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Design of observer-based controllers
for LPV systems with unknown parameters

W.P.M.H. Heemels, J. Daafouz, G. Millerioux

Abstract— Output-based feedback control of LPV systems be performed by the solution of bilinear matrix inequatitie
is an important problem, as in practice it is rarely the case |n [7], one considered dynamic output feedback control
that the full state varl_able is ava!lable for feedbat_:k. In thls of continuous-time LPV systems, where only some of the
paper we consider this problem in the case of discrete-time .

LPV systems for which the parameters are not exactly known, parameters a}r,e measured and ava'.lable for feedback. The
but only available with a finite accuracy or affected by noise derived conditions for the construction of the controllers
during their measurement. The controllers are obtained using which depend only on the measured parameters, are ex-
a separate design of an observer and a state feedback and the pressed in terms of linear matrix inequalities (LMIs) and an
interconnection is proven to stabilize tht_a LPV system despite additional coupling constraint, which destroys the coityex

the mismatch between the true and available parameters. The . LT .

approach allows to maximize the parameter uncertainty while of the condmo_ns. Recently, a S°|Ut'°r' IS given m [8] to the
still guaranteeing closed-loop stability. In addition, it is possible ~robust dynamic output feedback design for continuous-time
to make tradeoffs between the admissible level of mismatch on LPV systems when the measured varying parameters do not
the one hand and the_ perform_a_nce in terms of decay fa_lctors on exactly fit the real ones using convex programming.

the other. All the design conditions will be formulated in term Output feedback control design for discrete-time LPV

of LMIs, which can be solved efficiently, as is also illustrated .
by a numerical example. systems for which the measured parameters do not exactly

Index Terms— LPV systems, output feedback and observers, fit the real ones is an open problem. Convexity is only

robust control, LMIs, separation principle obtained in case of stability analysis [9]. In [9] it is also
shown that an observer that is asymptotically recoverirg th
I. INTRODUCTION state when the parameters are exactly measured, is input-

Linear Parameter-Varying (LPV) systems have receivetp-State stable (ISS) [10], [11] with respect to mismatch
considerable attention from the control community in recerPetween the true and the available parameters. However,
years due to their applicability in many practical situntio [9] does not study the observer synthesis nor the output-
(see [1], [2]. [3], [4], [5], [6] and references therein).based stabilization problem. In addition, it does not allow
Controllers that are designed on the basis of LPV systeff minimizing the ISS gain (as a measure for the influence
models have to satisfy two important properties, when the@/f the mismatch of the parameters on the estimation error).
are implemented in practice: These two important features will be considered in this pape

« First of all, the controller needs to be output-based, as Closely related to LPV systems are switched linear (SL)

in practice it is rarely the case that the full state variabléyStemS’,Wh'c,h can be perceived as a s.u'bclass of LPV
is available for feedback. systems in which the parameters only takéréte number

. Secondly, the controller must be robust with respect t f values. Observer-based control design for SL systems has

some degree of mismatch between the available and t gen considered in [12] under the assumption of haeiert

true parameters as the real parameters are not alw pwledge of the parameter Vf""”es- In_ case of unknown
known exactly, although this is often assumed in th arameters, [13] proposes design conditions for observers
LPV literature that include an estimation procedure for the parameters.
' This procedure exploits that the number of parameter values

The goal of this paper is to design controllers for LPVig " fie “\vhich makes it not applicable to general LPV

systems that satisfy these two properties, which means trE&'}stems. As a consequence, output-based controller design

we would like to solve the output-based controller deSig'f‘or discrete-time LPV systems with unknown parameters is
problem for discrete-time LPV systems with not exactly,

K ; Th blem that th heduli at present an open problem.
nown parameters. the problem that the scheduling param-rq paper contributes to this open problem. In particular,
eters measurements are only known up to a given precisi

tioned for the first ti in 131 in th fﬂji‘e main contributions are LMI-based conditions for the
Wast' men "’tf‘e L?;V € tlrs 'rSef 'r,‘[ [ ]t Iln the cas;l Oseparate design of state observers and input-to-state stab
continuous-time systems. niortunately, the syn es|izing state feedbacks for discrete-time LPV systems in the
of robust dynamic output feedback controllers in [3] has Qituation when the parameters are not exactly known. Next
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loop in terms of the decay factor. All the design conditiongwy, }ren With wy, € Q, k € N, it holds that the corresponding
will be formulated in terms of LMIs, which can be solvedstate trajectory satisfies
efficiently [14]. This will be demonstrated for an example.

The paper is organized as follows. The next section is ded- kIl < Bllloll, k)
icated to notations and basic definitions used in the sequ@dr all k € N. If 5 can be taken of the formi(s, k) = ds\*
Section Il gives the problem statement of observer-basgdr somed > 0 and0 < X < 1 the system (1) with
control design for LPV systems with the assumption that thgncertainty setQ is called globally exponentially stable
scheduling parameters used by the controller do not exacigES). The system (2) with uncertainty $etis said to be
match the real ones. In sections IV and V the observer andput-to-state stable (ISS) with respect #oif there exist
the state feedback are designed separately. Section Visshoyvx £-function 3 and aK-function v such that, for each
that the separate design of the observer and the state fdedba, < r”, all {v }ren and all{wy, }ren With wy, € Q, k € N,
leads to stabilizing output-based controllers. Also a gtesi it holds for all k € N that
procedure giving the largest level of uncertainty is pregubs
We end the paper by a numerical example that illustrates the el < B(llzoll, k) + v([[vllo)- 3)

main features of the proposed approach and conclusions. We call A adecay factorfor (1) and the functiony an|SS

gain of (2). Next we state sufficient conditions for ISS using

so-calledISS Lyapunov functionsThe proofs are omitted
R, R>p, and N are the field of real numbers, the setfor shortness, but can be based on [11], [15] by including

of non-negative reals and the set of non-negative integetbe uncertainty parameter and adopting parameter-depende

respectively. The-th entry of a real vectar is denoted byr?  Lyapunov functions.

(subscripts are used for denoting discrete-time depemjenc Theorem 2: Let dy,ds € R, leta,b,c,u € Rso with

We denote by|z|| = vzTz the Euclidean norm of: in ¢ < b and leta;(s) := as”, as(s) := bs*, az(s) := cs* and

R", where MT denotes the transpose for a vector or matrix- € K. Furthermore, le¥/ : R" x R% — R, be a function

M, and by ||z its infinity norm given bymax; |z¢|. For such that -

a sequencéuvy }ren With v, € R™ we denote its supremum

norm supycy ||vk | by [|v]|oc. For a matrixM € R™*™ we ai(llell) < Viz,w) < ax(|l=ll) (43)

denote its spectral normy/\,q..(MTM) by |[M||, where — V(Go(z,v,w1),w2) = V(z,w1) < —as([[z]) + o(([v]])

Anae(MTM) denotes the largest eigenvalue of” M. (4b)

When a matrixP is positive definite (including symmetry), "

we write P > 0. If it is positive semi-definite, we use > 0. ;orstaelinx(zi vl\ﬁth Sl:certaint <&l is 1SS with respect ta

Similarly, for (semi-)negative definiteness we writeand <. y y P '

— < —
By 0 and 1 we denote the zero and the identity matrix ofin case (4a) andg(G(x’wl)’w) V(z,wr) < —as(|lz])
: : . hold for allz € R™ andw, w1, wy € €2, then system (1) with
appropriate dimensions.

. _ e uncertainty sef is GES with decay factot — { € [0, 1).
A function ¢ : Ry — Ry belongs to classC if it is A function V' that satisfies (4) is called dSS Lyapunov
continuous, strictly increasing and(0) = 0 and to class

K.. if additionally ¢(s) — 0o ass — oo. A function 3 : Inction

R,y x Ry — R, belongs to clasgCL if for each fixed I1l. PROBLEM STATEMENT
k € Ry, B(-,k) € K and for each fixeds € R, G(s,-)
is decreasing antimy_,, 5(s,k) = 0. Consider now the
discrete-time nonlinear systems

II. NOTATION AND BASIC DEFINITIONS

<
<

v € R* andw, wi, wa € Q. Then

We consider discrete-time linear parameter-varying (LPV)
systems given by

G L Tpr1 = Alpr)zr + Bug (5a)

Tp41 = (xk7wk)7 1) yr = Cuxx+ Duy (5b)

and with z, € R®, y, € R™ andu, € R" the state, output
Trr1 = Go(Tr, vk, Wi), (2) and control input at discrete time € N and p, € R-

. . is a time-varying parameter. The matric € R**n
where z;, € R” is the statey, € R% is an unknown for each p By Eg HS”XT C ¢ R™*" D ?ﬁmxr have
disturbance input and;, € R% is an uncertainty parameter appropriate dimensions. The parametelies in some set

i H . n d, n
at dlscretedtlme§ € NG R x R T R a_nd O c RL and we assume that : © — R™*™ can be written
G, : R"xR% xR% — R"™ are arbitrary nonlinear functions. in the polytopic form

We assume that;, € Q, k € N for some sef) ¢ R% . Next,
we define the notions of global asymptotic stability (GAS) N
and global exponential stability (GES) for (1) and input-to Alp) = Zgl(p)Ai (6)
state stability (ISS) [10], [11] for (2). =1

Definition 1: [10], [11] The system (1) with uncertainty for certain continuous function§’ : © — R and matrices
set() is called globally asymptotically stable (GAS), if thereA; € R™*™, i = 1,..., N. In addition we assume that the
exists a/CL-function 8 such that, for eaclry € R™ and all mapping¢ : © — RY given by ¢ = (¢4,...,¢M)T is



such that¢(©) ¢ S with S = {u € RY | 4* > 0, i = then the error dynamics (9) with uncertainty setfor p

1,...,N and Zf;l pt = 1}. Hence, A(p) lies for each and L; = G 'F; is ISS with respect te and V, (e, &) =

p € © in the convex hullCo{A;, ..., An}. e{(vazl f,iPi)ek is an ISS Lyapunov function that satisfies
In this paper, we focus on the situation where the true

(time-varying) parametep;, is actually not available, but R R ) )

only an estimated parametgr € O fulfilling ||pr — prllco < Ve(ert1, €)= Veler, &) < —llerll” + oeo[[oxl|” (122)

A, where A is some nonnegative constant indicating the llerll? < Veler, &) < oenllex]|? (12D)
uncertainty level. The aim in this paper is to tackle the o
following design problem. for all &, {x11 € S, ex € R”, v, € R™. The ISS gainy
Problem 3: Design an observer-based controller of thean be taken linear ag(s) = oeys.
form Proof: The proof can be found in [16]. ]
In case the conditions of Theorem 4 hold, the polytopic
Tpy1 = A(pr)Zr + Bur + L(pr)(yx — 9x)  (7@)  observer (8) guarantees GES of the error dynamics (9) in the
g = Ciy,+ Duy (7b) nominalcase whergy, = p; for all £ € N (as thenv,, = 0,
we = K(pp)ix (7¢) k € N). In casepy, # pr, ISS guarantees only a steady state

estimation erroe that is smaller thado,., sup,cy ||z« with

with L(px) = SN, €4(pr)Ls and K (pr) = SoN €i(pr) Ky 0 = sup{AA(p,p) | |lp = plls < A} (as the ISS gain is
by appropriate'y Choosing the ga|ﬁ$ andKi, 7 = 1’ ceey N ’)/(S) = O'GUS). Hence, a kind Otteady state relative error
such that the closed-loop system (5)-(7) is GAS when than be obtained in the sense that
uncertainty satisfiedpr — prllcc < A and g, € O for all lim sup;,_, ., ||ex|
keN.

As a second goal we aim at designing an observer-
based controller as in the above problem formulation tharhich implies thate, — 0 (k — o0), if (px — pr) — 0
guarantees GAS of the closed-loop system for the largedt — ©0).
uncertainty levelA. Remark 5: In [17] also the concept of steady state rel-

The approach we will take is to design the observer an@tive error was used in the context of observer design for
the state feedback separately and provide a formal pro#scontinuous PWA systems in which the mode of the plant

that the interconnection stabilizes the LPV system (5) (se&@n be different than the mode of the observer. Here this
section VI). mismatch between observer and plant model is caused by

Pk # Pr, Which has a similar effect as in [17].
IV. OBSERVERDESIGN The smallest ISS gaiw., based on the above design

] o ) procedure can be obtained by selecting among all possible
We first focus on the estimation of the statg using a spjutionso,.,, P;, Gi, and F; of the LMIs (11) fori,j =

so-called polytopic observer of the form, which is given byl’ ..., N the ones leading to the smallest value far,,
. A A N which amounts to solving the convex optimization problem
{ Try1 = Alpw)dr + Bur  +  L(pr)(yx — k) g P P

U = Oy + Duy, @® min{oe, | P;, F;, Gi, 0., satisfying(11) i,j =1,...,N}

. , X L (14)
where GA @ and possiblypy. # pi.. The estimation error Remark 6: Note that the normalization of certain con-
exi=x) — Iy i governed by stants in (12) tol is without loss of generality as any
) ISS Lyapunov functionV, for (9) can be multiplied by a

sufficiently large positive constant to satisfy (12). Sesoal
with A.(pp) := Z?’:l &(pr)A;, whereA; = A; — L,C and the proof of Theorem 7 below.
As mentioned, if the hypotheses of Theorem 4 are satis-
v = (A(pr) — A(pr)) (10) fied, the polytopic observer (8) guarantees GES of the error
— dynamics in thenominal case f, = p for all k& € N).
In other words, the observer (8) asymptotically recovees th
The next theorem provides polytopic observers (8) thatate of the LPV system when the parametergand thus
render (9) ISS with respect ta &) are exactly known. Actually, under the hypotheses of
Theorem 4: Assume that there exist symmetric matricesTheorem 4, the observer satisfies the matrix inequalities
P, € R"*" matricesG; € R"*" F; e R"*™ =1,...,N

- < 60cy, (13)
lim supy,_, oo ||k]|

er+1 = Ac(pr)er + v

=:AA(pr,pr)

0 > (A,L—LlC)TpJ(A,L—LlC)—p“

and a scalaro,, satisfying for alli,; = 1,..., N the
following LMIs i,j=1,...,N (15a)
GT +Gi—P; 0 GiAi-FC G 0 < P,i=1,....N (15b)
0 1 1 0 0 11
ATGT —CTFF 1 P; 0 =0, (11) 1The LMIs (11) imply thatG; is invertible for eachi = 1,..., N as is
GT 0 0 o | shown in the proof.

7



In [9] it is proven that (15) is sufficient for the observer Proof: The proof is given in [16]. [ |

(8) with pr = pr (a nominal observer) to recover the The following corollary can be obtained immediately from

state of (5) asymptotically. Clearly, for an observer to kvor the above theorem in case the full stajgls known (i.e.e,, =

also in casep, # pr the inequalities in (15) are neces-0 for all k£ € N) and thus we consider the state feedback law

sary conditions (provided one adopts parameter-dependent s

quadratic Lyapunov functions). Interestingly, the coiatis k= K(pr)ay. (20)

in (15) also guarantee that the hypotheses of Theorem 4 areCorollary 9: Let the hypotheses of Theorem 8 be sat-

satisfied (as will be shown in Theorem 7 below). This showisfied. Then the LPV system consisting of (5a) and the

the non-conservatisnof the LMIs (11) as the existence state feedback (20) with uncertainty etfor p and K; =

of a nominal observer for theexact LPV system, with a Z;Y; ',i=1,...,Nis GES for all uncertainties satisfying

parameter-dependent quadratic Lyapunov function provnigAA 2, 0)| < 6 When6 < -

GES of the error dynamics, is sufficient for (11) to hold. Proof: From (19a) withe = 0 andv,, = AA(pk, pr) Tk

This also shows that any GES observer for the exact LPW follows that

system has some degree of robustness in the sense that it h 2 2 2

some steady state relative error as in (13) for seme> 0. Vol i) = Valow &) < —(L = om0 ol (@21)
Theorem 7: If there existP; andL;, i = 1,..., N such Together with (19b) this proves GES on the basis of Theo-

that (15) holds, then there are symmetric matri(t%sand rem 2. [ ]

matricesF;, G, i = 1,...,N and a scalaw,, satisfying An analogous result to Theorem 7 can also be shown for

foralli,j =1,...,N the LMIs (11). the state feedback. In particular, a nominal state feedback
Proof: The proof can be found in [16]. [ | wr = K (pr)zn 22)

V. STATE FEEDBACK DESIGN with K(pr) = SN, € (pr)K; (i.e. with estimation error

We now focus on the design of a state feedback for (5&), = 0, k € N and exact knowledge of parametess,= jy,

using an estimated state given by k € N) coupled to the LPV system (5a) is GAS if there are
wr = K(pp)in = K (po)(@n — ex) (16) K;, S;,i=1,...,N such that
with K(pr) = SN, €(po)K; andey, the estimation error. 0> (Ai + BK,)"S;(Ai + BK;) — Si, i,j=1,...,N
This results in the closed loop and0<S;, i=1,...,N. (23)
Tt = Ag(pr)rs + v — BK (pr)ex (17) Clearly, a state feedback (16) that renders (17) ISS (proved

by parameter-dependent quadratic ISS Lyapunov functions)
certainly satisfies (23). Interestingly, the converse aislols
in the sense that aominally stabilizing state feedback for

with, as before,v; is given by (10) andA.(px) =
Zl LE4(pr) (A; + BK;). Again, we sometimes writ€l, =
N————

Ak, (5a) has some robustness properties in the sense that (19)
& (pr) and &l = &(py). We now study ISS of (17). holds for someV, and even stronger, the LMIs in (18) are
Theorem 8: Assume that there exist symmetric matricegeasible. This clearly indicates the non-conservatismhef t
Y; € R™" and matricesz; €¢ R™*", ¢ = 1,...,N and derived LMIs in Theorem 8. However, note that (23) does not
scalarso gy, oz, 1t With > 0 satisfying fori,j =1,...,N  allow any minimization of the ISS gains, while the results
the LMI conditions of Theorem 8 do.
Y, 0 0 VAT +ZTBT Theorem 10: Suppose that there exisk;, S;, i =
0 Ozul 0 1 0 1,..., N such that (23) is satisfied. Then there are symmetric
0 0 ozl ~Z{B 0 1 =0 matricesY; and matricesZ;, i = 1,...,N and scalars
AY;+BZ; 1 —-BZ Y; 0 v Y e .
Y; 0 0 0 1 Oavy Oze, o With > 0 satisfying the LMIs (18) fori,j =
(18a) 1,...,N.
and fori=1,...,N Proof: The reader is referred to [16] for the prool
Y = pl, (18b) VI. OBSERVERBASED CONTROL DESIGN
then the closed-loop system (17) with uncertainty@éor j I\_Iext we will show that the separate design of the observer
andK; = Z;Y"',i=1,..., N is ISS with respect te and @S I section IV and a state feedback as in section V leads

to a stabilizing output-based controller for some nordtivi
level of uncertaintyd := sup{||AA(p, D) | llp — Pllo <
A}. Actually, in the end we aim at synthesizing output-
based controllers that stabilize the closed-loop systeyn (5
Vr($k+1,ék+1) _ qu(xlmék) < (7) for the largest level of uncertainty by using convex

9 programming techniques.
orellex]”,  (192) Assume that the observer has been designed according to
) R ) section IV and the state feedback according to section V.
2k l® < Valzk, &) < owollzsll” (19b)  The closed-loop system is given by

v and Vg (zx, &) = 2T vazl €i.S;xy, is an ISS Lyapunov
function that satisfies for afy, {11 € S, all z;, € R™, all
er € R™ and allv, € R™

e e e Y e T



LMIs given in (18). This results in the feedback
( Thi1 ) _ [ A(pk)+_BK@k) —BK(py) } ( T ) gainsK;,i=1,...,N.
e Alw) = Alpr) - Alor) = L(oe)C e’€(24) The optimization problems in Step 1 and 2 are convex
Theorem 11: Let an observer (8) that satisfies the hy_problems as we are minimizing linear costs subject to LMI

potheses of Theorem 4 and a state feedback law that satisfi@§straints. Step 2 might even be extended by perform-
the hypotheses of Theorem 8 be gi¥ehen for any INg a line search irnu and applying the above procedure

max{1f_ 1 }<e<landany << w repetitively. Once, the minimal valug* 20 0%, + o7, is
the closed-loop system (24) is GES with decay fadtor equfgund, one can on the basis of Theorem 11 and (25) still
to /2 for all uncertainties satisfying AA(p,p)|| < & := make tradeoffs between transient performance in termseof th
B=(1=€)0sv) B decay factor,/e and robustness in terms of<). Letting ¢
Tev+B020 _ 1 _ 1
Proof See [16] for the proof. - increase frommax{1— >, 11—} (maximal performance,

minimal robustness) td (m|n|mal performance, maximal
robustness), tradeoff curves between performance andtrobu
ness are obtained.

It is of interest to find the value of that provides the
largest robustness in terms &f To maximize the value
for 62 (for a fixed value of the decay factoyc) it is

clear that we have to maximizg(s) := # Since VII. | LLUSTRATIVE EXAMPLE
P = 22— >0, the maximum is obtained for the Consider the LPV system (5) withA(p,) =
largest allowable value of, which |s% and thus | 925 L 0 B=[o01"C =[102
the maximum ofs is 0 0 06+p | T 7
D =0andp, € [0, 0.5], kK € N. In this case we can
1—[1—¢€|loey)(1 — |1 —¢€loge ) ’ . .
i) = \/ (_20[ . ]—f(l)(— [135]06]0)0) . (25) take the functionst!(p) = % and £2(p) = & with
B " OzeTev ev/may A; = A(0) and A, = A(0.5). The observer is designed

Suppose we now would like to find the value ofsuch using Theorem 2 along with the optimization problem (14)
thgt the admissible uncertainty lewi{s) is maximal. Since (Step 1). The optimal solution is given by, = 5.8277 with
B le) - 1-(1=2)ces]oas > 0 for any max{1 —  observer gainsL; = [ —0.0335 —0.0011 0.3870 1"

de B 20pe0en+[1—-(1=€)0cy]omy
L1- L} < e < 1, maximizing robustness requiresand L, = [ —0.0835 —0.0011 0.7094 ] With this

Oev’

maximizing (actually taking supremum of)and thus taking optimal observer and the associated slope of the linear
it close to1. This yields that the maximal value @f can ISS gainc?, , a line search involving: > 0 is performed

ev’

become arbitrarily close to in order to minimize the cost/ = p 20..0%, + 0w
1 subject to the LMiIs given in (18) for alli,j (Step
o(1) :\/ — (26) 2). Fig. 1 shows the minimum off for each fixed y,

p, O—meaev+01v

_ _ _ © ~ which is the smallest Note that for each fixgd we
while still guaranteeing stability. Hence, for maximizinghave a convex programming problem to solve (linear cost
robustness in terms of maximizige), we should maximize criterion with LMI constraints). foru* = 0.2986 yielding

¢ meaning that the performance in terms of the decay factgr — 0.2663 and ¢, = 13.9284 and corresponds to the

/€ is worst. As such, we encountered a “classical” tradeoﬁontro”er gainsK; = [-0.0327 — 0.1241 — 0.2387],
between robustness and performance. Ky = [0.0005 — 0.0010 — 0.6148].
The reasoning above maximizes robustnes$ixedvalues
of 0,4, 06y @ando,.. Since we have determined this max- 140
imum given theser’s, we can now optimize robustness by
appropriately selecting the gaids and K;, i = 1,...,N. 120
From (26) it is clear that we have to minimize 20 ,.0e, +
o t0 get the maximal value fof(1) = m 100

(for decay factor equal ta). This gives rise to the follow-
ing procedure to get maximal robustness in the mismatch 2
between the scheduling paramefgrand the actual ongy
as reflected in.
Design procedure
Step 1: Minimizeo,, subject to (11) fori,5 =1,...,N
(i.e. optimization problem (14)). This gives the
minimume?,, and the corresponding observer gains
Ll! Z - 1 7N' 2 0.‘1 0.‘15 0‘.2 0.‘25 0‘.3
Step 2: leenam, at in Step 1. Fixy > 0 and minimize H
the expressionu 20,07, + 0., subject to the

Cost J

60

40

Fig. 1. Line searchu
2Note that the hypotheses guarantee that > 1 and o, > 1.



(5]
(6]

(7]

(8]

Uncertainty level &

(9]

(20]

[11]

L L L L L
0.975 0.98 0.985 0.99 0.995 1

Decay factor sqrt(e )

L L
0.965 0.97

[12]

Fig. 2. Tradeoff performance/robustness
(13]

As a consequence, the maximum level of uncertaintpm
is 6F = 1 0.1786. Hence, for

mazx w*=2or .0t 40k,
AA(pr, pr) = |pr — pr] < d < 0.1786 GES of the closed- [15]
loop system (24) is guaranteed (with a decay factor close to
1). Lettinge increase frommax{l— —-,1— -} to 1 leads
' & in terms of tHe"!

to the tradeoff curves between performanc
decay factor,/ and robustness to uncertaintyA(py, pr.)
in terms ofé as depicted in Fig. 2. (17]

VIII. CONCLUSIONS

In this paper the design of robustly stabilizing output-
based feedback controllers is considered for discrete-tim
LPV systems in which the scheduling parameters are only
known up to a given precision. The output-based controllers
are obtained using separate design of the observer and the
state feedback and we showed that the interconnection of
the LPV plant, observer and state feedback leads to a stable
closed-loop system for certain levels of mismatch between
estimated and true parameters. The non-conservatism of
our approach is demonstrated by showing that well known
conditions for nominally stabilizing observers and feezksa
(i.e. without mismatch between true and available parame-
ters) imply our LMI-based conditions. The flexibility in the
framework allows to construct the controller that guaraste
stability for the largest level of parameter uncertaintyd an
to make tradeoffs between performance in terms of decay
factor and robustness with respect to parameter uncsrtaint
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