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Isochronicity conditions for some planar

polynomial systems

Islam Boussaada ∗, A. Raouf Chouikha †and Jean-Marie Strelcyn ‡

December 6, 2009

Abstract

We study the isochronicity of centers at O ∈ R
2 for systems

ẋ = −y + A(x, y), ẏ = x + B(x, y), where A, B ∈ R[x, y], which can be reduced

to the Liénard type equation. Using the so-called C-algorithm

we have found 27 new multiparameter isochronous centers.
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1 Introduction

1.1 Generalities

Let us consider the system of real differential equations of the form

dx

dt
= ẋ = −y + A(x, y),

dy

dt
= ẏ = x + B(x, y), (1)

where (x, y) belongs to an open connected subset U ⊂ R
2, A, B ∈ C1(U, R),

where A and B as well as their first derivatives vanish at (0, 0). An isolated

singular point p ∈ U of system (1) is a center if there exists a punctured

neighborhood V ⊂ U of p such that every orbit of (1) lying in V is a closed

orbit surrounding p. A center p is isochronous if the period is constant for

all closed orbits in some neighborhood of p.

The simplest example is the linear isochronous center at the origin O =

(0, 0) given by the system

ẋ = −y, ẏ = x. (2)

The problem of caracterization of couples (A, B) such that O is an isochronous

center (even a center) for the system (1) is largely open.

An overview [4] present the basic results concerning the problem of the

isochronicity, see also [1, 8, 9, 17].

The hunting of isochronous centers is now a flourishing activity. By this

paper we would like to contribute to it.

The well known Poincaré Theorem asserts that when A and B are real

analytic, a center of (1) is isochronous if and only if in some real analytic

coordinate system it take the form of the linear center (2) (see for example

[1], Th.13.1, and [17], Th.4.2.1). Let us formulate now another theorem of

the same vein.
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Theorem A ([15], Th.3.3) Let us suppose that the origin O is an isochronous

center of system (1) with real analytic functions A and B. Let F (x, y) = x2+

y2 +o(|(x, y)|2) be an real analytic first integral defined in some neighborhood

of O. Then there exists a real analytic change of coordinates u(x, y) = x +

o(|(x, y)|), v(x, y) = x + o(|(x, y)|) bringing the system (1) to the linear

system u̇ = −v, v̇ = u and such that F (x, y) = u2(x, y) + v2(x, y).

We now pass to the heart of the matter. To make this paper more ac-

cessible, we report all strictly technical remarks concerning C-algorithm and

Gröbner basis to Appendix, Sec.7.

In some circumstances system (1) can be reduced to the Liénard type

equation

ẍ + f(x)ẋ2 + g(x) = 0 (3)

with f, g ∈ C1(J, R), where J is some neighborhood of 0 ∈ R and g(0) = 0.

If it is so, the system (1) is called reducible. To the equation (3) one associates

equivalent, two dimentional (planar), Liénard type system

ẋ = y

ẏ = −g(x) − f(x)y2







(4)

For reducible systems considered in this paper, the nature of singular

point O for both system (1) and (4) is the same; in particular this concerns

the centers and isochronous centers. More precisely, for the purpose of this

paper we shall consider two cases where such a reduction is possible.

• Case 1 ([18], Sec.3): When −y + A(x, y) = −yÃ(x) and x + B(x, y) =

B̃(x) + C̃(x)y2 system (1) can be written

ẋ = −yÃ(x)

ẏ = B̃(x) + C̃(x)y2







(5)

By the change of coordinates (u, v) := (x,−yÃ(x)) we get
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u̇ = v

v̇ = −Ã(u)B̃(u) +
Ã′(u) − C̃(u)

Ã(u)
v2











In this way we obtain the reduction to the system (3) with

f(x) = −Ã′(x) − C̃(x)

Ã(x)
and g(x) = Ã(x)B̃(x). (6)

• Case 2: When A(x, y) = 0 and B(x, y) = xP (y) where P (0) = 0. In

this case system (1) can be written

ẋ = −y

ẏ = x(1 + P (y))







By the change of coordinates (u, v) := (y, x(1 + P (y))) we get

u̇ = v

v̇ = −u(1 + P (u)) + v2 P ′(u)

1 + P (u)











We obtain the system (3) with

f(x) = − P ′(x)

1 + P (x)
and g(x) = x(1 + P (x)). (7)

In both cases the determinant of the Jacobian matrix of coordinate change

does not vanish at (0, 0). Thus the nature of singular point O is the same

for system (1) and (4).

Let us return now to the Liénard type equation (3). Let us define the

following functions

F (x) :=

∫ x

0

f(s)ds, φ(x) :=

∫ x

0

eF (s)ds. (8)
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The first integral of the system (4) is given by the formula ([18], Th.1)

I(x, ẋ) = 2

∫ x

0

g(s)e2F (s)ds + (ẋeF (x))2 (9)

When xg(x) > 0 for x 6= 0, define the function X by

1

2
X(x)2 =

∫ x

0

g(s)e2F (s)ds (10)

and xX(x) > 0 for x 6= 0.

Let us formulate now the following theorems which are the starting point

of this paper.

Theorem B ([18], Th.2) Let f, g ∈ C1(J, R). If xg(x) > 0 for x 6= 0, then

the system (4) has a center at the origin O. When f, g are real analytic ,

this condition is also necessary.

Theorem C ([10], Th.2.1) Let f , g be real analytic functions defined in a

neighborhood J of 0 ∈ R, and let xg(x) > 0 for x 6= 0. Then system (4) has

an isochronous center at O if and only if there exists an real analytic odd

function h which satisfies the following conditions

X(x)

1 + h(X(x))
= g(x)eF (x), (11)

the function φ(x) satisfies

φ(x) = X(x) +

∫ X(x)

0

h(t)dt, (12)

and X(x)φ(x) > 0 for x 6= 0.

In particular, when f and g are odd, O is an isochronous center if and

only if g(x) = e−F (x)φ(x), or equivalently h = 0.

Taking in account (10), it is easy to see that (11) and (12) are equivalent.

The function h will be called Urabe function. The above Theorem implies
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Corollary A ([10], Corollary 2.4) Let f , g be real analytic functions

defined in a neighborhood of 0 ∈ R, and xg(x) > 0 for x 6= 0. The origin O

is isochronous center of system (4) with Urabe function h = 0 if and only if

g′(x) + g(x)f(x) = 1 (13)

for sufficiently small x.

In the sequel we shall call the Urabe function of the isochronous center of

reducible system (1) the Urabe function of the corresponding Lienard type

equation.

In [10] the second author described how to use Theorem C to build an

algorithm (C-algorithm, see Sec.7.1 Appendix for more details) to look for

isochronous centers at the origin for reducible system (1), and apply to the

case where A and B are polynomials of degree 3. This work was continued

in [11].

The main results obtained in [10] and [11] are the necessary and sufficient

conditions for isochronicity of the center at O in term of parameters for the

cubic system

ẋ = −y + axy + bx2y

ẏ = x + a1x
2 + a3y

2 + a4x
3 + a6xy2







The aim of this paper is to extend these investigations for systems with

higher order perturbations of the linear center ẋ = −y, ẏ = x.

Like in [10, 11], our main tool to investigate the isochronous centers for

multiparameters systems reducible to Liénard type equation is C-algorithm.

Nevertheless, when searching only the isochronous centers with zero Urabe

function the Corollary A gives a much simpler method which is widely used

in this paper. It consists in identifying the parameters values for which

identity (13) is satisfied.
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In all cases considered in [10, 11] as well as in the present paper the

Urabe function is of the form h(X) = k1X
s

√
k2+k3X2s

where s is an odd natural

number, k1, k2, k3 ∈ R and k2 > 0. Like in [10, 11], we ask if the Urabe

function of corresponding Lienard type equation (called in the sequel also

the Urabe function of the isochronous center under consideration) is always

of the above form.

One of our contributions is the explicit description of simple multiparam-

eter families of system (1) with isochronous centers at the origin and with a

very complicated coefficients.

Their complexity clearly indicates that we approach the end of purely enu-

merative study in this field.

Let us stress that using the change of variables given by a polynomial

automorphism of R
2 it is easy to transform a simple system of polynomial

differential equation with isochronous center at the origin into a very com-

plicated one. But systems thus obtained do not belong to the class of simple

and natural systems studied in the present paper. Our contribution is the

explicit description of such complicated systems in simple and natural mul-

tiparameter families of planar polynomial differential systems.

In our investigations we have used Maple in its version 10. To compute

the Gröbner basis with Degree Reverse Lexicographical Ordering (DRL) of

the obtained systems of polynomial equations, we have used Salsa Software

more precisely the implementation FGb [12].

1.2 Beyond the degree 3

We now present the list of reducible systems for which we study the isochronous

centers at the origin.

1. In Section 2 we study the most general homogeneous perturbation of

arbitrary degree n ≥ 3 of the linear center which belongs to the Case
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1 from the Sec.1.1 :

ẋ = −y + axn−1y

ẏ = x + bxn−2y2 + cxn

}

(14)

Here we found 3 isochronous centers for even n ≥ 4 and 2 isochronous

centers for odd n ≥ 3 which are new.

2. In Sections 3 and 4 we study the most general polynomial perturbation

of degree four of the linear center which belongs to the Case 1 from the

Sec.1.1 :

ẋ = −y + a11xy + a21x
2y + a31x

3y

ẏ = x + b20x
2 + b30x

3 + b02y
2 + b12xy2 + b22x

2y2 + b40x
4







(15)

First using Corollary A we identify all isochronous centers with zero

Urabe function. Here we found 6 isochronous centers which are new.

The study of this system by C-algorithm can not be performed by our

actual computer facilities. Thus, we select for investigation two sub-

families; the first one when a1,1 = b3,0 = 0 and the second one when

a1,1 = a2,1 = 0. Here we found 10 isochronous centers which are new.

3. In Section 5 we study the most general polynomial perturbation of

degree five of the linear center which belongs to the Case 1 from the

Sec.1.1 :

ẋ = −y + a11xy + a21x
2y + a31x

3y + a41x
4y

ẏ = x + b20x
2 + b30x

3 + b02y
2 + b12xy2 + b22x

2y2 + b32x
3y2 + b40x

4 + b50x
5







(16)

Using Corollary A we identify all isochronous centers with zero Urabe

function where b50 = 0. Here we found 8 isochronous centers which are

new.
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4. In Section 6 we study the following Abel system of arbitrary degree

n ≥ 2 which belongs to the Case 2 (see Sec.1.1) :

ẋ = −y

ẏ =
n

∑

k=0

akxyk,















(17)

where ak ∈ R, for k = 0, . . . , n. Here we verify that up to n = 9 there

are no other isochronous center than the one found in [19].

To sum up, we have found 24 multiparameter isochronous centers as well

as three infinite families of them that correspond to the perturbations of

arbitrary high degree, the whole of which are new.

Concerning the reduction to the Lienard type equations the systems (14)-

(16) come under case 1, while system (17) come under case 2 (see Sec. 1.1).

In particular, for the systems (14)-(16) the functions f and g from equation

(3) are those given by formulas (6), while for the system (17) they are those

given by formulas (7).

Let us stress that by Theorem B, in all the above cases the origin O is

always a center (indeed, the condition xg(x) > 0 for x 6= 0 is satisfied for

sufficiently small |x|.
When describing in Sec.3-6 the identified isochronous centers, all parame-

ters intervening in the formulas are arbitrary, except that one always supposes

that the denominators are non zero. To avoid misprints all formulas are writ-

ten exactly in the form produced by Maple. All fractions which appear in

the formulas are irreducible. In all cases when we were able to write down

first integrals and linearizing changes of variables, the explicite formulas are

reported.

9



2 Homogeneous perturbations of arbitrary de-

gree

Taking into account the condition g′(x) + f(x)g(x) = 1 from Corollary A,

one easily obtains the following Theorem

Theorem 2.1. For n ≥ 2 the system (14) has an isochronous center at the

origin O with zero Urabe function only in one of the following two cases

ẋ = −y + axn−1y

ẏ = x + axn−2y2

}

(18)

ẋ = y + b
n
xn−1y

ẏ = x + bxn−2y2 − (n−1)b
n2 xn

}

(19)

Moreover, for odd n ≥ 3 there are no other isochronous centers.

Proof. System (14) is reducible to system (4) with

f(x) =
xn−2 (b + na − a)

1 − axn−1
and g(x) =

(

1 − axn−1
)

(x + cxn)

The condition g′(x) + f(x)g(x) = 1 allows directly to the following two

cases :

1. {a = b, c = 0} which gives the system (18).

2.

{

c = −b(n−1)
n2 , a = b

n

}

which gives the system (19).

Applying formula (9) using Maple, one see that for n = 4, 6, 8 the first integral

of system (18) takes the form

H(18) =
(x2 + y2)

(−1 + a xn−1)
2

n−1
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Then Theorem A suggest that the linearizing change of coordinates is

u =
x

n−1
√

1 − a xn−1
, v =

y
n−1
√

1 − a xn−1
(20)

Now one directly verifies that H(18) is always a first integral of system (18) and

using Maple one easily checks that (20) is a linearizing change of coordinates.

Exactly the same arguments work for the system (19). Its first integral is

H(19) =
x2 (1 + cxn−1)

2
+ y2

(n − 1)2 (n − 1 + ncxn−1)
2n

n−1

and its linearizing change of coordinates is

u =
x (1 + cxn−1)

(n − 1)
(

(n − 1 + ncxn−1)
n

n−1

) , v =
y

(n − 1)
(

(n − 1 + ncxn−1)
n

n−1

)

When n ≥ 4 is even the preliminary investigation of system (14) per-

formed by C-algorithm strongly suggests that for such n there exists exactly

one additional isochronous center with non zero Urabe function. Its existence

is proved in Theorem 2.2. Unfortunately, its uniqueness is not yet proved

for arbitrary even n ≥ 4. For n = 4, 6, 8 the uniqueness was proved using

Maple and Gröbner Basis method.

Let us point out that our final proofs are done by hand computations,

without using computer algebra.

Theorem 2.2. The system (14) with arbitrary even n ≥ 2 and a = 2b, c =

−b, b 6= 0, has an isochronous center at the origin with non zero Urabe

function

h(X) =
bXn−1

√
1 + b2X2n−2
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Proof. When a = 2b and c = −b the system (14) becomes

ẋ = −y + 2bxn−1y

ẏ = x + bxn−2y2 − bxn

}

. (21)

The change of variables (x, y) 7−→ (x/b, y/b)reduces the system (21) to the

form
ẋ = −y + 2xn−1y

ẏ = x + xn−2y2 − xn

}

which is reducible to the Liénard type equation (3) with

f(x) =
(−1 + 2 n)xn−2

1 − 2 xn−1
and g(x) =

(

1 − 2 xn−1
)

(x − xn)

Then

F (x) =

∫ x

0

f(s)ds =
1 − 2 n

2n − 2
ln

(

1 − 2 xn−1
)

which gives the right hand side of the equality (11)

g(x)eF (x) =
x(1 − xn−1)

(1 − 2 xn−1)
1

2n−2

.

On the other hand, e2 F (x) = (1 − 2 xn−1)
1−2 n
n−1 .

¿From the equation (10) we compute

X(x) =

√

2

∫ x

0

g(s)e2F (s)ds =
x

(1 − 2 xn−1)
1

2n−2

and

h(X(x)) =
X(x)n−1

√

1 + X(x)2n−2
=

xn−1

1 − xn−1

Then we compute the left hand side of the equality (11) :

X(x)

1 + h(X(x))
=

x

(1−2 xn−1)
1

2n−2

1 + xn−1

1−xn−1

=
x(1 − xn−1)

(1 − 2 xn−1)
1

2n−2
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Which proves that the equality (11) is satisfied. Let us stress that the above

computations remain valid for every n ≥ 2. Nevertheless, for n odd h is

not an odd function and thus it is not an Urabe function which is odd by

definition.

Theorem 2.3. For arbitrary n ≥ 2, the system (21) has the following first

integral

H(21) =
(x2 + y2)

n−1

2bxn−1 − 1
.

Proof. Using formula (9), one easily computes by Maple the first integral for

n = 4, 6, 8. The obtained results strongly suggest the veracity of the formula

for H(21). Now one easily can check by hand that H(21) is a first integral.

Let us return to system (14). It is well known that for n = 2, this system

has an isochronous center in exactly four cases, so called Loud isochronous

centers (see [14, 10]). They correspond to (a = b, c = 0), (a = b
2
, c =

− b
4
), (a = 2b, c = −b) and (b = a

4
, c = 0). The first two are those from

Theorem 2.1 , the third is the one from Theorem 2.2.

Let us note the Taylor expansion of the Urabe function h(X) = c1X +

c3X
3 + . . .. As noted at the begining of the Section, for n = 4 one has exactly

3 cases of isochronous centers. Why such a difference? The difference is in

the algebraic structure of the equations generated by C-algorithm. For n = 2,

the second of such equations is −3 c1 + a − 2 c − b = 0 and c1 can be non

zero, while for n ≥ 3, the second such equation is always c1 = 0. Thus the

freedom for existence of non zero Urabe function is greater for n = 2 than

for n ≥ 3.
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3 Non-homogeneous perturbations of degree

four with zero Urabe function

Taking into account the condition g′(x) + f(x)g(x) = 1 from Corollary A,

using Maple one easily obtains the following Theorem.

Theorem 3.1. The system (15) has an isochronous center at the origin O

with zero Urabe function only in one of the following six cases, where one

supposes that all denominators are non zero polynomials.

I

ẋ = −y + b02xy + a21x
2y + a31x

3y

ẏ = x + b02y
2 + a21xy2 + a31x

2y2

}

II

ẋ = −y + b02xy − 3
2
b30x

2y + b02b30x
3y

ẏ = x + b02y
2 + b30x

3 − 9
2
b30xy2 + 3 b02b30x

2y2

}

III

ẋ = −y + (b02 + 2 b20)xy + a21x
2y +

(

b20a21 − b02b20
2 − 4 b20

3
)

x3y

ẏ = x + b20x
2 + b02y

2 +
(

a21 + b02b20 + 4 b20
2
)

xy2

+
(

2 b20a21 − 2 b02b20
2 − 8 b20

3
)

x2y2
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IV

ẋ = −y +
(−9 b30b20

2−b20
2a21+2 b20

4+4 b30a21+6 b30
2)

b20(−b20
2+4 b30)

xy

+a21x
2y +

b30(−2 b30b20
2−b20

2a21+4 b30a21+6 b30
2)

b20(−b20
2+4 b30)

x3y

ẏ = x + b20x
2 +

(−17 b30b20
2−b20

2a21+4 b20
4+4 b30a21+6 b30

2)
b20(−b20

2+4 b30)
y2

+b30x
3 + 2

(−b20
2a21+4 b30a21+b30b20

2−3 b30
2)

−b20
2+4 b30

xy2

+3
b30(−2 b3,0b20

2−b20
2a21+4 b30a21+6 b30

2)
b20(−b20

2+4 b30)
x2y2
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V

ẋ = −y − (−32 b40b30b20
2+42 b40

2b20+8 b40b20
4+b40b30

2−2 b30
2b20

3+7 b30
3b20)

−b30
2b20

2+4 a2,4,0b20
3−18 b40b30b20+27 b40

2+4 b30
3 xy

−(6 b30
4−2 b20

2b30
3−27 b40b20b30

2+8 b30b40b20
3+39 b30b40

2−4 b40
2b20

2)
−b30

2b20
2+4 b40b20

3−18 b40b30b20+27 b40
2+4 b30

3 x2y

−2
b40(−b30

2b20
2−14 b40b30b20+18 b40

2+4 b40b20
3+3 b30

3)
−b30

2b20
2+4 b40b20

3−18 b40b30b20+27 b40
2+4 b30

3 x3y

ẏ = x + b20x
2 − (−68 b40b30b20

2+96 b40
2b20+16 b40b20

4+b40b30
2−4 b30

2b20
3+15 b30

3b20)
−b30

2b20
2+4 b40b20

3−18 b40b30b20+27 b40
2+4 b30

3 y2

+b30x
3 − 2

(9 b30
4−3 b20

2b30
3−40 b40b20b30

2+12 b30b40b20
3+60 b30b40

2−8 b40
2b20

2)
−b30

2b20
2+4 b40b20

3−18 b40b30b20+27 b40
2+4 b30

3 xy2

−8
b40(−b30

2b20
2−14 b40b30b20+18 b40

2+4 b40b20
3+3 b30

3)
−b30

2b20
2+4 b40b20

3−18 b40b30b20+27 b40
2+4 b30

3 x2y2 + b40x
4











































































































VI

ẋ = −y + (2 b20 + b02)xy − b20
2

32
(567 Z2b20 + 24 Zb02 − 804 Zb20 + 113 b20 − 8 b02) x3y

+
b20(13032 Z2b02−4488 Zb02+68719 Z2b20−22970 Zb20+384 b2+1943 b20)

24(387 Z2−144 Z+13)
x2y

ẏ = x + b20x
2 + b02y

2 − Zb20
2(27 Z−17)
4+12 Z

x3

− b20
32

(−108 Z2b02 + 1053 Z2b20 + 152 Zb02 − 1964 Zb20 − 76 b02 + 155 b20) xy2

− b20
2

8
(567 Z2b20 + 24 Zb02 − 804 Zb20 + 113 b20 − 8 b02)x2y2 + 1/4 Zb20

3x4



























































where Z is the only real root of the equation 27 s3 − 47 s2 + 13 s − 1 = 0,

which is equal to

Z =
1

81

3

√

39428 + 324
√

93 +
1156

81

1
3

√

39428 + 324
√

93
+

47

81
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4 Non-homogeneous perturbations of degree

four

Let us consider system (15). We would like to identify all its isochronous

centers by C-algorithm, without taking into account the nature of its Urabe

function. In full generality, this problem cannot be attained by our actual

computer possiblities. Indeed, we do not succeed to compute a Gröbner

basis for the nine C-algorithm generated polynomials on 9 unknown {aij}
and {bsr} of all even degrees between 2 and 18.

Inspecting the system under consideration one sees that the annulation

of some parameters {aij} and {brs} will substantially simplify the system.

This is the reason of our choice of two families presented below.

4.1 First family

Let us assume a11 = b30 = 0, in this case system (15) reduces to the system

ẋ = −y + a21x
2y + a31x

3y

ẏ = x + b20x
2 + b02y

2 + b12xy2 + b22x
2y2 + b40x

4

}

(22)

Theorem 4.1. The system (22) has an isochronous center at O if and only

if its parameters satisfy one of the folowing 6 conditions :

I

ẋ = y + b22
4

x3y

ẏ = x + b22x
2y2 − 3b22

16
x4

}

II

ẋ = −y + 2b22x
3y

ẏ = x + b22x
2y2 − b22x

4

}

.
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III

ẋ = −y + a21x
2y + a31x

3y

ẏ = x + a21xy2 + a31x
2y2

}

IV

ẋ = −y + 2
3
b20

2x2y − 4
3
b20

3x3y

ẏ = x + b20x
2 − 2 b20y

2 + 8
3
b20

2xy2 − 8
3
b20

3x2y2

}

V

ẋ = −y + 2
3
b20

2x2y − 4
3
b20

3x3y

ẏ = x + b20x
2 − 2 b20y

2 + 8
3
b20

2xy2 − 8
3
b20

3x2y2

}

VI

ẋ = −y + b20
2
(

2 + a31

b20
3

)

x2y + a31x
3y

ẏ = x + b20x
2 − 2 b20y

2 + b20
2
(

4 + a31

b20
3

)

xy2 + 2 a31x
2y2







where b20 6= 0.

Proof. C-algorithm gives the six candidates to be isochronous centers. We

had to derive 19 times to get the necessary conditions of isochronicity.

To apply succesfully the C-algorithm, we use the two tricks explained in

Appendix, Sec.7.2 : homogenization and reduction of the dimension of the

parameters space by one. This leads to the proof that the cases I-VI of The-

orem 4.1 satisfy the necessary conditions of isochronicity. We check that the

necessary conditions are also sufficient by direct application of Corollary A

to the cases I, III-VI. Indeed, in all those four cases g′(x)+f(x)g(x) = 1. For

sufficiently small x the case II is a particular case of the system (21) when

n = 4, studied in Theorem 2.2.
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Let us note that among the above six cases only the cases I, II and III

with a21 = 0 represent the homogeneous perturbations. All other cases are

non-homogeneous.

Note also that the above three homogeneous cases were already identified

by Theorems 2.2 and 2.1. But contrary to the quoted Theorems, here we

have the exhaustive list of isochronous centers for n = 4.

4.2 Second family

Consider system (15), with a11 = a21 = 0. We obtain the seven parameter

real system of degree 4.

ẋ = −y + a31x
3y

ẏ = x + b20x
2 + b02y

2 + b30x
3 + b12xy2 + b22x

2y2 + b40x
4







(23)

Theorem 4.2. The system (23) has an isochronous center at O if and only

if its parameters satisfy one of the folowing seven cases :

The three cases I, II and III with a21 = 0 come from Theorem 4.1 and cor-

respond to homogeneous perturbations. The following four cases correspond

to the non-homogeneous perturbations.

IV

ẋ = −y + 1
4
b02

3x3y

ẏ = x − 1
2
b02x

2 + b02y
2 + 1

2
b02

2xy2 + 1
2
b02

3x2y2

}

V

ẋ = −y + 1
192

b02
3
(

−21 + 5
√

33
)

x3y

ẏ = x − 1
2
b02x

2 + b02y
2 + 1

48
b02

2
(

9 −
√

33
)

x3

+ 1
16

b02
2
(

−1 +
√

33
)

xy2 + 1
64

b02
3
(

−21 + 5
√

33
)

x2y2
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VI

ẋ = −y − 1
192

b02
3
(

21 + 5
√

33
)

x3y

ẏ = x − 1
2
b02x

2 + b02y
2 + 1

48
b02

2
(

9 +
√

33
)

x3

− 1
16

b02
2
(

1 +
√

33
)

xy2 − 1
64

b02
3
(

21 + 5
√

33
)

x2y2















VII

ẋ = −y + 2
3549

b20
3(−43 t2/3−7670

√
3297+12112 3

√
t+52 3

√
t
√

3297−336886)
t2/3

x3y

ẏ = x − 2 b2,0y
2 − 1

10647

b2,0(−3822 b2,0t2/3−6242964 b2,0−127764 b2,0

√
3297+159432 b2,0

3
√

t)
t2/3

xy2

− 1
10647

b2,0(1032 b2,0
2t2/3+184080 b2,0

2
√

3297−290688 b2,0
2 3
√

t−1248 b2,0
2
√

3297 3
√

t+8085264 b2,0
2)

t2/3
x2y2

+b2,0x
2 − 1

10647

b2,0(−53144 b2,0
3
√

t+2080988 b2,0+42588 b2,0

√
3297−5824 b2,0t2/3)

t2/3
x3

− 1
10647

b2,0(−2150 b2,0
2t2/3−11926 b2,0

2 3
√

t+234 b2,0
2
√

3297 3
√

t+1085248 b2,0
2+18720 b2,0

2
√

3297)
t2/3

x4



















































































where t = 22868 + 468
√

3297

Proof. Thanks to C-algorithm we obtain the necessary conditions for the

isochronicity of the center at the origin for system (23) and we establish the

seven cases given in the theorem.

We check that the obtained necessary conditions are also sufficient by

direct application of Corollary A to the cases IV-VII. Indeed, in all those

four cases g′(x) + f(x)g(x) = 1 for sufficiently small x.

The centers I − III of Theorem 2 have been already identified in [7].
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5 Non-homogeneous perturbations of degree

five with zero Urabe function

By Corollary A the problem is reduced to solving the equation g′(x) +

f(x)g(x) = 1, with f and g defined in Sec.1.1 with respect to the sys-

tem (16). In this case the equation g′(x) + f(x)g(x) = 1 is equivalent to

some system of 8 polynomials depending on 12 unknown {aij} and {bsr} of

degree 2, 2, 2, 1, 2, 2, 2, 2. Applying the Gröbner basis method one obtains a

basis of 90 polynomials whose degrees varies between 1 and 8. This system

is too hard to handle. By inspecting the system one sees that when b50 = 0

it is very much simplified. This is the reason of our choice b50 = 0.

Theorem 5.1. The system (16) where b50 = 0 has an isochronous center at

the origin O with zero Urabe function only in one of the following 8 cases,

where one supposes that all denominators are non zero polynomials.

I

ẋ = −y + a11xy + b12x
2y + a31x

3y + b32x
4y

ẏ = x + a11y
2 + b12xy2 + a31x

2y2 + b32x
3y2

}

II

ẋ = −y + a11xy + a31x
3y − 3

4
a11a31x

4y

ẏ = x + a11y
2 + 4 a31x

2y2 − 3
4
a31x

4 − 3 a11a31x
3y2

}

III

ẋ = −y + a31

b30
xy + (3 b30 + b12)x2y + a31x

3y +
(

9
2
b30

2 + b12b30

)

x4y

ẏ = x + a31

b30
y2 + b30x

3 + b12xy2 + 3 a31x
2y2 +

(

27
2

b30
2 + 3 b12b30

)

x3y2

}
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IV

ẋ = −y + a11xy +
(

b12 − 2 b20
2 − a11b20

)

x2y + a31x
3y+

(

−b12b20
2 + 4 b20

4 + 2 a11b20
3 + a31b20

)

x4y

ẏ = x + b20x
2 + (−2 b20 + a11) y2 + b12xy2 +

(

b12b20 − 4 b20
3 − 2 a11b20

2 + a31

)

x2y2

+
(

−2 b12b20
2 + 8 b20

4 + 4 a11b20
3 + 2 a31b20

)

x3y2



































V

ẋ = −y + a11xy + a31x
3y

−(13 b30
2b20−11 b30b20

3−5 b30a11b20
2+2 b20

5+a11b20
4+a31b20

2−4a31b30+4 a11b30
2)

b20(4 b30−b20
2)

x2y

− b30(−b30a11b20
2+7 b30

2b20−2 b30b20
3−4 a31b30+4a11b30

2+a31b20
2)

b20(4 b30−b20
2)

x4y

ẏ = x + b20x
2 + (−2 b20 + a11) y2 + b30x

3

−(25 b30
2b20−22 b30b20

3−9 b30a11b20
2+4 b20

5+2 a11b20
4+a31b20

2−4 a31b30+4 a11b30
2)

b20(4 b30−b20
2)

xy2

+
(7 b30

2b20−2 b30b20
3−b30a11b20

2−2 a31b20
2+8 a31b30+4 a11b30

2)
4 b30−b20

2 x2y2

−3
b30(−b30a11b20

2+7 b30
2b20−2 b30b20

3−4 a31b30+4 a11b30
2+a31b20

2)
b20(4 b30−b20

2)
x3y2
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VI

ẋ = −y +
(108 b40

2−42 b40b20
3+81 a31b40+b20

6−3 b20
3a31)

b20
2(−b20

3+27 b40)
xy

+3
(−3 b40b20

3−b20
3a31+27 a31b40+36 b40

2)
b20(−b20

3+27 b40)
x2y + a31x

3y

+3
b40(−b20

3a31+36 b40
2+27 a31b40)

b20
2(−b20

3+27 b40)
x4y

ẏ = x + b20x
2 + 3

(b20
6−32 b40b20

3+36 b40
2+27 a31b40−b20

3a31)
b20

2(−b20
3+27 b40)

y2

+1
3
b20

2x3 + 6
(−4 b40b20

3−b20
3a31+27 a31b40+36 b40

2)
b20(−b20

3+27 b40)
xy2

−3
(b20

3a31−27 a31b40+12 b40
2)

−b20
3+27 b40

x2y2

+b40x
4 + 12

b40(−b20
3a31+36 b40

2+27 a31b40)
b20

2(−b20
3+27 b40)

x3y2
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VII

ẋ = −y + a11xy − 3
b30(13 b40

2+2 b30
3)

27 b40
2+4 b30

3 x2y

−(5 b30
3b40+36 b40

3−27 a11b30b40
2−4 a11b30

4)
27 b40

2+4 b30
3 x3y

+
b40(b40b30

2+27 a11b40
2+4 a11b30

3)
27 b40

2+4 b30
3 x4y

ẏ = x + a11y
2 + b30x

3 − 6
b30(3 b30

3+20 b40
2)

27 b40
2+4 b30

3 xy2

−3
(−27 a11b30b40

2−4 a11b30
4+7 b30

3b40+48 b40
3)

27 b40
2+4 b30

3 x2y2

+b40x
4 + 4

b40(b40b30
2+27 a11b40

2+4 a11b30
3)

27 b40
2+4 b30

3 x3y2











































































































VIII

ẋ = −y + a11xy + a21x
2y + a31x

3y + a41x
4y

ẏ = x + b20x
2 + b30x

3 + b02y
2 + b12xy2 + b22x

2y2 + b32x
3y2 + b40x

4 + b50x
5







where

a11 =
P11

Q
, a21 =

b20P21

Q
, a31 =

P31

Q
, a41 =

P41

Q
, b02 =

P02

Q
, b22 =

P22

Q
, b32 =

P32

Q
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and

P11 = −41 b40b30
2b20 + 2 b40b12b20

3 − 9 b40b30b12b20 + 9 b30
4 − 8 b40b20

5

−50 b40
2b20

2 + 27
2

b12b40
2 + 60 b40

2b30 − 10 b30
3b20

2 + 2 b30
2b20

4

−1
2
b30

2b20
2b12 + 44 b40b30b20

3 + 2 b12b30
3

P21 = −13 b40b30
2b20 + 2 b40b12b20

3 − 9 b40b30b12b20 + 3 b30
4 − 4 b40

2b20
2

+27
2

b12b40
2 + 21 b40

2b30 − b30
3b20

2 − 1
2
b30

2b20
2b12 + 4 b40b30b20

3 + 2 b12b30
3

P31 = 9 b30
5 + 2 b30

4b12 − 3 b30
4b20

2 − 46 b40b20b30
3 − 1

2
b30

3b12b20
2

+14 b30
2b20

3b40 − 9 b30
2b40b12b20 + 60 b30

2b40
2 + 2 b30b40b12b20

3

+27
2

b30b12b40
2 + 20 b30b20

2b40
2 − 36 b40

3b20 − 8 b20
4b40

2

P41 = 27
2

b12b40
3 + 60 b40

3b30 + 2 b40b12b30
3 + 12 b40

2b30b20
3 − 8 b40

3b20
2

−1
2
b40b30

2b20
2b12 − 9 b40

2b30b12b20 + 9 b40b30
4 + 2 b40

2b12b20
3 − 3 b40b30

3b20
2

−40 b40
2b30

2b20

P02 = −16 b40b20
5 + 80 b40b30b20

3 − 104 b40
2b20

2 + 4 b30
2b20

4 − 18 b30
3b20

2

−41 b40b30
2b20 + 2 b40b12b20

3 − 9 b40b30b12b20 + 9 b30
4 + 27

2
b12b40

2

+60 b40
2b30 − 1

2
b30

2b20
2b12 + 2 b12b30

3

P22 = 180 b30
2b40

2 − 144 b40
3b20 − 32 b20

4b40
2 + 6 b30b40b12b20

3 + 27 b30
5 + 6 b30

4b12

−9 b30
4b20

2 + 81
2

b30b12b40
2 − 144 b40b20b30

3 + 44 b30
2b20

3b40

+88 b30b20
2b40

2 − 27 b30
2b40b12b20 − 3

2
b30

3b12b20
2

P32 = 54 b12b40
3 + 240 b40

3b30 + 8 b40b12b30
3 + 48 b40

2b30b20
3 − 32 b40

3b20
2

−2 b40b30
2b20

2b12 − 36 b40
2b30b12b20 + 36 b40b30

4 + 8 b40
2b12b20

3

−12 b40b30
3b20

2 − 160 b40
2b30

2b20

Q = 4 b40b20
4 − 18 b40b30b20

2 + 27 b40
2b20 − b30

2b20
3 + 4 b20b30

3
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6 Abel polynomial system

By planar Abel system of order n we mean the system

ẋ = −y

ẏ =
n

∑

k=0

Pk(x)yk















(24)

where {Pk(x)}0≤k≤n are smooth functions.

This section is concerned by the following Abel system

ẋ = −y

ẏ = x(1 + P (y)),







(25)

with P (y) = a1y + a2y
2 + a3y

3 + .... + anyn, ak ∈ R, for k = 0, . . . , n. This is

a particular Abel system (24) where Pk(x) := akx, 0 ≤ k ≤ n.

6.1 Characterization of isochronous centers

System (25) is reducible (see Sec.1.1, Case 2) to the Liénard type equation

(3) with f(x) and g(x) defined by (7). Definitions (8), (10) and Theorems B

and C from Sec.1.1 remain valid. Applied to the Abel system (25) they give

:

Theorem 6.1. The origin O is a center for the system (25).

The center at O, is isochronous if and only if there exists an odd func-

tion h defined in some neighborhood of 0 ∈ R which satisfies the following

conditions
X

1 + h(X)
= x,

φ(x) = X(x) +

∫ X(x)

0

h(t)dt
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and X(x)φ(x) > 0 for x 6= 0.

In particular, when P is an even polynomial then the origin O is an

isochronous center if and only if P = 0.

Proof. xg(x) = x2(1 + P (x)) > 0 for x 6= 0 and |x| small enougth. Then

Theorem B implies that the origin O is a center of the system (25).

Now

F (x) =

∫ x

0

f(s)ds = − ln(1 + P (x)),

thus

φ(x) =

∫ x

0

eF (s)ds =

∫ x

0

ds

1 + P (s)
(26)

Then we obtain

g(x)eF (x) = x(1 + P (x))e− ln(1+P (x)) = x

Following Theorem C, one obtains

X(x)

1 + h(X(x))
= x

as well as the identity (12).

For the particular case where P is even, it is easy to see that f and g are

odd. Theorem C thus implies h = 0 and consequently X(x) = x. From (12)

one deduces that φ(x) = X(x). Then (26) implies that P ≡ 0.

The following paragraph is devoted to illustrate the last theorem by ex-

ample.

6.2 An application

Let us consider the Abel system (25) with n = 9 :

ẋ = −y

ẏ = x +

9
∑

i=1

aixyi















(27)
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with ak ∈ R, 1 ≤ k ≤ 9. As follows from Theorem 6.1, the origin O is always

a center for (27).

Theorem 6.2. The system (27) has an isochronous center at the origin 0

only in the case

ẋ = −y

ẏ = x + axy +
a2

3
xy2 +

a3

27
xy3











(28)

where a ∈ R

Proof. We apply C-algorithm for

f(x) = − P ′(x)

1 + P (x)
and g(x) = x(1 + P (x)),

where P (x) =
∑9

i=1 aix
i. We obtain the unique one-parameter family (28),

and computations give the Urabe function

h(X) = −a1X

3
=

k1X
√

k2
2 + k3X2

with k1 = −a1/3, k2 = 1, k3 = 0.

By the evident rescalling a
3
x 7→ x and a

3
y 7→ y system (28) takes the form

which is a particular case of system (25):

ẋ = −y

ẏ = x(1 + y)3.







(29)

The isochronous center at the origin O for system (29) was already depicted in

[19] by showing that system (29) commutes with some transversal polynomial

system, but neither its first integral nor the linearizing change of coordinates

were provided. We shall now compute both of them.
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• First integral In the variables u = y and v = x(1 + y)3 the system

(29) is reducible to the Liénard type equation ü + f(u)u̇ + g(u) = 0

where

f(u) = − 3

1 + u
and g(u) = u(1 + u)3.

By formula (9) from Theorem B one easily obtains that I(u, v) =
u2

(1+u)2
+ v2

(1+u)6
is a first integral of the corresponding planar system

u̇ = v

v̇ = −g(u) − f(u)v2







Returning to the variables (x, y) one recovers the first integral of the

system (29) :

I(29)(x, y) = x2 +
y2

(1 + y)2
.

• Linearization For this purpose we use the method of [13] based on

the exitence of vector field Y transversal to the vector field defined by

the system (29) and commuting with it. Maple computations give such

a field Y :

ẋ = x + xy

ẏ = −x2y3 + y2 − 3 x2y2 + y − 3 x2y − x2







(30)

Following the method described in [13], we first establish an inverse

integrating factor V (x, y) of the system (29):

V (x, y) = − (y + 1)
(

x2 + 2 x2y + x2y2 + y2
)

which leads to the first integrals H (already known) and I of the sys-

tems (29) and (30) respectively:

H(x, y) = x2 +
y2

(1 + y)2

I(x, y) = −x + arctan

(

(y + 1)x

y

)
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Let us define f̃(z) = z and g̃(z) = tan(z).

By the Theorem 4 of [13] we obtain the linearizing change of coordinates

u =

√

f̃(H(x, y))g̃(I(x, y))
√

1 + g̃2(I(x, y))

v =

√

f̃(H(x, y))
√

1 + g̃2(I(x, y))











































Maple produces the following more explicit formulas that we, as usual,

reproduce without any change to avoid the misprints:

u(x, y) =
−

√

x2+2 yx2+y2x2+y2

(y+1)2
tan

(

x − arctan
(

(y+1)x
y

))

√

1 +
(

tan
(

x − arctan
(

(y+1)x
y

)))2

v(x, y) =

√

x2 + 2 yx2 + y2x2 + y2

(y + 1)2
1

√

1 +
(

tan
(

x − arctan
(

(y+1)x
y

)))2
.























































The fact that this change of variables actually is a linearizing one can

easily be verified by Maple which gives u̇ = −v, v̇ = u as expected.

Under the light of Theorem 6.2, it is natural to ask if the system (28)

is the unique system with isochronous center at the origin 0 in family (25).

Even for n = 10, our actual computer possibilies are not sufficient to give an

answer.
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7 Appendix

7.1 C-Algorithm

Theorem C (see Sec.1.1) leads to an algorithm, first introduced in [10] (see

also[11]), hereafter called C-algorithm, which gives necessary conditions for

isochronicity of the center at the origin O for equation (3).

Below we recall basic steps of the algorithm.

Let h be the Urabe function defined in the Theorem C, and u = φ(x).

The function φ is invertible around 0 .

g̃(u) :=
X

1 + h(X)
, (31)

where now X is considered as a function of u. Our further assumption is

that functions f(x) and g(x) depend polynomially on certain parameters

α := (α1, . . . , αp) ∈ R
p.

By Theorem C, if the system (3) has isochronous center at the origin O,

then the Urabe function h must be odd, so we have

h(X) =
∞

∑

k=0

c2k+1X
2k+1

and moreover,

g̃(u) = g(x)eF (x), where x = φ−1(u). (32)

Hence, the right hand sides of (31) and (32) must be equal. We expand both

right hand sides into the Taylor series around 0 and equate the corresponding

coefficients. To this end we need to calculate k-th derivatives of (31) and (32).

For (31), by straightforward differentiation, we have

dkg̃(u)

duk
=

d

dX

(

dk−1g̃(u)

duk−1

)

dX

du
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Using induction, one can show that for (32) one obtains

dkg̃(u)

duk
= e(1−k)F (x)Sk(x),

where Sk(x) is a function of f(x), g(x) and their derivatives.

Therefore to compute the first m conditions for isochronicity of system (3)

we proceed as follows.

1. We fix m and write

h(X) =
m

∑

k=1

c2k−1X
2k−1 + O(X2m), c := (c1, c3, . . . , c2m−1).

2. Next, we compute

vk :=
dkg̃

duk
(0), wk = Sk(0)

for k = 1, . . . , 2m + 1. Note that those quantities are polynomials in α

and c.

3. By Theorem C we obtain the equations vk = wk for k = 1, . . . , 2m + 1.

Let us note that always v1 = w1 = 1 and thus the first equation is

meaningless.

It appears that we always can eliminate parameters c from these equa-

tions. For every k ≥ 0, c2k+1 occours for the first time, and in a linear

way, in the equation v2k+2 = w2k+2. This leads to the formula c2k+1 =

ϕ2k+1(α) for some multivariate polynomial ϕ2k+1. This brings us in a

natural way to the consecutive elimination of c1, c3, . . . , c2m−1. Finally,

we obtain at most m polynomial equations s1 = s2 = s3 = . . . = sM = 0

with p unknowns αi. These equations denoted Sys(m) give M neces-

sary conditions for isochronicity of system (3); Sys(m) ⊂ Sys(m + 1).
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For more details see [10, 11].

The progammation of the C-algorithm can be done in different ways.

Some of them appear more successful than others. For the purposes of the

present paper we used the programm from [2].

7.2 Homogeneization and reduction

The Gröbner bases method for solving the systems of polynomial equa-

tions is particularly efficient when all these polynomials are homogeneous

or weighted-homogeneous (see [3], Sec.10.2).

A long experience with C-algorithm indicates that the following facts are

always verified although they are not proved.

Let us consider the system (5) written explicitly as

ẋ = −y + a11xy + . . . + an−1,1x
n−1y

ẏ = x + b20x
2 + b02y

2 + . . . + bn−2,2x
n−2y2 + bn,0x

n

}

(33)

which as explained in Introduction, is reducible to the equation (3)

When considering the particular cases of system (33) corresponding to ho-

mogeneous (resp. non-homogeneous) perturbations of system (2), the poly-

nomials from Sys(m) are homogeneous (resp. non-homogeneous).

We note that for n = 3, C-algorithm succeeds in establishing isochronicity

criteria, however for n = 4 the obtained polynomials from the algorithm are

much more involved. For instance, system (33) with n = 4 reduces to the

system (15). Now, the first two non-zero polynomials from Sys(9) are

P2 = 3 a21 − 3 b12 + a11
2 − b20a11 − 9 b30 +4 b02

2 − 5 a11b02 +10 b20
2 +10 b20b02,

(34)
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P3 = 72 a21
2 + 396 b20a11b12 + 90 a11b02b12 + 36 a11b22 + 324 a31b02

− 36 a21b12 − 468 b20a11a21 + 612 b20a21b02 − 4116 a11b20
2b02

+ 108 b20a31 − 540 b30a21 − 324 b40a11 + 1566 b30a11b02 − 288 b20b22

− 459 b30a11
2 − 1296 b40b02 − 306 a21a11b02 + 1428 b20a11

2b02

+ 153 a21a11
2 − 117 a11

2b12 − 191 b20a11
3 + 180 b20b02b12 + 43 a11

4

− 2319 b20a11b02
2 − 289 a11

3b02 − 360 b02b22 − 36 b12
2 − 171 a21b02

2

+ 513 b30b02
2 + 537 a11

2b02
2 + 351 b02

2b12 − 271 a11b02
3 + 542 b20b02

3

+ 756 b20b30b02 + 2268 b20b30a11 − 20 b02
4 + 1120 b20

4 + 798 a11
2b20

2

− 2240 a11b20
3 − 1512 b20b40 + 1008 b20

2a21 − 252 b20
2b12

+ 1806 b20
2b02

2 + 2240 b20
3b02

To solve the systems of polynomials equations we use Gröbner bases. Solv-

ing system of 9 (non-zero) equations of Sys(9) requires higher performance

computers and ours are not up to it.

A careful analysis of polynomials from Sys(m) shows that for any m

they always are weighted-homogeneous. For example, the polynomial P2

given by (34) is weighted-homogeneous if we give weight 2 for a21, b12 and

b30, and weight 1 for the remaining variables.

We observe that all polynomials from Sys(m) are weighted-homogeneous

if we choose the following weights

1. i + j − 1 for parameters aij and bij

2. 2i + 1 for c2i+1.

We introduce new parameters Aij , Bij, and C2i+1 putting

Ai+j−1
ij = aij Bi+j−1

ij = bij , C2i+1
2i+1 = c2i+1 (35)

After this reparametrization system (33) reads

ẋ = −y + A11xy + . . . + An−1
n−1,1x

n−1y

ẏ = x + B20x
2 + B02y

2 + . . . + Bn−1
n−2,2x

n−2y2 + Bn−1
n,0 xn







(36)
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As in the case of isochronous center the Urabe function is odd, we search it

under the form

h(X) =
∞

∑

k=0

C2k+1
2k+1X

2k+1 = C1X + C3
3X

3 + C5
5X

5 + C7
7X

7 + . . .

By a simply use of (35), from the isochronicity conditions for system (36),

expressed in terms of its parameters {Aij} and {Brs}, it is easy to recover

the parameters values {aij} and {brs} when system (33) admits isochronous

centers at the origin O.

The described reparametrization gives rise to homogeneous equations and

reduces the number of parameters appearing in (36) by one. First we assume

B20 = 0, and we solve the isochronicity problem for system (36) under this

assumption. Next, for B20 6= 0, we apply to system (36) the following change

of coordinates

(x, y) 7→ (
x

B20
,

y

B20
)

Where

ẋ = −y +
(

A11

B20

)

xy + .. +
(

Bn−1,1

B20

)n−1

xn−1y

ẏ = x + x2 +
(

B02

B20

)

y2 + .. +
(

Bn−2,2

B2,0

)n−1

xn−2y2 +
(

Bn,0

B20

)n−1

xn



















Hence, without loss of generality we can put B20 = 1, and find the parame-

ters values for which the center is isochronous.

Note that the resolution of the polynomial system issued from the 19

derivations and associated eliminations for system (15) (with 9 parameters),

exceed our computer facilities.

7.3 On efficiency of C-algorithm

Usually for the search of isochronous centers one uses the method of normal

form (see for exemple [17, 7]). Thus it is interesting to compare C-algorithm
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with it, when there are applied to systems reducible to Liénard type equa-

tions.

As an example for such investigations we choose the Abel systems (25)

with 2 ≤ n ≤ 9. The normal form (NF) algorithm used is the one described

in [20] which is universal and efficient. As explained in point (3) of Sec.7.1 for

the system (25) with n parameters one computes coefficients c1, c3, . . . , c2m−1

of the Urabe function when C-algorithm is used. When the normal form

method is used one computes its first 2n + 1 terms.

The results are presented in the table where the time unit is one second.
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Table 1: CPU time on Pentium 1,46 GHz

n C-algorithm NF algorithm

2 ∼ 0 0,060

3 0,001 0,160

4 0,004 0,784

5 0,008 4,728

6 0,016 31,430

7 0,052 263,033

8 0,116 2335,962

9 0,284

The superiority of C-algorithm is obvious.
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[15] P. Mardesić, C. Rousseau, B. Toni, Linearization of isochronous Centers,

J. Diff. Eq. 121, p.67-108 (1995).

[16] V. G. Romanovski, X. Chen, X. H. Zhaoping, Linearizability of linear

system perturbed by fifth degree homogeneous polynomials,

J. Phys. A, 40, (2007), no. 22, 5905-5919.

[17] V. G. Romanovski, D. S. Shafer, The center and cyclicity problems : A

computational algebra approach, Birkhäuser, (2009), xvi+330pp.
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