N

N

Characterization of endomicroscopic images of the distal
lung for computer-aided diagnosis
Aurélien Saint-Réquier, Benoit Lelandais, Caroline Petitjean, Chesner Désir,
Laurent Heutte, Mathieu Salaiin, Luc Thiberville

» To cite this version:

Aurélien Saint-Réquier, Benoit Lelandais, Caroline Petitjean, Chesner Désir, Laurent Heutte, et al..
Characterization of endomicroscopic images of the distal lung for computer-aided diagnosis. Inter-
national Conference on Intelligent Computing, Sep 2009, Ulsan, South Korea. pp.994-1003. hal-
00439110

HAL Id: hal-00439110
https://hal.science/hal-00439110
Submitted on 6 Dec 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00439110
https://hal.archives-ouvertes.fr

Characterization of endomicroscopic images of
the distal lung for computer-aided diagnosis

Aurélien Saint-Réquier®, Benoit Lelandais', Caroline Petitjean'
, Chesner Désir', Laurent Heutte!, Mathieu Salaiin?, and Luc Thiberville?

1 Université de Rouen, LITIS EA 4108
BP 12, 76801 Saint-Etienne-du-Rouvray, France,
2 CHU de Rouen, LITIS EA 4108, 76031 Rouen, France
{caroline .petitjean,chesner.desir,laurent.heutte,
mathieu.salaun,luc. thiberville}@univ—rouen fr

Abstract. This paper presents a new approach for the classification of
pathological vs. healthy endomicroscopic images of the alveoli. These im-
ages, never seen before, require an adequate description. We investigate
two types of feature vector for discrimination: a high-level feature vector
based on visual analysis of the images, and a pixel-based, generic fea-
ture vector, based on Local Binary Patterns (LBP). Both feature sets
are evaluated on state-of-the-art classifiers and an intensive study of
the LBP parameters is conducted. Indeed best results are obtained with
the LBP-based approach, with correct classification rates reaching up to
91.73% and 97.85% for non-smoking and smoking groups, respectively.
Even though tests on extended databases are needed, first results are very
encouraging for this difficult task of classifying endomicroscopic images
of the distal lung.

1 Introduction

The lungs are the essential respiration organ. They are divided into two anatomic
and functional regions: (i) the air conduction system, that includes the trachea,
bronchi, and bronchioles, and (ii) the gas-exchange region, or lung parenchyma,
made of alveolar sacs. These sacs are made up of clusters of alveoli, tightly
wrapped in blood vessels, that allow for gas exchange. Whereas the conduction
airways can be explored in vivo during bronchoscopy, the alveolar region was un-
til recently unreachable for in vivo morphological investigation. Therefore, the
pathology of the distal lung is currently assessed only in vitro, using invasive
techniques such as open lung biopsies. No real time imaging was available.

A new endoscopic technique, called Fibered Confocal Fluorescence Microscopy
(FCFM), has recently been developed that enables the visualisation of the more
distal regions of the lungs in-vivo [7]. The technique is based on the principle of
fluorescence confocal microscopy, where the microscope objective is replaced by
a fiberoptic miniprobe, made of thousands of fiber cores. The miniprobe can be
introduced into the 2mm working channel of a flexible bronchoscope to produce



in-vivo endomicroscopic imaging of the human respiratory tract in real-time.
Real-time alveolar images are continuously recorded during the procedure and
stored for further analysis. This very promising technique could replace lung
biopsy in the future and might prove to be helpful in a large variety of diseases,
including interstitial lung diseases [8].

A clinical trial is currently being conducted that collects FCFM images in
several pathological conditions of the distal lungs. This trial also includes a con-
trol group of smoker and non smoker healthy volunteers. This strategy provides
a dataset of normal images, that can be compared to pathologic ones.

The images recorded within the alveolar regions of the lungs have not been
very well described so far. These images represent the alveolar structure, made
of elastin fiber, with an approximate resolution of 1um per pixel. This structure
appears as a network of (almost) continuous lines. This elastic fiber framework
can be altered by distal lung pathologies and as one can see on Figure 1, im-
ages acquired on pathological subjects differ from the ones acquired on healthy
subjects. The great complexity of these new images justifies the development
of reproductible software tools for computer aided diagnosis, that enables auto-
matic image description for diagnosis and follow up of pathological situations.

Fig. 1. FCFM images of healthy cases (above) and pathological cases (below)

We wish to conceive and develop methods for the automatic analysis of
FCFM images, so as to classify them as healthy cases or pathological cases.
As usual when designing such a pattern recognition system, the most crucial
step is the choice of a suitable feature space in which healthy and pathological
subjects can be discriminated. However, as it is shown in Figure 1, some images
present strong similarities where pathological cases can be visually misclassified



for healthy ones and vice versa. The choice of suitable features is therefore criti-
cal. Furthermore, to the best of our knowledge, there is no reference work upon
which we can rely to find the best way of characterizing these totally new images.
Therefore, as it is commonly done when designing the feature extraction stage,
two opposite strategies can be investigated to build the feature vector that will
describe an image. One can first rely on the visual analysis of the images, search-
ing for general properties that enable to discriminate classes, transforming them
numerically into a feature vector. In this case, it boils down to characterizing
images by knowledge-based features that one can a priori assume that they will
be adapted to the problem. On the other hand, one can design a set of totally
unspecific, low-level, pixel-based features that have been proved to be efficient
for characterizing a large variety of images. Because we are currently looking
for the best way to describe our FCFM images, we propose in this paper to
investigate these two opposite strategies for image characterization: problem-
dependent, knowledge-based features vs general-purpose, low level features.

Note that a knowledge-based feature vector has already been designed and
evaluated on a preliminary database of FCFM images [5]. Our alternative to
design a general-purpose feature vector for characterizing our FCFM images has
been to investigate the LBP operator, which is a generic tool to describe an im-
age texture [3]. The aim of this work is thus twofold: (i) to study the influence on
classification performance of the parameters of an LBP-based characterization,
and (ii) to compare performance obtained with generic features and knowledge-
based features.

The remaining of this paper is organized as follows: our classification method,
including the description of the two feature sets, is described in Section 2, and
results and discussion are provided in Section 3. Section 4 concludes and draws
some perspectives for this work.

2 Image classification method

2.1 Feature extraction

LBP-based feature set The LBP operator is a powerful means of texture
description [3]. It consists in locally identifying and coding some binary patterns
and in using their distribution to characterize the image. The original invariant
against gray-scale LBP analyzes an eight-pixel neighborhood, using the value of
the center pixel as a threshold [3]. The LBP code for a neighborhood is obtained
by combining the thresholded neighborhood with powers of two and summing
up the result (Figure 2). Histogram of the LBP codes can then be used as a
texture descriptor.

The method is extended in [4] by defining a circularly symmetric neighbor set
(Figure 2). The number of neighbors and the radius are denoted P and R,
respectively. The couple (P, R) is denoted scale factor.
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Fig. 2. Circularly symmetric neighbor set for different values of (P, R) (left), the orig-
inal LBP operator (right)

The LBPp,r operator can be defined as:

P—1
LBPppr = Z s(gp — gc)-2P

p=0

where g, is the gray value of the center pixel, g, defines the gray value of neighbor
p and s(x) is the thresholding function defined as:

S(x):{lifx>0

0 otherwise.

In order for the LBP code to be rotation invariant, each code is rotated back
to a reference position having the smallest LBP code. The rotation-invariant
LBP operator, denoted as LBPp'g, is then defined as :

LBPp'p = min{ ROR(LBPp,i) | i=0,1,...,P -1}

where ROR(z,i) circularly shifts the P — bit binary number x ¢ times to the
right and min(-) is the minimum function.

Let us now denote by U the number of spatial transitions in a pattern.
For example, patterns ”00000000” and ”11111111” have no spatial transition
(U = 0), while pattern ”00001111” has two transitions in the pattern (U = 2).
Patterns with U values less than or equal to 2 are considered as "uniform”. It
has been observed that a vast majority of patterns falls into this category [4].
This allows to define a new operator denoted as LBP];%2 that outputs only P+2
distinct values:

Sy s(gp — gc) if U(LBPpg) <2

LBPTiuQ _
PR { P+1 otherwise

with :
U(LBPpr) = |s(gp-1 — gc) — s(g0 — 9¢)|

P—1
+ Z |s(9p — 9c) — s(gp—1 — gc)|
p=1



This LBPIQf}ff operator is a gray-scale and rotation-invariant measure of the
spatial structure of the image texture. For sake of simplicity, the LBP}_",?}%Q oper-
ator is denoted by LBPp g in the remaining of the paper.

Texture can also be characterized by its contrast, that can be measured with
local variance :

1 P-1 1 P-1
VARpr =5 D (9 —p), where p =53 gy
p=0 p=0

VARp R is by definition invariant against rotation. Note that this variance
measure has a continuous-valued output, which requires quantization. Quantiza-
tion intervals are defined by assigning, between each cut value, the same amount
of values from the total distribution of variance. As suggested in [4], the number
of intervals is empirically determined. Number of intervals between 10 and 22
have been tested on our training set of images and a number of 15 intervals for
quantization of the variance values has finally been chosen, as it provided the
best recognition rates on our training set of images.

As shown above, the characterization of images through LBP and VAR op-
erators finally requires to choose only the value of the scale factor, i.e. the number
P of neighbors and the radius R. However, to the best of our knowledge, there is
no commonly agreed rule upon which one can rely to fix its value according to the
characteristics of the images we want to classify. Therefore, in our experiments,
we investigated several ways to characterize our images in order to determine
how these two parameters act on classification performance. For example, one
can first test each operator LBP and VAR independently, with varying val-
ues for the scale factor (P, R): (8,1), (16,2), (24,3). Note that a multiresolution
analysis can also be performed by concatenating values obtained with operators
having varying values of the scale factor. For example, a 2-level LBP operator
can be obtained by concatenating LB Fg 1 values and LB P2 values. Doing so,
three levels of multiresolution analysis can be investigated. Moreover, as LB Pp g
and VARp r operators allow to respectively characterize the spatial structure
and the contrast, one can note that they are of complementary nature. Their
combination is thus expected to be a more complete measure of local texture. A
new operator denoted by LVp r can then be created and tested by concatenating
the two single operators. Finally, Table 1 lists all the feature vectors that have
been tested for comparison and gives their respective feature numbers.

Knowledge-based feature set Several general characteristics can be observed
from the visual analysis of the images. As shown in Figure 1, the alveolar
structure in healthy subjects can be described as contrasted continuous lines
and curves. On the opposite, in the pathological subset, the disorganization of
the meshing is illustrated by the numerous irregularities and the tangle of the
fibered structures (see Figure 1). Differences are mostly visible for the struc-
ture shape, image texture and contrast. A total of 148 features are computed for



Table 1. LBP-based feature vectors used to characterize FCFM images

Resolution Feature number
levels P, R LBPpr VARpRr LVp R

8,1 10 15 25

1 16,2 18 15 33
24,3 26 15 41

8,1+16,2 28 30 58

2 8,14-24,3 36 30 66
16,2+24,3 44 30 74

3 8,1+16,2424,3 54 45 99

this knowledge-based feature vector. Number of features are given in parenthesis.

The structure contrast seems to be an important property of the images
we deal with. For example, we could suppose that pathological images will have
higher values of densities than healthy ones because of an emphasized disorga-
nization of the meshing in pathological images. Therefore the structure contrast
can be characterized by studying first order pixel gray level distribution and
computing pixel densities. The features retained for characterizing the image
contrast are: (i) first order statistics on the image histogram (5), (ii) pixel den-
sities obtained on binarized images using Otsu thresholding (1), (iii) the sum of
the image gradient values, obtained using Prewitt operator (1).

The complexity of the structure shape can be characterized by study-
ing the image skeleton. After skeletonization [1] obtained on the binary image,
the number of junction points is computed. One can suppose that on clearly
organized, healthy images, this number will be small, contrary to pathological
images where the meshing mess will induce a higher number of points (1).

The image texture can be characterized by Haralick parameters computed
from co-occurrence matrix [2]. Co-occurrence matrix provides the joint distri-
bution of gray-level intensities between two image points. These two points are
located according to several configurations, that represent different distances
and rotation angles. We chose the following classical 10 translation vectors: [0
1], [[1 1], [F1 0], [-1-1], [0 2], [-1 2], [-1 -2], [-2 1], [-2 O], [-2 -1]. From the features
originally proposed by Haralick, we retain the following ones: energy, contrast,
correlation, variance, inverse different moment, entropy, sum average, sum en-
tropy, sum variance, difference entropy, difference variance, and two information
measures of correlation. The only discarded feature is the maximum correlation
coefficient, which is too computationally expensive. To these 13 parameters we
added dissimilarity, a measure of homogeneity [6]. All these 14 parameters are
computed over the 10 co-occurrence matrices (140).



2.2 Classifier

On the previously cited feature sets two standard classifiers have been imple-
mented. First a 1-Nearest Neighbour (1-NN) classifier is used to assess the dis-
criminating power of the features. Due to the high computational cost of the
1-NN classifier, we have also implemented a Support Vector Machine (SVM)
classifier on our features [9]. SVM is one of the most performing and most used
classification algorithm. The support vector machine classifier is a binary clas-
sifier algorithm that looks for an optimal hyperplane as a decision function in a
high-dimensional space. A classical choice for the kernel is the cubic polynomial
kernel.

2.3 Experimental protocol

Because of the large difference between non-smoker and smoker images, exper-
iments have been conducted separately on those two groups. In non-smoker,
FCFM images exclusively represent the elastin framework of the alveolar ducts.
In smokers, tobacco-tar induced fluorescence allows to observe the alveolar walls
and the presence of macrophages (cells which digest cellular debris), as shown
in Figure 3. Note that a histogram equalization has been applied to the images,
initially quite dark.

The non-smoker database includes 133 images, 31 originating from healthy
subjects, and 102 from pathological ones. The smoker database includes 93 im-
ages, 60 originating from healthy subjects, and 33 from pathological ones. Be-
cause of the relatively small number of images in the non-smoker and the smoker
bases, a leave-one-out cross validation process is used, which ensures unbiased
generalization error estimation. It consists in extracting one sample image from
the image base for validation, the rest of the base being used for learning. Clas-
sification rate is computed over all the samples.

3 Results

The influence of the LBP method parameters, i.e. scale factor (P, R), operator
combination and number of resolution levels, is first assessed with a 1-NN classi-
fier. Then, LBP-based features and knowledge-based (K) features are compared.

3.1 Influence of LBP parameters

Correct classification rates are provided in Table 2, for LBP, VAR and combi-
nation of both operators, on the non-smoker and smoker groups using a 1-NN
classifier. Analyzing the results allows to underline the following points:



Fig. 3. FCFM images of smoker, healthy (left) and pathological (right) cases. Notice
the presence of macrophages.

— The LBP operator is better than the VAR operator, in all cases, when com-
paring single operators. Recognition rate reaches up to 95.7% for the smok-
ing group and 91.73% for the non-smoking group, whereas the VAR operator
only reaches 89.25% and 85.71% on the two groups respectively.

— Combining LBP and VAR operators yields better or equal results than the
LBP alone, in 10 out of 14 cases (71%). A more precise analysis of the
results shows that the non-smoking group especially takes benefit of the
concatenation of both complementary type of vectors. This highlights the
difference of content between non smoking and smoking images. Presence of
macrophages could explain the perturbation of local contrast.

— Increasing the number of resolution levels does not improve the performance.
In 20 out of 24 cases (83%) where resolution is increased, recognition rates
are decreased or remain unchanged. This suggests that information contained
in the image is not sensitive to the scale factor.

Note that the 3-level LVp r operator obtains the better compromise of per-
formance for both smoking and non-smoking groups. This has led us to choose
it for comparison with the knowledge-based feature vector in the next section.

Table 2. Classification rates (%) on non-smoker and smoker databases

Non-smoker database Smoker database
P.R LBPpr VARp r LVp.g|LBPp.r VARp R LVp.r
8,1 91,73 85,71 90,98 || 93,55 86,02 92,47
16,2 87,97 82,71 8947 | 94,62 83,87 94,62
24,3 84,21 81,20 88,72 || 94,62 75,27 93,55

8,1+16,2 90,98 84,21 90,98 95,7 89,25 94,62
8,14+24,3 83,46 84,21 90,98 | 94,62 87,1 94,62
16,2+24,3 89,47 82,71 90,98 94,62 83,87 94,62
8,1+16,2+24,3| 87,21 83,46 91,73| 94,62 86,02 94,62




3.2 Comparative study between LBP-based features and
knowledge-based features

In this section, performance obtained with the knowledge-based feature set and
the LVp g, 3-level operator, are compared. Results provided in Table 3 include
recognition and error rates, as well as number of false positive (FP) and false
negative (FN). False negative is the number of healthy instances that are erro-
neously reported as pathological and false positive is the number of pathological
cases considered healthy.

LBP-based features yield better results on both databases, and whatever
the classifier used. Note that, as observed in the previous study, results on the
smoker group are better than those obtained on the non smoker group. For the
smoker group, the 2 recognition rates provided by the 2 feature sets are pretty
close for a given classifier. Performance are increased by about 1.6%, vs 5.7%
for the non-smoker group. This might suggest that smoker images could benefit
from a higher level description in addition to the low-level, LBP-based feature
vector. Nonetheless, the image database needs to be extended, and FP and FN
are still quite high, which is encouraging us to continue our work.

Table 3. Comparison between results obtained by 1-NN and best results obtained by
the cascade for the KFV and LBPFV

Non-smoker database Smoker database

LBP (99) | K (148) || LBP (99) | K (148)
1-NN SVM [1-NN SVM||1I-NN SVM |1-NN SVM
Recognition rate (%) 91,73 91,73(86,47 85,71|/94,62 97,85|92,47 96,77
Error rate (%) 8,27 8,27 13,53 14,29(| 5,38 2,15 | 7,53 3,23

FP (number of images)| 5 6 7 10 1 1 3 2
FN (number of images)| 6 5 1 9 4 1 4 1

4 Conclusions

We presented in this paper an original system for the automatic classification of
normal versus abnormal endomicroscopic images of the respiratory alveolar sys-
tem with an emphasis on feature extraction. The first evaluated feature vector
does not require any a priori knowledge and is pixel-based. It includes a local
description of spatial structure (LBP operator) and contrast (VAR operator) of
the image texture. Several configurations are possible with these two operators,
which have been considered for the experiments (operator combination, number
of resolution levels, different values for the scale factor). The second feature set
is a combination of descriptors (histogram, density, gradient, skeleton, cooccur-
rence matrices) deduced from a visual inspection of healthy and pathological
images.



Recognition rates obtained after SVM based classification reach 91.73% and
97.85% with the LBP approach on non-smoker and smoker databases respec-
tively, whereas they are 85.71% and 96.77% with the knowledge-based feature
vector. These results show that the LBP-based feature vector is more adapted
to the description of FCFM images, especially the non-smoker images. In par-
ticular, the study of the different configurations shows that combining LBP and
VAR operators increases correct classification rates. This could suggest to further
investigate combination of LBP and VAR operators, by computing for instance
their joint distribution, or combining LBP and VAR with different values of P
and R. The behavior difference of the two image databases (smoking and non-
smoking) suggests that different feature sets could be also required for these two
groups.

Future work will concern rendering the process real-time, so as to aid the
clinician during examination in real time. Classification methods could also give
information about which part of the image is the most discriminant or which
part of the structure might be more altered by pathologies. A future goal will
also be to discriminate between different pathologies : interstitial lung diseases
(abestosis, systemic sclerosis, fibrosis, sarcoidosis), carcinomatous lesions etc.
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