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. The aim of this work is to extend the previous deRham Theorem to this new context; we also give a weaker presentation of intersection differential forms. The description of the "allowability condition" for intersection differential forms uses the tubular neighborhoods of the strata, it is a germ condition. It seems more natural to give a presentation of intersection differential forms whose "allowability" is measured more directly on the strata, as for the intersection homology.

Since the differential forms cannot be defined on the singular part of A, the version we propose here uses a blow up π: Ã → A of the stratified space (essentially the resolution of singularities of Verona [START_REF] Verona | Stratified Mappings-Structure and Triangulability[END_REF]). The allowability of the differential forms is measured on the desingularization π -1 (S) of the strata S of A. This gives rise to weak intersection differential forms. We show that the complex of these differential forms calculates the intersection homology of A. The proof is direct; that is, we show that the usual integration of differential forms on simplices realizes the isomorphism. We finish the work by giving a direct proof of the fact that the Poincaré Duality for intersection cohomology (IH p * (A) ∼ = IH q n- * (A)) can be realized by the integration of the usual wedge product of differential forms (see also [START_REF] Brylinsky | Equivariant intersection cohomology[END_REF] for classical perversities).

In Section 1 we recall the notion of a stratified space A and we introduce the blow up of A: the unfolding (in fact, the resolution of singularities of Verona without faces). Remark that in some cases the unfolding of A appears more naturally than the tubular neighborhood system of A: compact Lie group actions, compact singular Riemannian foliations [START_REF] Molino | Désingularisation des feuilletages riemanniens singuliers[END_REF], etc . . . We recall in the second Section the results of [START_REF] King | Topology invariance of intersection homology without sheaves[END_REF] and [START_REF] Brasselet | Théorème de deRham pour les variétés stratifiées[END_REF] about the intersection homology. Section 3 is devoted to the study of weak intersection differential forms. In the last Section we give the principal results of this note: the deRham Theorem (see §4. 1.5) and Poincaré Duality (see §4.2.7).

We are grateful to G.Hector, E.Ghys (who suggested to us the use of the unfolding) and D.Tanré for useful discussions. We would like to thank the Department of Mathematics of the University of Illinois at Urbana-Champaign for its hospitality during the writing of this paper.

In this work all manifolds are considered smooth and without boundary, "differentiable" and smooth mean "of class C ∞ " and the chains and cochains complexes are taken with coefficients in IR.

Stratified spaces. Unfoldings

The stratified spaces used in [START_REF] Brylinsky | Equivariant intersection cohomology[END_REF] and [START_REF] Brasselet | Théorème de deRham pour les variétés stratifiées[END_REF] are Thom-Mather stratified spaces which are stratified pseudomanifolds. These spaces have a blow up in a manifold, which we called unfolding (see [START_REF] Verona | Stratified Mappings-Structure and Triangulability[END_REF] and [START_REF] Brasselet | Théorème de deRham pour les variétés stratifiées[END_REF]).

Stratified spaces

We introduce the notion of singular space involved in this work.

1.1.1 Remember that a Thom-Mather stratified space A is the union of smooth manifolds, called strata, each of which possesses a tubular neighborhood; these neighborhoods intersect each other in a conical way 1 . The dimension of A, written dim A, is the greatest dimension of the strata.

A stratified space is a Thom-Mather stratified space A such that for each stratum S there exists a stratum R, with dim R = dim A, satisfying S ⊂ R. These strata with maximal dimension are the regular strata, the others are the singular strata. We shall write S to represent the family of singular strata and Σ ⊂ A the union of singular strata. The stratified space A is said to be normal if it possesses only one regular stratum. Notice that, if the codimension of singular strata is at least two, the stratified space A is a topological pseudomanifold (as defined in [START_REF] Goresky | Intersection homology II . -Invent[END_REF]). A useful concept in this work is the depth of A: d(A) = max{i ∈ {0, . . . , dim A} / there exists a family of strata S 0 , . . . , S i with S 0 ⊂ S 1 , S 1 ⊂ S 2 , . . . }.

Unfoldings

We introduce the notion of unfolding, it is the resolution of singularities of [START_REF] Verona | Stratified Mappings-Structure and Triangulability[END_REF] in the category of manifolds without boundary. It comes from A replacing each singular point by an unfolding of its link.

1.2.1

An unfolding of a 0-dimensional stratified space is a finite covering.

An unfolding of a n-dimensional stratified space A is a continuous map π from a manifold à onto A such that

• for each regular stratum R, the restriction π: π -1 (R) → R is a finite trivial smooth covering,

• for each singular stratum S of dimension i, for x ∈ S and for x ∈ π -1 (x) there exists a commutative diagram:

U IR i × cL V IR i × L×] -1, 1[ (1) π P Φ Φ E E c c
where:

i) U and V are neighborhoods of x and x respectively, ii) π L : L → L is an unfolding of L, compact stratified space, iii) Φ is a strata preserving homeomorphism whose restriction to each stratum is smooth and Φ is a diffeomorphism. iv) P (x, ỹ, r) = (x, [π L (ỹ), |r|]).

Here cL denotes the cone L × [0, 1[ / L × {0} and [ , ] a point of cL. 1 For the notions related to Thom-Mather spaces we refer the reader to [START_REF] Thom | Ensembles et morphismes stratifiés[END_REF] and [START_REF] Mather | Notes on topological stability. -Mimeographied Notes[END_REF].

It is shown in [START_REF] Brasselet | Théorème de deRham pour les variétés stratifiées[END_REF] that any stratified space possesses an unfolding. But in some cases the unfolding is a more natural structure than the Thom-Mather structure: the orbit space of an action of a compact Lie group, and the leaf space of a singular Riemannian manifold (see [START_REF] Molino | Désingularisation des feuilletages riemanniens singuliers[END_REF]).

1.2.2

The neighborhood U is called distinguished neighborhood of x. The point x has a base for the family of neighborhoods formed by distinguished neighborhoods. To see this, it suffices to reparametrize ] -1, 1[ and the ratio of cL. As a consequence we get that each open set W ⊂ A has the natural unfolding π: π -1 (W ) → W . The stratified spaces M × A, where M is a manifold, and cA, for A compact, have also natural unfoldings:

π 1 : M × Ã → M × A defined by π 1 (x, ã) = (x, π(ã)), (2) 
π 2 : Ã×]-1, 1[→ cA defined by π 2 (ã, t) = [π(ã), | t |]. (3) 
1.2.3 An isomorphism between two stratified spaces A and A ′ with unfoldings à and Ã′ is given by a stratum preserving homeomorphism f : A → A ′ and by a diffeomorphism f : à → Ã′ satisfying π ′ f = f π. For example (Φ, Φ) is a isomorphism.

Under the unfolding π each singular stratum S becomes a hypersurface of à related to S by the following Proposition.

Proposition 1.2.4 Let S be a singular stratum of A. Then, the restriction of π to a connected component of π -1 (S) is a smooth locally trivial fibration with fiber L.

Proof. It suffices to consider the diagram (1) for a point x ∈ S:

U ∩ S IR i × {vertex} π -1 (S) ∩ V IR i × L × {0} π P ≡ projection Φ Φ ♣ E E c c
Throughout this work, we fix a n-dimensional stratified space A and an unfolding π: Ã → A. In fact, all the results of this work still hold if A is a topological pseudomanifold, with smooth strata, admitting an unfolding.

Intersection homology

MacPherson has presented a weaker notion of perversity and generalized the simplicial intersection homology (see [START_REF] Macpherson | Intersection homology and perverse sheaves[END_REF]). As we shall see, this is also the case for the singular intersection homology of [START_REF] King | Topology invariance of intersection homology without sheaves[END_REF]. In this section we show how the singular intersection homology of A can be computed by using the complex of singular intersection chains which have a lifting ; this is an important tool for the deRham Theorem.

Singular intersection homology

We recall the definition of the notion of perversity of [START_REF] Macpherson | Intersection homology and perverse sheaves[END_REF] and we present the corresponding adaptation of the singular intersection homology of [START_REF] King | Topology invariance of intersection homology without sheaves[END_REF].

2.1.1

A perversity is a function p: S → Z Z from the set of singular strata to the integers. Two perversities p and q are dual if p(S) + q(S) = codim S -2, for each S ∈ S. For example, the zero perversity 0, defined by 0(S) = 0, and the top perversity 0, defined by t(S) = codim S -2, are dual.

A classical perversity of a topological pseudomanifold is a function p from the integers greater than one to the integers with the properties that p(2) = 0 and p(i + 1) is either p(i) + 1 or p(i) for i > 2. The classical perversity p induces a perversity p by taking p(S) = p(codim S) for each singular stratum.

From now on, we fix a perversity p. The following definitions are adaptations of the notions of [START_REF] King | Topology invariance of intersection homology without sheaves[END_REF] to this new context.

2.1.2 A singular simplex σ: ∆ → A of dimension i is p-allowable (or allowable) if a) σ sends the interior of ∆ in a regular stratum of A,and b) σ -1 (S) ⊂ (dim ∆codim S + p(S))-skeleton of ∆, for each singular stratum S of A. When p is a classical perversity the condition b) implies a). Observe that each singular simplex obtained from σ by linear subdivision is still p-allowable.

A singular chain ξ = m j=1 r j σ j is p-allowable (or allowable) if each singular simplex σ j is p-allowable. We shall say that ξ is a p-intersection (or intersection) singular chain if ξ is p-allowable and the boundary ∂ξ, where we have neglected all simplices not satisfying a), is also p-allowable. When p is a classical perversity, any simplex of the boundary ∂ξ verifies a).

Define SC p * (A) to be the complex of p-intersection singular chains. Proceeding as in [START_REF] King | Topology invariance of intersection homology without sheaves[END_REF], we can prove that this differential complex computes the intersection homology of [START_REF] Macpherson | Intersection homology and perverse sheaves[END_REF]. That is, we get H * (SC p(A)) ∼ = IH p * (A). An isomorphism between two stratified spaces A and A ′ induces an isomorphism between IH p * (A) and

IH p * (A ′ ).
The following local calculations will be used throughout this work. They are shown in [START_REF] King | Topology invariance of intersection homology without sheaves[END_REF] for a classical perversity, but the same proofs hold for a perversity.. Proposition 2.1.4 If A is compact then the map a → [t 0 , a], where t 0 is a fixed point of the interval ]0, 1[,

induces an isomorphism IH p j (cA) ∼ = IH p j (A) if j < n -p(vertex of cA) 0 if j ≥ n -p(vertex of cA)
By working with this new definition of perversity we loose some properties of [START_REF] Goresky | Intersection homology theory[END_REF], namely the stratification invariance of IH p * (A). However, the following property remains.

Proposition 2.1.5 If A is manifold then IH p * (A) ∼ = H * (A)
, for any stratification on A, provided that 0 ≤ p ≤ t.

Proof. Locally, the manifold A looks like IR i ×cL (see §1.2.1), where L is a homological sphere. The previous calculation shows that IH p j (IR i ×cL) ∼ =

IH p j (L) if j ≤ codim S -1 -p(S) 0 if j ≥ codim S -p(S)
. An argument by recurrence on the depth of A shows that IH p * (L) ∼ = H * (L). Since 0 ≤ p ≤ t, we get IH p * (IR i × cL) ∼ = H * (IR i × cL). Now, the passage from the local to the global can be done as in [START_REF] King | Topology invariance of intersection homology without sheaves[END_REF]. ♣

Liftable singular intersection chains

The notion of lifting of a singular chain arises from the notion of unfolding of a stratified space. This concept is useful because it allows us to integrate the intersection differential forms over the liftable singular intersection chains. We introduce in this section the notion of the lifting of the singular chains.

2.2.1

Let ∆ be the standard simplex. An unfolding of ∆ is given by a decomposition ∆ = ∆ 0 * • • • * ∆ p and by the map

µ from ∆ = c∆ 0 × • • • × c∆ p-1 × ∆ p onto ∆ defined by: µ([x 0 , t 0 ], . . . , [x p-1 , t p-1 ], x p ) = t 0 x 0 + (1 -t 0 )t 1 x 1 + • • • + (1 -t 0 ) • • • (1 -t p-2 )t p-1 x p-1 + (1 -t 0 ) • • • (1 -t p-1 )x p .
Here c∆ i denotes the closed cone ∆ i × [0, 1] / ∆ i × {0}, and [x i , t i ] a point of it. The map µ is well defined and maps diffeomorphically the interior of ∆ to the interior of ∆.

2.2.2

The boundary of ∆ has the following decomposition ∂ ∆ = ∂∆+δ ∆ (see [START_REF] Brasselet | Théorème de deRham pour les variétés stratifiées[END_REF]), where ∂∆ is the unfolding of the boundary ∂∆ with the induced decomposition, and δ∆ is formed by the faces µ(F ) of ∆ with:

F = c∆ 0 × • • • × c∆ i-1 × (∆ i × {1}) × c∆ i+1 × • • • × c∆ p-1 × ∆ p .
Observe that the map µ , when restricted to the interior of ∆, is a submersion.

2.2.3

Let σ: ∆ → A be a singular simplex. We shall say that σ is a liftable singular simplex if: a) for each face C of ∆ there exists a stratum S of A containing the image by σ of the interior of C, and b) there exists an unfolding µ: ∆ → ∆ and a differentiable map σ: ∆ → Ã such that πσ = σµ.

The map σ is a lifting of σ. It is shown in [START_REF] Brasselet | Théorème de deRham pour les variétés stratifiées[END_REF] that any singular simplex obtained from σ by linear subdivision of ∆ has a lifting.

A singular chain ξ = m j=1 r j σ j is liftable if each singular simplex σ j is liftable. We define RC p * (A) to be {ξ ∈ SC p * (A) / ξ is liftable}. Notice that this complex is differential. An isomorphism between two stratified spaces A and A ′ induces an isomorphism between H * (RC p(A)) and H * (RC p(A ′ )).

The two following results are proved in [START_REF] Brasselet | Théorème de deRham pour les variétés stratifiées[END_REF] for a classical perversity, but the proofs still hold for any perversity.

Proposition 2.2.4 Let I be an open interval of IR. Then the map a → (t 0 , a), where t 0 is a fixed point of

I, induces an isomorphism H * (RC p(A)) ∼ = H * (RC p(I × A)). Proposition 2.2.5 If A is compact then the map a → [t 0 , a], where t 0 is a fixed point of the interval ]0, 1[, induces an isomorphism H j (RC p * (cA)) ∼ = H j (RC p * (A)) if j < n -p(vertex of cA) 0 if j ≥ n -p(vertex of cA).

Relation between IH p * (A) and H * (RC p(A))

This section is devoted to show that the inclusion RC p * (A) ֒→ SC p * (A) induces an isomorphism in homology (quasi-isomorphism). First, we introduce the Mayer-Vietoris argument, and we show how to localize the problem. Then we will use the local calculations made in the above section. 

← S U C p * (A) ← α 0 SC p * (U α 0 ) ← α 0 <α 1 SC p * (U α 0 ∩ U α 1 ) ← • • • (4) 0 ← R U C p * (A) ← α 0 RC p * (U α 0 ) ← α 0 <α 1 RC p * (U α 0 ∩ U α 1 ) ← • • • (5)
are the Mayer-Vietoris sequences (see [1, page 186]). The next step is to show that the subcomplex of U-small chains is homologous to the original one (see §2. 3.5). In order to do this we need some preliminary results.

A singular simplex σ: In this case, if σ ′ : ∆ → A is another good allowable singular simplex having s as a face, we have the relation

∆ → A is p-good (or good) if a) for each singular stratum S the minimal face C S of ∆ containing σ -1 (S) satisfies dim C S ≤ dim ∆ - codim S + p(S)
T (σ) = T (σ ′ ).
Proof. If s is not allowable then there exists a singular stratum S with s -1 (S)

⊂ (dim ∆-1-codim S + p(S))- skeleton of C. Since s -1 (S) ⊂ C S ∩ C and dim C S = dim ∆ -codim S + p(S) we conclude that C S ⊂ C and therefore T (σ) ⊂ C.
On the other hand, if C S ⊂ C for some singular stratum then we have σ -1 (S) = s -1 (S) and dim

C S = dim ∆ -codim S + p(S). Hence s -1 (S) ⊂ (dim ∆ -1 -codim S + p(S))-skeleton of C.
Finally, we prove T (σ) = T (σ ′ ). Write S the singular stratum verifying C S = T (σ). The relation

σ -1 (S) = s -1 (S) ⊂ (σ ′ ) -1 (S) implies T (σ) ⊂ C ′ S . Since dim C ′ S ≤ dim ∆ -codim S + p(S) = dim T (σ) we obtain C ′ S = T (σ)
. By the definition of T (σ ′ ), we can write T (σ ′ ) ⊂ C ′ S , that is, T (σ ′ ) ⊂ T (σ). Similarly, we prove T (σ) ⊂ T (σ ′ ) and therefore T (σ) = T (σ ′ ). ♣

We have already noticed that the chain subdivision is an interior operator in SC p * (A) and R U C p * (A). We shall let S: SC p * (A) → SC p * (A) and S: RC p * (A) → RC p * (A) the barycentric subdivision (see [15, page 206]).

Proof. For a proof of this fact we refer the reader to [15, appendix I, page 207]. The idea behind is quite intuitive: to get an inversion chain map, subdivide each chain in A until it becomes U-small, and this is possible by Lemma above. Now, we only need to show that the homotopy operator is an interior operator in the complexes SC p * (A) and RC p * (A). Let σ: ∆ → A be a liftable p-allowable singular simplex (the same proof holds for a p-allowable singular simplex). Consider the cone singular simplex cσ: c∆ → A defined by cσ([x, t]) = σ(tx + (1t)B), where B is the barycenter of ∆. We must proof that cσ is also a liftable p-allowable singular simplex. This arises from the following remarks:

• For each face C of ∆ we have cσ(interior of C×]0, 1[) = σ(interior of C) ⊂ A-Σ, and cσ(interior of C× {1}) = σ(interior of C) ⊂ S, for some stratum S. • cσ(vertex of c∆) = σ(B) ⊂ A -Σ.
• For any singular stratum S

1. (cσ) -1 (S) = σ -1 (S) × {1} ⊂ (dim ∆ -codim S + p(S))-skeleton of ∆ × {1}, if p(S) < codim S, 2. (cσ) -1 (S) ⊂ c∆ ⊂ (dim c∆ -codim S + p(S))-skeleton of c∆, if p(S) ≥ codim S. • Consider σ: ∆ = c∆ 0 × • • • × c∆ p-1 × ∆ p → Ã a lifting of σ. In c∆ we have the decomposition ∆ 0 * • • • * ∆ p-1 * ({S} * ∆ p )
, where S is the vertex of the cone c∆. The unfolding µ ′ : c∆ → c∆ is defined by

µ ′ (x = [x 0 , t 0 ], . . . , [x p-1 , t p-1 ], tx p + (1 -t)S) = t 0 x 0 + (1 -t 0 )t 1 x 1 + • • • + (1 -t 0 ) • • • (1 -t p-2 )t p-1 x p-1 + (1 -t 0 ) • • • (1 -t p-1 )(tx p + (1 -t)S).
We define the lifting cσ: c∆ → Ã by cσ(x) = σ(P 0 , . . . , P p ) with

-P i = {1 -(1 -t i ) • • • (1 -t p-1 )(1 -t)(1 -(α i + • • • + α p )} -1    t i x i + (1 -t i ) • • • (1 -t p-1 )(1 -t)α i B i + {(1 -t i ) -(1 -t i ) • • • (1 -t p-1 )(1 -t)(α 0 + . . . + α i )}S i   
for i ∈ {0, . . . , p -1} and

-P p = {1 -(1 -t)(1 -α p )} -1 (tx p + (1 -t)α p B p ).
Here B = p i=0 α i B i , where B i is the barycenter ∆ i , and S i is the vertex of c∆ i . This map is well defined because: a) P i depends on {t i x i , t i , . . . , t p-1 , t}, and

b) 1 = (1 -t)(1 -α p ) and 1 = (1 -t i ) • • • (1 -t p-1 )(1 -t)(1 -(α i + • • • + α p )) for i ∈ {0, . . . , p -1};
and it is a differentiable map. Since πσ = σµ, a straightforward computation shows π cσ = cσµ ′ . Therefore, the simplex cσ has a lifting. ♣

To get the main result of this section we also need the following Lemma:

Lemma 2.3.6 Suppose A compact. Then the first statement implies the second one: a) the inclusion

RC p * (W ) ֒→ SC p * (W ) is a quasi-isomorphism for each open W ⊂ A, b) the inclusion RC p * (V ) ֒→ SC p * (V ) is a quasi-isomorphism for each open V ⊂ IR m × cA.
Proof. We proceed in four steps. 1) V = IR m × cA. We apply §2.1.2, §2.1.3, §2.2.4, §2.2.5 and the hypothesis a) for W = A.

2) V =]a 1 , b 1 [, . . . , ]a m , b m [×c ε A, where a i , b i ∈ IR, ε ∈]0, 1[ and c ε A = A × [0, ε[ / A × {0}. Since V is isomorphic to IR m × cA it suffices to apply 1). 3) V =]a 1 , b 1 [, . . . , ]a m , b m [×]ε, ε ′ [×W , where a i , b i ∈ IR, ε, ε ′ ∈]0, 1[ and W ⊂ A.
In this case it follows from §2.1.2, §2.2.4 and the hypothesis a). 4) General case. Let U = {U α / α ∈ J} an open cover of V with each U α satisfying 1). Observe that the intersections U α 0 ∩ U α 1 satisfy 2) or 3). Then, from (4) and ( 5) we get the following commutative diagram:

0 ← S U C p * (A) ← α 0 SC p * (U α 0 ) ← α 0 <α 1 SC p * (U α 0 ∩ U α 1 ) ← • • • , 0 ← R U C p * (A) ← α 0 RC p * (U α 0 ) ← α 0 <α 1 RC p * (U α 0 ∩ U α 1 ) ← • • • T T T ι 1 ι 2 ι 3
where ι • is the inclusion. According to 2) and 3) the maps ι 2 and ι 3 are quasi-isomorphisms. By the Five Lemma the inclusion ι 1 is also a quasi-isomorphism. The proof finishes after applying the Lemma 2.3.4. ♣

We arrive to the principal result of this section. Proof. We proceed by induction over the depth of A. If d(A) = 1 then the unfolding of A is a trivial covering over each connected component of A. So, the complex SC p * (A) (resp. RC p * (A)) is the complex of singular chains of A (resp. differentiable singular chains), and the result holds (see [START_REF] Greub | Connections, curvature, and cohomology[END_REF]). 

Suppose the

Intersection cohomology

Goresky and MacPherson introduced the intersection cohomology from the point of view of differential forms (deRham intersection cohomology) for a Thom-Mather stratified space (see [START_REF] Brylinsky | Equivariant intersection cohomology[END_REF]). In [START_REF] Brasselet | Théorème de deRham pour les variétés stratifiées[END_REF] we showed how to calculate this cohomology with the subcomplex of liftable forms. The allowability of an intersection differential form ω is reflected on the behavior of the germ of ω near Σ. We introduce the notion of weak intersection differential form, whose allowability is measured directly on the singular part by means of the unfolding.

Weak intersection differential forms

From now on q will denote the dual perversity of p (see [START_REF] Goresky | Intersection homology theory[END_REF]), that is, q(S) = codim S -2p(S) for each singular stratum S.

3.1.1

A differential form ω in A -Σ is liftable if there exists a differential form ω on Ã, called the lifting of ω, coinciding with π * ω on π -1 (A -Σ). By density this form is unique.

If the forms ω and η are liftable then the forms ω + η, ω ∧ η and dω are also liftable, and we have the following relations:

ω + η = ω + η , ω ∧ η = ω ∧ η and dω = dω.
Hence, the family of liftable differential forms is a differential subcomplex of the deRham complex of Ã.

3.1.2 Cartan's filtration. Let τ : M → B be a differential submersion with M and B manifolds. For each k ≥ 0 we denote F k Ω * M the subcomplex of differential forms on M satisfying:

If ξ 0 , . . . , ξ k are vectorfields on M , tangents to the fibers of τ , then

i ξ 0 • • • i ξ k ω ≡ i ξ 0 • • • i ξ k dω ≡ 0. ( 6 
)
Here i ξ• denotes the interior product by ξ • . This is Cartan's filtration of τ (see [START_REF] Brylinsky | Equivariant intersection cohomology[END_REF]). We shall write ||ω|| B the smallest integer j satisfying i ξ 0 • • • i ξ j ω ≡ 0, where ξ 0 , . . . , ξ j are as in [START_REF] Greub | Connections, curvature, and cohomology[END_REF]. Then,

F k Ω * M = {ω ∈ Ω * M /||ω|| B ≤ k and ||dω|| B }. Notice that if α ∈ F k Ω * M and β ∈ F k ′ Ω * M then α + β ∈ F max(k,k ′ ) Ω * M and α ∧ β ∈ F k+k ′ Ω * M . (7) 
The allowability condition is written in terms of the Cartan's filtration of the fibration π: π -1 (S) → S (see §1.2.4).

3.1.3

A liftable differential form ω is a p-weak intersection differential form (or weak intersection differential form) if for each singular stratum S, the restriction of ω to π -1 (S) belongs to F q(S) Ω * π -1 (S) . We shall write K * q (A) the complex of q-weak intersection differential forms. It is a differential subcomplex of the deRham complex of Ã, but it is not always an algebra. It coincides with the complex Ω * (A) of differential forms of A if Σ = ∅.

Remarks.

1) In spite of the fact that K * q (A) depends of the unfolding chosen Ã, the cohomology of the complex does not (see Theorem 4.1.5).

2) Since the allowability condition is a local condition then, for each open set U ⊂ A, the restriction ρ: K * q (A) → K * q (U ) is a well defined differential operator. 3) With the notations of [START_REF] Brasselet | Théorème de deRham pour les variétés stratifiées[END_REF]: Ω * q (A) ∩ K * q (A) = K * q (A). 4) For q = 0 the complex K * q (A) contains the Verona's complex (see [START_REF] Verona | Le théorème de deRham pour les préstratifications abstraites[END_REF]) and it can be seen as the limit of the Verona's complex when ρ X goes to 0.

5) An isomorphism between two stratified spaces A and A ′ induces an isomorphism between H * (K q (A)) and H * (K q (A ′ )).

Local calculations

We compute the cohomology of K * q (I × A) and K * q (cA) in terms of that of K * q (A). Since the proofs are similar to those of [START_REF] Brasselet | Théorème de deRham pour les variétés stratifiées[END_REF] we only give a sketch. Proposition 3.2.1 Fix I =]ε, ε[ an interval of IR. The maps pr: I × (A -Σ) → A -Σ and J: A -Σ → I × (A -Σ), defined respectively by pr(t, a) = a and J(a) = (t 0 , a), for a fixed t 0 ∈ I, induce the quasiisomorphisms: η. This comes from the following facts:

pr * : K * q (A) → K * q (I × A) and J * : K * q (I × A) → K * q (A).
• Hη = - t 0 η (on I × Ã),
• || Hη|| I×S ≤ ||η|| I×S , and

• dHη = Hdη + (-1) i-1 (η -pr * J * η).
where η

∈ Ω i (I × (A -Σ)) is a liftable form. ♣ Proposition 3.2.2 Suppose A is compact. Then H i (K * q (cA)) ∼ = H i (K * q (A)) if i ≤ q(vertex of cA) 0 if i > q(vertex of cA).
where the isomorphism is induced by the canonical projection pr:

(A -Σ)×]0, 1[→ (A -Σ).
Proof (sketch). The complex K * q (cA) is naturally isomorphic to the subcomplex C * of K * q (A×] -1, 1[) made up of the forms η satisfying:

1) η = 0 on (A -Σ) × {0} if (degree of η) > q(vertex of cA), 2) dη = 0 on (A -Σ) × {0} if (degree of η) = q(vertex of cA), and 3) σ * η = η on (A -Σ) × (]-1, 1[-{0}) where σ: A×]-1, 1[→ A×]-1, 1[ is given by σ(a, t) = g(a, -t).
With the notations of the above Proposition (for ε = 1 and t 0 = 0) we get: pr * (K i q(A)) ⊂ C i , for i < q(vertex of cA); pr * (K i q (A) ∩ d -1 {0}) ⊂ C i , for i = q(vertex of cA); J * C i = {0}, for i > q(vertex of cA) and H * (C * ) = C * . The same procedure used in §3.2.1 finishes the proof. ♣

Intersection cohomology of stratified spaces

We prove in this section the two principal results of this work: the deRham Theorem and Poincaré Duality.

The deRham Theorem

In this section we show that we can use the complex of weak intersection differential forms to compute the intersection cohomology of A. The isomorphism is given by the integration of differential forms over simplices. This integration is well defined because it is calculated on Ã.

Integration over simplices.

Let ω be an element of K * q (A) and let σ: ∆ → A be a liftable singular simplex with σ(i(∆)) ∩ Σ = ∅, where i(∆) denotes the interior of ∆. We define the integral of ω over σ as:

σ ω = i(∆) σ * ω.

Does this integral makes sense

? Let ∆ µ ← ∆ σ → Ã be a lifting of σ (see §2.2.
3). We recall that the restriction of µ to i( ∆), the interior of ∆, is a diffeomorphism. Then, the map σ: i(∆) → (A -Σ) is differentiable and we can write

i(∆) σ * ω = i( ∆) µ * σ * ω = i( ∆) σ * π * ω.
Since ω is a global differential form on Ã, we get:

σ ω = ∆ σ * ω, (8) 
which is finite. We shall write This makes sense because σ j (i(∆)) is included in A -Σ (see §2.1.1), and we can apply the above definition. So we get the integration operator :

σ ω = 0 if σ(∆) ⊂ Σ.
K * q (A) -→ Hom(RC p * (A); IR) defined by (ω → (c → c ω)).
The following Stokes formula shows that this operator is a differential operator. Proof. By linearity it suffices to show ∂σ ω = σ dω for a liftable p-allowable singular simplex σ: ∆ → A of dimension i and a differential form ω ∈ K i-1 q (A). Observe that ∂σ ω is well defined because each (i -1)-face

σ: C → A of σ satisfies σ(i(C)) ⊂ A -Σ or σ(C) ⊂ Σ (see §2.2.3).
We first prove ( 8) for a codimension one face σ: C → A of σ with σ(i(C)) ⊂ Σ, for some singular stratum S. The relation i(C) ⊂ σ -1 (S) ⊂ (dim ∆codim S + p(S))-skeleton of ∆ implies q < 0 and therefore ω| π -1 (S) = 0. We get

C σ * ω = 0 = C ω, because πσ(i( C)) = σ(i(C)) ⊂ S.
In view of ( 8) we may write 

.2).

To see this, we consider a face F of δ ∆ of dimension i -1 and we verify that σ * ω is 0 on F . We shall let C = µ(F ) and S a stratum of A with σ(i(C)) ⊂ S (see §2.2.3 a))). We have the following commutative diagram

i(F ) π -1 (S) i(C) S. σσ µ π E E c c
Now we distinguish two cases:

• S ⊂ A -Σ. The differential form ω is defined on S and we may write σ * ω = σ * π * ω = µ * σ * ω where σ * ω is defined on i(C). But dim C < dim F = i -1 = degree of ω = degree of σ * ω. Then σ * ω = 0 on i(C) and therefore σ * ω = 0 on i(F ).

• S ⊂ Σ. The allowability condition of σ implies: dim C ≤ dim F + 1codim S + p(S). Hence, dim Fdim C > q(S). On the other hand, since ω ∈ F q(S) Ω * π -1 (S) , we have σ * ω ∈ F q(S) Ω * i(F ) for the submersion µ: i(F ) → i(C). These conditions imply that σ * ω vanishes on i(F ). ♣ 4.1.4 Remark. In the same way we can show a converse for this Proposition: We arrive to the first result of this paper.

K * q (A) = {ω ∈ Ω * (A -Σ) / ω
Theorem (deRham Theorem) 4.1.5 Consider a stratified space A, an unfolding π: Ã → A and two dual perversities (p, q). The homology of the complex of intersection chains SC p * (A) and the cohomology of weak intersection differential forms K * p(A) are isomorphic to the intersection homology IH p * (A). The integration of the differential forms of K * q (A) over the liftable chains of SC p * (A) is well defined, and the maps

K * q (A) -→ Hom(RC p * (A); IR) ρ ←-Hom(SC p * (A); IR)
, where ρ is the restriction, are quasi-isomorphisms.

Proof. Following [START_REF] King | Topology invariance of intersection homology without sheaves[END_REF] and §2.3.7 it suffices to prove that the operator : K * q (A) → Hom(RC p * (A); IR) induces a quasi-isomorphism in cohomology.

Suppose that for each open cover U = {U α / α ∈ J} of A we have the following commutative diagram made up of exact sequences:

0 → K * q (A) → α 0 K * q (U α 0 ) → α 0 <α 1 K * q (U α 0 ∩ U α 1 ) → • • • 0 → Hom(R U C p * (A); IR) → α 0 Hom(RC p * (U α 0 ); IR) → α 0 <α 1 Hom(RC p * (U α 0 ∩ U α 1 ); IR) → • • • , 1 2 3 (9) 
© c d d d
where the horizontal arrows are the restrictions and the vertical arrows are the integrations. Using the procedure followed in Proposition 2.3.7 and using Propositions 2.2.4, 2.2.5, 3.2.1 and 3.2.2 it is easy to prove the Theorem (for d(A) = 1 we get the usual deRham Theorem for manifolds). So, we must prove that the rows of ( 9) are exact. Applying the functor Hom to [START_REF] Goresky | Intersection homology II . -Invent[END_REF] we get that the bottom row of ( 9) is exact. In order to show that the top row is exact we need (following [1, page 94]) to find a partition of unity {f α / α ∈ J} subordinated to the cover U satisfying f α ω ∈ K * q (U α 0 ) for each ω ∈ K * q (U α 0 ) . Since the covers by distinguished neighborhoods are cofinal in the set of all open covers of A (see §1.2.2), it suffices to show:

There exists a continuous map f :

IR m × cA → [0, 1] and two numbers r, s ∈]0, 1[ with a) f ≡ 1 on ] -r, r[ m ×c r A, b) f ≡ 0 on the complementary of ] -s, s[ m ×c s A, and c) f ω ∈ K * q (IR m × cA) for each ω ∈ K * q (IR m × cA).
To see this, fix two numbers r, s ∈]0, 1[ and two smooth maps f 1 : IR → [0, 1] and

f 2 : ] -1, 1[→ [0, 1] with f i ≡ 1 on [-r, r] and f i ≡ 0 off ] -s, s[, i = 1, 2. The map f : IR m × cA → [0, 1] defined by f (x 1 , . . . , x m , [a, t]) = f 1 (x 1 ) • • • f 1 (x m )f 2 (t)
is continuous and has a smooth lifting f :

IR m × Ã×]-1, 1[→ [0, 1], given by f (x 1 , . . . , x m , ã, t) = f 1 (x 1 ) • • • f 1 (x m )f 2 (| t |)
. By construction we have a) and b). Let ω be an element of K * q (IR m × cA), it remains to show that f ω belongs to K * q (IR m × cA). Let S be a singular stratum of IR m × cA and P the unfolding of IR m × cA given in §1.2.2; the fiber of P : P -1 (S) → S over (x, [y, t]) ∈ S is:

• {x} × Ã × {0} if S = IR m × {vertex} • {x} × π -1 (y) × {-t, t} if S = IR m × S ′ ×]0, 1[ , S ′ stratum of A.
In any case the function f is constant on the fibers of P : P -1 (S) → S. The map f belongs to

F 0 Ω * P -1 (S)
and therefore f ω lies on F q(S) Ω * P -1 (S) (see [START_REF] King | Topology invariance of intersection homology without sheaves[END_REF]). This shows c). ♣

Poincaré Duality

The intersection homology was introduced with the purpose of extending the Poincaré Duality to singular manifolds (see [START_REF] Goresky | Intersection homology theory[END_REF]). The pairing is given there by the intersection of cycles. In the deRham theory of manifolds the Duality derives from the integration of the wedge product of differential forms of arbitrary and compact support. In fact, this point of view is still available in the intersection homology context. This is shown in this section (see also [START_REF] Brylinsky | Equivariant intersection cohomology[END_REF]).

We consider in the following a stratified space A, an unfolding π: Ã → A and two dual perversities p and q. We shall suppose also that A is orientable, that is, the manifold A -Σ is an orientable manifold. This is used to integrate differential forms on A -Σ. In the following we will use the facts: 1) M × A is orientable, if M is an orientable manifold M , and 2) cA is orientable, where A is compact. Each link L (see §1.2.1) is orientable.

4.2.1

For each differential form ω on A -Σ we define the support of ω, written supp(ω), as the closure on A of the set {x ∈ A -Σ / ω(x) ≡ 0}. This notion coincides with the usual one if Σ = ∅.

We define K * c,p (A) as the subcomplex of K * p(A) made up of the differential forms with compact support. The relation supp(dω) ⊂ supp(ω) shows that this subcomplex is a differential complex. If A is compact then K * c,p (A) coincides with K * p(A). For Σ = ∅ we have that K * c,p (A) is just the complex of differential forms of A with compact support.

For each open set U ⊂ A there is a natural inclusion K * c,p (U ) ֒→ K * c,p (A), extending a form on U -Σ by zero to a form on A -Σ. The same method used in [1, page 139] applies here to show that, for an open cover U = {U α / α ∈ J}, the Mayer-Vietoris sequence:

0 ← K * c,p (A) ← α 0 K * c,p (U α 0 ) ← α 0 <α 1 K * c,p (U α 0 ∩ U α 1 ) ← • • • is exact (see proof of §4.1.5).
The following Lemma will be needed in the definition of the Poincaré pairing.

Lemma 4.2.2 Let ω be a liftable differential form on A -Σ with compact support, then a)

A-Σ ω < +∞ and b)

A-Σ dω = 0.

Proof. Let ℓ the number of connected components of Ãπ -1 (Σ). By definition of ω we get:

A-Σ ω = ℓ -1 Ã-π -1 (Σ) π * ω = ℓ -1 Ã-π -1 (Σ) ω = ℓ -1 Ã ω.
a) It suffices to prove à ω < ∞. Since the map π is a proper map (this is shown using the local description (1) of π and the fact that L is compact) then the support of ω is compact (supp(ω) = π -1 (supp(ω))).

b) Since à has not a boundary, we obtain

Ãd ω = 0. ♣

4.2.3

The above Lemma shows that the pairing :

K * q (A) ⊗ K n- * c,p (A) → IR given by (ω, η) → A-Σ ω ∧ η
is well defined and that induces a pairing in cohomology :

H * (K q(A)) ⊗ H n- * (K c,p (A)) → IR, called
Poincaré pairing. We are going to show that it is nondegenerate; or equivalently, the map : For the cone cA we obtain with the notations of §4.2.4 and (u, v) = (0, 1) the following: Proposition 4.2.6 If A is compact then the operator e * induces an isomorphism

K * q (A) → Hom(K n- * c,p (A); IR) given by (ω → (η → A-Σ ω ∧ η)) is a quasi-isomorphism.
H i (K * c,p (cA)) ∼ = H i (K * p(A)) if i ≥ p(vertex of cA) + 2 0 if i ≤ p(vertex of cA) + 1
Proof. First of all, we calculate the cohomology of the quotient complex K * p(cA) / K * c,p (cA). This complex is isomorphic by restriction to K * p(A×]0, 1[)/L * , where L * = {ω ∈ K * p(A×]0, 1[) / supp(ω) ⊂ A×]0, ε[ for some ε < 1}; the inverse is given by (class of ω) → (class of ( -0 pr * 1 e) • ω).

We claim that L * is acyclic. In fact, for each cycle ω of L * we have the formula ω = ±d where τ 1 is the projection and τ 2 is defined by (η → (class of ( -0 pr * 1 e) • pr * 2 η)). The above calculations and Proposition 3.2.1 show that τ 2 is a quasi-isomorphism.

Under this quasi-isomorphism the connecting homomorphism of the associated long sequence becomes δ: H * (K p(A)) → H * +1 (K c,p (cA)), defined by δ[η] = [e * (η)]; and τ 1 becomes J * , where J: A -Σ → (A -Σ)×]0, 1[ is defined by J(a) = (a, 1 2 ). Now the result follows from Proposition 3.2.2. ♣

We have arrived to the Poincaré Duality.

Theorem (Poincaré Duality) 4.2.7 Let A be an orientable stratified space and let (p, q) be two dual perversities. The Poincaré pairing : H * (K q (A)) ⊗ H * (K c,p (A)) → IR is nondegenerate.

Proof. It suffices to show that the map : H * (K q (A)) → Hom(H * (K c,p (A)); IR), defined by ([ω] → ([η] →

A-Σ ω ∧ η)) , is an isomorphism (see [1, page 44]). To see this we follow the same procedure as in 2.3.7, taking into account the following facts:

• If the depth of A is 1 the Theorem is the usual Poincaré Duality for orientable manifolds.

• The diagram K * q (IR i × cL) Hom(K n- * c,p (IR i × cL); IR) ω ∧ η for each ω ∈ K * q (cL) and η ∈ K n-i- * c,p (cL).

K * q (cL) Hom(K n-i- * c,p ( 
• H j (K * q (cL)) ∼ = H n-i-j (K * c,p (cL)) ∼ = 0 for j ≥ q(vertex of cL) + 1 (see Propositions 3.2.2 and 4.2.6).

• The diagram H j (K * q (cL)) Hom(H n-i-j (K * c,p (cL)); IR) H j (K * q (L)) Hom(H n-1-i-j (K * p(L)); IR) pr * ω ∧ η, which holds for each ω ∈ K j q(L) and η ∈ K n-i-1-j p (L). ♣

Proposition 2 . 1 . 3

 213 If M is a contractible manifold the map a → (t 0 , a), where t 0 is a fixed point of M , induces an isomorphism IH p * (A) ∼ = IH p * (M × A).

2. 3 . 1

 31 Let U = {U α / α ∈ J} be an open cover of A. The complexes S U C p * (A) and R U C p * (A) of U-small chains are defined as subcomplexes of SC p * (A) and RC p * (A) respectively, these are generated by the chains lying on some open of the cover U. The exact sequences 0

  , and b) the family {C S / dim C S = dim ∆codim S + p(S)} is totally ordered by inclusion.Lemma 2.3.2 Any maximal element of the barycentric subdivision of an allowable singular simplex is good.Proof. Let ϕ: ∇ → A be an allowable singular simplex and σ: ∆ → A an element of its barycentric subdivision with dim ∇ = dim ∆. Recall that the trace on ∆ of the j-skeleton of ∇ is a face of ∆ with dimension lower or equal than j. So, for each singular stratum S, the minimal face C S of ∆ containing σ -1 (S) satisfies a).If dim C S = dim ∆-codim S + p(S) then the trace on ∆ of the (dim ∆-codim S + p(S))-skeleton of ∇ is exactly C S . The result follows now from the fact that the family {C face of ∆ / C ⊂ (dim C)-skeleton of ∇} is totally ordered by inclusion. ♣ Lemma 2.3.3 Let σ: ∆ → A be a good allowable singular simplex. Suppose that T (σ) = min{C S / dim C S = dim ∆codim S + p(S)} exists. For each codimension one face s: C → ∆ of σ satisfying §2.1.2 a), we get s is not allowable if and only if C ⊃ T (σ).

Proposition 2 . 3 . 7

 237 The inclusion RC p * (A) ֒→ SC p * (A) is a quasi-isomorphism.

  Proposition were proved for every B with d(B) < d(A). Consider an open cover U = {U α / α ∈ J} of A by distinguished neighborhoods (see §1.2.2). Following (4) and (5) we have the commutative diagram of the above Lemma. Here, each open U α is isomorphic to some IR m × cL. Since for each open W ⊂ L we have: d(W ) ≤ d(L) < d(cL) ≤ d(U α ) ≤ d(A) we can apply §2.3.5 and get that ι 2 is a quasi-isomorphism. The same argument shows that the operator ι 3 is a quasi-isomorphism. The proof follows from the Five Lemma and Lemma 2.3.4. ♣

  Proof (sketch). Consider pr: I × Ã → Ã and J: Ã → I × Ã defined by pr(t, ã) = ã and J(ã) = (t 0 , ã). The two operators pr * and J * are well defined because, for each stratum S of A, we have || pr * ω = pr * ω|| I×S ≤ ||ω|| S and || J * η = J * η|| S ≤ ||η|| I×S , for any liftable form ω ∈ Ω * (A -Σ) and η ∈ Ω * (I × (A -Σ)). In fact these two operators are homotopic; a homotopy operator is given by Hη = t 0

4. 1 . 2

 12 Integration over chains. For each differential form ω ∈ K * q (A) and each chain c = m j=1 r j σ j ∈ RC p *

Proposition 4 . 1 . 3

 413 For each differential form ω ∈ K * q (A) and each singular chain c ∈ RC p * (A) we have ∂c ω = c dω.

  ∆dσ * ω. According to the usual Stokes formula we get ∂ ∆ σ * ω = ∆dσ * ω, the Proposition will be proved if we show δ ∆ σ * ω = 0 (see §2.

2

 2 

liftable and ∂σ ω = σ dω for each

  p-allowable liftable singular simplex of A}.

Lemma 4 . 2 . 4 Proposition 4 . 2 . 5

 424425 First, we do the local calculations characteristic to the intersection homology: those of I × A and cA. Let I =]u, v[ be an open interval of IR and let e = e(t)dt be compactly supported 1-form on I with total integral 1. We write pr 1 : I × (A-Σ) → I and pr 2 : I × (A-Σ) → (A-Σ) the canonical projections. Then the following operators (see [1, page 38]): a) e * : K * c,p (A) → K * +1 c,p (I × A) given by e * (ω) = pr * 1 e ∧ pr * 2 ω, b) : K * c,p (I × A) → K * -1 c,p (A) given by ω = v u ω, and c) K: K * c,p (I × A) → K * -1 c,p (I × A) given by Kω = Hω -H(pr * 1 e) • pr * 2 ( ω), where Hω = u ω (see §3.2.2), are well defined and satisfy the relation: d) 1e * = (-1) i-1 (dK -Kd) on K i c,p (I × A). Proof. a) Since pr * 1 e ∈ K 1 0(I × A), we have e * (ω) ∈ K * +1 p (I × A) (see §3.2.1). Its support is compact because: supp(e * (ω)) ⊂ supp(e) × supp(ω). b) The same technique used in §3.2.2 shows that ω ∈ K * -1 p (A). For the support we get supp( ω) ⊂ pr 2 (supp(ω)). c) The above remarks and §3.2.2 prove that Kω ∈ K * -1 p (I×A). Let I ′ ×C ⊂ I×A be a compact containing supp(ω) and satisfying supp(e) ⊂ I ′ . A straightforward calculation shows that supp(Kω) ⊂ I ′ × C. d) It is proved in [1, page 38]. ♣ Since e * is the identity on K * c,p (A) we get from the above Lemma: The operator e * induces an isomorphism H * (K c,p (A)) ∼ = H * +1 (K c,p (I × A)).

  A×]0, ε[, we get the claim. Consider the following diagram0 → K * c,p (cA) → K * p(cA) → K * p(cA) / K * c,p(cA)

  see below) and the operators pr * 2 and e * are quasi-isomorphisms (see §3.2.1) and §4.2.5). Here e * (F )(η) = F (pr * 1 e ∧ pr * 2 η), with pr 1 :IR i × (L -Σ(L))×]0, 1[→ IR i and pr 2 : IR i × (L -Σ(L))×]0, 1[→ (L -Σ(L))×]0, 1[ the canonical projections, and e = f (x 1 ) • • • f (x i )dx 1 ∧ • • • ∧ dx i is a compactly supported 1-form on IR i with total integral 1.The commutativity of the diagram comes from the identityIR i ×(L-Σ(L))×]0,1[pr * 2 ω ∧ pr * 2 η ∧ pr * 1 e = (L-Σ(L))×]0,1[

  see below) and the operators pr * 2 and e * are quasi-isomorphisms (see Propositions 3.2.2 and 4.2.6) for j ≤ q(vertex of cL). Here e * (F )(η) = F (pr * 1 e ∧ pr * 2 η), with pr 1 : (L -Σ(L))×]0, 1[→]0, 1[ and pr 2 : (L -Σ(L))× ]0, 1[→ L -Σ(L) the canonical projections, and e is a compactly supported i-form on ]0, 1[ with total integral 1. The commutativity of the diagram comes from the identity (L-Σ(L))×]0,1[ pr * 2 ω ∧ pr * 2 η ∧ pr * 1 e = L-Σ(L)
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