ≡ 0), and therefore v1 ≡ 0 in Ω and v2 ≡ 0 in Ωc. Now we define

v(x) = −(ΨMκi
m0)(x) x ∈ Ωc

We have γc
Nκi

v = Cκi
m0 = γNκi

v1 = 0. Since v satisfies the Silver-Müller condition, we

have v ≡ 0 in Ωc. Thus v ≡ 0 is R
3 and [γD]v = m0 = 0. �

Remark 5.3 The operators S′ and T′ are the dual operators of S and T, respectively, for
the bilinear form B. Therefore they are Fredholm of index zero under the same hypotheses
as those given in Theorems 4.5 and 4.8.

In order that each of the four integral equations admit a unique solution for all positive
real values of κe, we will now give an example of how to choose the constants a and b
such that the associated interior problem does not admit any real eigenvalue.

We sumarize all the previous results by the final theorem.

Theorem 5.4 Assume that:

(i) κe is a positive real number,

(ii) a = 1 and b = iη with η ∈ R\{0},

(iii)
µi

µe

6= −1,
µeκ

2
i

µiκ2
e

6= −1.

Then the operators S, T, S′ and T′ are invertible. Moreover, given Einc ∈ Hloc(curl,R3),
the integral representations {(4.1), (4.11)}, {(5.6), (5.9)} and {(5.10), (5.13)} of Ei et Es

give the solution of the dielectric scattering problem for all positive real values of κe.

6 Conclusion

In this paper we have described and analyzed modified boundary integral equations to
solve a radiation problem for the Maxwell system that are stable for all wave numbers.
In Section 4 we have derived two boundary integral equations using an ansatz for the
exterior field and in Section 5 we have derived two integral equations using an ansatz
for the interior field. Note that if it is only the exterior field that is of interest, one can
choose an integral equation which gives a simple representation for Es, e.g. (4.7) or (4.9).
This choice was used in the PhD thesis [20] for an application in an optimization problem
concerning the far field pattern. For numerical results using this method, we refer to [20].
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