
HAL Id: hal-00438966
https://hal.science/hal-00438966

Submitted on 5 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of observer-based controllers for LPV systems
with unknown parameters

Maurice Heemels, Jamal Daafouz, Gilles Millérioux

To cite this version:
Maurice Heemels, Jamal Daafouz, Gilles Millérioux. Design of observer-based controllers for LPV
systems with unknown parameters. 48th IEEE Conference on Decision and Control, CDC’09, Dec
2009, Shanghai, China. pp.CDROM. �hal-00438966�

https://hal.science/hal-00438966
https://hal.archives-ouvertes.fr


Design of observer-based controllers
for LPV systems with unknown parameters

W.P.M.H. Heemels, J. Daafouz, G. Millerioux

Abstract— Output-based feedback control of LPV systems
is an important problem, as in practice it is rarely the case
that the full state variable is available for feedback. In this
paper we consider this problem in the case of discrete-time
LPV systems for which the parameters are not exactly known,
but only available with a finite accuracy or affected by noise
during their measurement. The controllers are obtained using
a separate design of an observer and a state feedback and the
interconnection is proven to stabilize the LPV system despite
the mismatch between the true and available parameters. The
approach allows to maximize the parameter uncertainty while
still guaranteeing closed-loop stability. In addition, it is possible
to make tradeoffs between the admissible level of mismatch on
the one hand and the performance in terms of decay factors on
the other. All the design conditions will be formulated in term
of LMIs, which can be solved efficiently, as is also illustrated
by a numerical example.

Index Terms— LPV systems, output feedback and observers,
robust control, LMIs, separation principle

I. I NTRODUCTION

Linear Parameter-Varying (LPV) systems have received
considerable attention from the control community in recent
years due to their applicability in many practical situations
(see [1], [2], [3], [4], [5], [6] and references therein).
Controllers that are designed on the basis of LPV system
models have to satisfy two important properties, when they
are implemented in practice:

• First of all, the controller needs to be output-based, as
in practice it is rarely the case that the full state variable
is available for feedback.

• Secondly, the controller must be robust with respect to
some degree of mismatch between the available and the
true parameters as the real parameters are not always
known exactly, although this is often assumed in the
LPV literature.

The goal of this paper is to design controllers for LPV
systems that satisfy these two properties, which means that
we would like to solve the output-based controller design
problem for discrete-time LPV systems with not exactly
known parameters. The problem that the scheduling param-
eters measurements are only known up to a given precision
was mentioned for the first time in [3] in the case of
continuous-time LPV systems. Unfortunately, the synthesis
of robust dynamic output feedback controllers in [3] has to
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be performed by the solution of bilinear matrix inequalities.
In [7], one considered dynamic output feedback control
of continuous-time LPV systems, where only some of the
parameters are measured and available for feedback. The
derived conditions for the construction of the controllers,
which depend only on the measured parameters, are ex-
pressed in terms of linear matrix inequalities (LMIs) and an
additional coupling constraint, which destroys the convexity
of the conditions. Recently, a solution is given in [8] to the
robust dynamic output feedback design for continuous-time
LPV systems when the measured varying parameters do not
exactly fit the real ones using convex programming.

Output feedback control design for discrete-time LPV
systems for which the measured parameters do not exactly
fit the real ones is an open problem. Convexity is only
obtained in case of stability analysis [9]. In [9] it is also
shown that an observer that is asymptotically recovering the
state when the parameters are exactly measured, is input-
to-state stable (ISS) [10], [11] with respect to mismatch
between the true and the available parameters. However,
[9] does not study the observer synthesis nor the output-
based stabilization problem. In addition, it does not allow
for minimizing the ISS gain (as a measure for the influence
of the mismatch of the parameters on the estimation error).
These two important features will be considered in this paper.

Closely related to LPV systems are switched linear (SL)
systems, which can be perceived as a subclass of LPV
systems in which the parameters only take afinite number
of values. Observer-based control design for SL systems has
been considered in [12] under the assumption of havingexact
knowledge of the parameter values. In case of unknown
parameters, [13] proposes design conditions for observers
that include an estimation procedure for the parameters.
This procedure exploits that the number of parameter values
is finite, which makes it not applicable to general LPV
systems. As a consequence, output-based controller design
for discrete-time LPV systems with unknown parameters is
at present an open problem.

This paper contributes to this open problem. In particular,
the main contributions are LMI-based conditions for the
separate design of state observers and input-to-state stabi-
lizing state feedbacks for discrete-time LPV systems in the
situation when the parameters are not exactly known. Next
we prove that the resulting closed-loop system is globally
exponentially stable for some level of mismatch between
the true parameters and the available ones. Interestingly,the
flexibility in our framework allows to make tradeoffs between
this level of mismatch and the performance of the closed-



loop in terms of the decay factor. All the design conditions
will be formulated in terms of LMIs, which can be solved
efficiently [14]. This will be demonstrated for an example.

The paper is organized as follows. The next section is ded-
icated to notations and basic definitions used in the sequel.
Section III gives the problem statement of observer-based
control design for LPV systems with the assumption that the
scheduling parameters used by the controller do not exactly
match the real ones. In sections IV and V the observer and
the state feedback are designed separately. Section VI shows
that the separate design of the observer and the state feedback
leads to stabilizing output-based controllers. Also a design
procedure giving the largest level of uncertainty is proposed.
We end the paper by a numerical example that illustrates the
main features of the proposed approach and conclusions.

II. N OTATION AND BASIC DEFINITIONS

R, R≥0, and N are the field of real numbers, the set
of non-negative reals and the set of non-negative integers,
respectively. Thei-th entry of a real vectorx is denoted byxi

(subscripts are used for denoting discrete-time dependence).
We denote by‖x‖ =

√
xT x the Euclidean norm ofx in

R
n, whereMT denotes the transpose for a vector or matrix

M , and by‖x‖∞ its infinity norm given bymaxi |xi|. For
a sequence{vk}k∈N with vk ∈ R

n we denote its supremum
norm supk∈N ‖vk‖ by ‖v‖∞. For a matrixM ∈ R

n×m we
denote its spectral norm

√

λmax(MT M) by ‖M‖, where
λmax(MT M) denotes the largest eigenvalue ofMT M .
When a matrixP is positive definite (including symmetry),
we writeP ≻ 0. If it is positive semi-definite, we useP � 0.
Similarly, for (semi-)negative definiteness we write≺ and�.
By 0 and 1 we denote the zero and the identity matrix of
appropriate dimensions.

A function ϕ : R+ → R+ belongs to classK if it is
continuous, strictly increasing andϕ(0) = 0 and to class
K∞ if additionally ϕ(s) → ∞ as s → ∞. A function β :
R+ × R+ → R+ belongs to classKL if for each fixed
k ∈ R+, β(·, k) ∈ K and for each fixeds ∈ R+, β(s, ·)
is decreasing andlimk→∞ β(s, k) = 0. Consider now the
discrete-time nonlinear systems

xk+1 = G(xk, ωk), (1)

and

xk+1 = Gv(xk, vk, ωk), (2)

where xk ∈ R
n is the state,vk ∈ R

dv is an unknown
disturbance input andωk ∈ R

dω is an uncertainty parameter
at discrete timek ∈ N. G : R

n × R
dω → R

n and
Gv : R

n×R
dv×R

dω → R
n are arbitrary nonlinear functions.

We assume thatωk ∈ Ω, k ∈ N for some setΩ ⊂ R
dω . Next,

we define the notions of global asymptotic stability (GAS)
and global exponential stability (GES) for (1) and input-to-
state stability (ISS) [10], [11] for (2).

Definition 1: [10], [11] The system (1) with uncertainty
setΩ is called globally asymptotically stable (GAS), if there
exists aKL-function β such that, for eachx0 ∈ R

n and all

{ωk}k∈N with ωk ∈ Ω, k ∈ N, it holds that the corresponding
state trajectory satisfies

‖xk‖ ≤ β(‖x0‖, k)

for all k ∈ N. If β can be taken of the formβ(s, k) = dsλk

for some d ≥ 0 and 0 ≤ λ < 1 the system (1) with
uncertainty setΩ is called globally exponentially stable
(GES). The system (2) with uncertainty setΩ is said to be
input-to-state stable (ISS) with respect tov if there exist
a KL-function β and aK-function γ such that, for each
x0 ∈ R

n, all {vk}k∈N and all{ωk}k∈N with ωk ∈ Ω, k ∈ N,
it holds for all k ∈ N that

‖xk‖ ≤ β(‖x0‖, k) + γ(‖v‖∞). (3)

We callλ a decay factorfor (1) and the functionγ an ISS
gain of (2). Next we state sufficient conditions for ISS using
so-called ISS Lyapunov functions. The proofs are omitted
for shortness, but can be based on [11], [15] by including
the uncertainty parameter and adopting parameter-dependent
Lyapunov functions.

Theorem 2: Let d1, d2 ∈ R≥0, let a, b, c, µ ∈ R>0 with
c ≤ b and letα1(s) := asµ, α2(s) := bsµ, α3(s) := csµ and
σ ∈ K. Furthermore, letV : R

n×R
dω → R≥0 be a function

such that

α1(‖x‖) ≤ V (x, ω) ≤ α2(‖x‖) (4a)

V (Gv(x, v, ω1), ω2) − V (x, ω1) ≤ −α3(‖x‖) + σ(‖v‖)
(4b)

for all x ∈ R
n, all v ∈ R

dv and ω, ω1, ω2 ∈ Ω. Then
system (2) with uncertainty setΩ is ISS with respect tov.
In case (4a) andV (G(x, ω1), ω2) − V (x, ω1) ≤ −α3(‖x‖)
hold for all x ∈ R

n andω, ω1, ω2 ∈ Ω, then system (1) with
uncertainty setΩ is GES with decay factor1 − c

b
∈ [0, 1).

A function V that satisfies (4) is called anISS Lyapunov
function.

III. PROBLEM STATEMENT

We consider discrete-time linear parameter-varying (LPV)
systems given by

xk+1 = A(ρk)xk + Buk (5a)

yk = Cxk + Duk (5b)

with xk ∈ R
n, yk ∈ R

m and uk ∈ R
r the state, output

and control input at discrete timek ∈ N and ρk ∈ R
L

is a time-varying parameter. The matricesA(ρ) ∈ R
n×n

for each ρ, B ∈ R
n×r, C ∈ R

m×n, D ∈ R
m×r have

appropriate dimensions. The parameterρ lies in some set
Θ ⊂ R

L and we assume thatA : Θ → R
n×n can be written

in the polytopic form

A(ρ) =
N∑

i=1

ξi(ρ)Ai (6)

for certain continuous functionsξi : Θ → R and matrices
Ai ∈ R

n×n, i = 1, . . . , N . In addition we assume that the
mapping ξ : Θ → R

N given by ξ := (ξ1, . . . , ξN )⊤ is



such thatξ(Θ) ⊂ S with S = {µ ∈ R
N | µi ≥ 0, i =

1, . . . , N and
∑N

i=1 µi = 1}. Hence,A(ρ) lies for each
ρ ∈ Θ in the convex hullCo{A1, . . . , AN}.

In this paper, we focus on the situation where the true
(time-varying) parameterρk is actually not available, but
only an estimated parameterρ̂k ∈ Θ fulfilling ‖ρk− ρ̂k‖∞ ≤
∆, where ∆ is some nonnegative constant indicating the
uncertainty level. The aim in this paper is to tackle the
following design problem.

Problem 3: Design an observer-based controller of the
form

x̂k+1 = A(ρ̂k)x̂k + Buk + L(ρ̂k)(yk − ŷk) (7a)

ŷk = Cx̂k + Duk (7b)

uk = K(ρ̂k)x̂k (7c)

with L(ρ̂k) =
∑N

i=1 ξi(ρ̂k)Li andK(ρ̂k) =
∑N

i=1 ξi
k(ρ̂k)Ki

by appropriately choosing the gainsLi andKi, i = 1, . . . , N
such that the closed-loop system (5)-(7) is GAS when the
uncertainty satisfies‖ρk − ρ̂k‖∞ ≤ ∆ and ρ̂k ∈ Θ for all
k ∈ N.

As a second goal we aim at designing an observer-
based controller as in the above problem formulation that
guarantees GAS of the closed-loop system for the largest
uncertainty level∆.

The approach we will take is to design the observer and
the state feedback separately and provide a formal proof
that the interconnection stabilizes the LPV system (5) (see
section VI).

IV. OBSERVERDESIGN

We first focus on the estimation of the statexk using a
so-called polytopic observer of the form, which is given by
{

x̂k+1 = A(ρ̂k)x̂k + Buk + L(ρ̂k)(yk − ŷk)
ŷk = Cx̂k + Duk,

(8)
where ρ̂k ∈ Θ and possiblyρk 6= ρ̂k. The estimation error
ek:=xk − x̂k is governed by

ek+1 = Ae(ρ̂k)ek + vk (9)

with Ae(ρk) :=
∑N

i=1 ξi(ρk)Ãi, whereÃi = Ai −LiC and

vk = (A(ρk) − A(ρ̂k)
︸ ︷︷ ︸

=:∆A(ρk,ρ̂k)

)xk (10)

The next theorem provides polytopic observers (8) that
render (9) ISS with respect tov.

Theorem 4: Assume that there exist symmetric matrices
Pi ∈ R

n×n, matricesGi ∈ R
n×n, Fi ∈ R

n×m, i = 1, . . . , N
and a scalarσev satisfying for all i, j = 1, . . . , N the
following LMIs





GT
i + Gi − Pj 0 GiAi − FiC Gi

0 1 1 0

AT
i GT

i − CT F T
i 1 Pi 0

GT
i 0 0 σev1



 ≻ 0, (11)

then the error dynamics (9) with uncertainty setΘ for ρ̂

and1 Li = G−1
i Fi is ISS with respect tov andVe(ek, ξ̂k) =

eT
k (

∑N
i=1 ξ̂i

kPi)ek is an ISS Lyapunov function that satisfies

Ve(ek+1, ξ̂k+1) − Ve(ek, ξ̂k) ≤ −‖ek‖2 + σev‖vk‖2 (12a)

‖ek‖2 ≤ Ve(ek, ξ̂k) ≤ σev‖ek‖2 (12b)

for all ξ̂k, ξ̂k+1 ∈ S, ek ∈ R
n, vk ∈ R

n. The ISS gainγ
can be taken linear asγ(s) = σevs.

Proof: The proof can be found in [16].
In case the conditions of Theorem 4 hold, the polytopic

observer (8) guarantees GES of the error dynamics (9) in the
nominalcase whereρk = ρ̂k for all k ∈ N (as thenvk = 0,
k ∈ N). In caseρk 6= ρ̂k, ISS guarantees only a steady state
estimation errore that is smaller thanδσev supk∈N ‖xk‖ with
δ := sup{∆A(ρ, ρ̂) | ‖ρ − ρ̂‖∞ ≤ ∆} (as the ISS gain is
γ(s) = σevs). Hence, a kind ofsteady state relative error
can be obtained in the sense that

lim supk→∞ ‖ek‖
lim supk→∞ ‖xk‖

≤ δσev, (13)

which implies thatek → 0 (k → ∞), if (ρk − ρ̂k) → 0
(k → ∞).

Remark 5: In [17] also the concept of steady state rel-
ative error was used in the context of observer design for
discontinuous PWA systems in which the mode of the plant
can be different than the mode of the observer. Here this
mismatch between observer and plant model is caused by
ρk 6= ρ̂k, which has a similar effect as in [17].

The smallest ISS gainσev based on the above design
procedure can be obtained by selecting among all possible
solutionsσev, Pi, Gi, and Fi of the LMIs (11) for i, j =
1, . . . , N the ones leading to the smallest value forσev,
which amounts to solving the convex optimization problem

min{σev | Pi, Fi, Gi, σev satisfying(11) i, j = 1, . . . , N}
(14)

Remark 6: Note that the normalization of certain con-
stants in (12) to1 is without loss of generality as any
ISS Lyapunov functionVe for (9) can be multiplied by a
sufficiently large positive constant to satisfy (12). See also
the proof of Theorem 7 below.

As mentioned, if the hypotheses of Theorem 4 are satis-
fied, the polytopic observer (8) guarantees GES of the error
dynamics in thenominal case (ρk = ρ̂k for all k ∈ N).
In other words, the observer (8) asymptotically recovers the
state of the LPV system when the parametersρk (and thus
ξk) are exactly known. Actually, under the hypotheses of
Theorem 4, the observer satisfies the matrix inequalities

0 ≻ (Ai − LiC)T P̃j(Ai − LiC) − P̃i,

i, j = 1, . . . , N (15a)

0 ≺ P̃i, i = 1, . . . , N (15b)

1The LMIs (11) imply thatGi is invertible for eachi = 1, . . . , N as is
shown in the proof.



In [9] it is proven that (15) is sufficient for the observer
(8) with ρ̂k = ρk (a nominal observer) to recover the
state of (5) asymptotically. Clearly, for an observer to work
also in caseρk 6= ρ̂k the inequalities in (15) are neces-
sary conditions (provided one adopts parameter-dependent
quadratic Lyapunov functions). Interestingly, the conditions
in (15) also guarantee that the hypotheses of Theorem 4 are
satisfied (as will be shown in Theorem 7 below). This shows
the non-conservatismof the LMIs (11) as the existence
of a nominal observer for theexact LPV system, with a
parameter-dependent quadratic Lyapunov function proving
GES of the error dynamics, is sufficient for (11) to hold.
This also shows that any GES observer for the exact LPV
system has some degree of robustness in the sense that it has
some steady state relative error as in (13) for someσev > 0.

Theorem 7: If there existP̃i andLi, i = 1, . . . , N such
that (15) holds, then there are symmetric matricesP̃i and
matricesFi, Gi, i = 1, . . . , N and a scalarσev satisfying
for all i, j = 1, . . . , N the LMIs (11).

Proof: The proof can be found in [16].

V. STATE FEEDBACK DESIGN

We now focus on the design of a state feedback for (5a)
using an estimated state given by

uk = K(ρ̂k)x̂k = K(ρ̂k)(xk − ek) (16)

with K(ρ̂k) =
∑N

i=1 ξi(ρ̂k)Ki and ek the estimation error.
This results in the closed loop

xk+1 = Ax(ρ̂k)xk + vk − BK(ρ̂k)ek (17)

with, as before,vk is given by (10) andAx(ρ̂k) =
∑N

i=1 ξi(ρ̂k) (Ai + BKi)
︸ ︷︷ ︸

ABK i

. Again, we sometimes writêξi
k =

ξi(ρ̂k) andξi
k = ξi(ρk). We now study ISS of (17).

Theorem 8: Assume that there exist symmetric matrices
Yi ∈ R

n×n and matricesZi ∈ R
m×n, i = 1, . . . , N and

scalarsσxv, σxe, µ with µ > 0 satisfying fori, j = 1, . . . , N
the LMI conditions






Yi 0 0 YiA
T
i + ZT

i BT Yi

0 σxv1 0 1 0

0 0 σxe1 −ZT
i B 0

AiYi + BZi 1 −BZi Yj 0

Yi 0 0 0 1




 ≻ 0

(18a)
and for i = 1, . . . , N

Yi � µ1, (18b)

then the closed-loop system (17) with uncertainty setΘ for ρ̂

andKi = ZiY
−1
i , i = 1, . . . , N is ISS with respect toe and

v and Vx(xk, ξ̂k) = xT
k

∑N
i=1 ξ̂i

kSixk is an ISS Lyapunov
function that satisfies for all̂ξk, ξ̂k+1 ∈ S, all xk ∈ R

n, all
ek ∈ R

n and allvk ∈ R
n

Vx(xk+1, ξ̂k+1) − Vx(xk, ξ̂k) ≤
≤ −‖xk‖2 + σxv‖vk‖2 + µ−2σxe‖ek‖2, (19a)

‖xk‖2 ≤ Vx(xk, ξ̂k) ≤ σxv‖xk‖2. (19b)

Proof: The proof is given in [16].
The following corollary can be obtained immediately from

the above theorem in case the full statexk is known (i.e.ek =
0 for all k ∈ N) and thus we consider the state feedback law

uk = K(ρ̂k)xk. (20)

Corollary 9: Let the hypotheses of Theorem 8 be sat-
isfied. Then the LPV system consisting of (5a) and the
state feedback (20) with uncertainty setΘ for ρ and Ki =
ZiY

−1
i , i = 1, . . . , N is GES for all uncertainties satisfying

‖∆A(ρ, ρ̂)‖ ≤ δ, whenδ < 1
σxv

.
Proof: From (19a) withe = 0 andvk = ∆A(ρk, ρ̂k)xk

it follows that

Vx(xk+1, ξ̂k+1) − Vx(xk, ξ̂k) ≤ −(1 − σxvδ)‖xk‖2. (21)

Together with (19b) this proves GES on the basis of Theo-
rem 2.

An analogous result to Theorem 7 can also be shown for
the state feedback. In particular, a nominal state feedback

uk = K(ρk)xk (22)

with K(ρk) =
∑N

i=1 ξi(ρk)Ki (i.e. with estimation error
ek = 0, k ∈ N and exact knowledge of parameters,ρk = ρ̂k,
k ∈ N) coupled to the LPV system (5a) is GAS if there are
Ki, S̃i, i = 1, . . . , N such that

0 ≻ (Ai + BKi)
T S̃j(Ai + BKi) − S̃i, i, j = 1, . . . , N

and0 ≺ Si, i = 1, . . . , N. (23)

Clearly, a state feedback (16) that renders (17) ISS (proved
by parameter-dependent quadratic ISS Lyapunov functions)
certainly satisfies (23). Interestingly, the converse alsoholds
in the sense that anominally stabilizing state feedback for
(5a) has some robustness properties in the sense that (19)
holds for someVx and even stronger, the LMIs in (18) are
feasible. This clearly indicates the non-conservatism of the
derived LMIs in Theorem 8. However, note that (23) does not
allow any minimization of the ISS gains, while the results
of Theorem 8 do.

Theorem 10: Suppose that there existKi, S̃i, i =
1, . . . , N such that (23) is satisfied. Then there are symmetric
matrices Yi and matricesZi, i = 1, . . . , N and scalars
σxv, σxe, µ with µ > 0 satisfying the LMIs (18) fori, j =
1, . . . , N .

Proof: The reader is referred to [16] for the proof.

VI. OBSERVER-BASED CONTROL DESIGN

Next we will show that the separate design of the observer
as in section IV and a state feedback as in section V leads
to a stabilizing output-based controller for some nontrivial
level of uncertaintyδ := sup{‖∆A(ρ, ρ̂)‖ | ‖ρ − ρ̂‖∞ ≤
∆}. Actually, in the end we aim at synthesizing output-
based controllers that stabilize the closed-loop system (5),
(7) for the largest level of uncertaintyδ by using convex
programming techniques.

Assume that the observer has been designed according to
section IV and the state feedback according to section V.
The closed-loop system is given by



(
xk+1

ek+1

)

=
[

A(ρk) + BK(ρ̂k) −BK(ρ̂k)
A(ρk) − A(ρ̂k) A(ρ̂k) − L(ρ̂k)C

] (
xk

ek

)

(24)
Theorem 11: Let an observer (8) that satisfies the hy-

potheses of Theorem 4 and a state feedback law that satisfies
the hypotheses of Theorem 8 be given2. Then for any
max{1− 1

σev

, 1− 1
σxv

} ≤ ε < 1 and any0 < β ≤ 1−(1−ε)σev

µ−2σxe

the closed-loop system (24) is GES with decay factor equal
to

√
ε for all uncertainties satisfying‖∆A(ρ, ρ̂)‖ ≤ δ :=√

β(1−(1−ε)σxv)
σev+βσxv

.

Proof: See [16] for the proof.
It is of interest to find the value ofβ that provides the

largest robustness in terms ofδ. To maximize the value
for δ2 (for a fixed value of the decay factor

√
ε) it is

clear that we have to maximizef(β) := β
σev+βσxv

. Since
df(β)

dβ
= σev

(σev+βσxv)2 ≥ 0, the maximum is obtained for the

largest allowable value ofβ, which is 1−(1−ε)σev

µ−2σxe

and thus
the maximum ofδ is

δ(ε) =

√

(1 − [1 − ε]σev)(1 − [1 − ε]σxv)

µ−2σxeσev + (1 − [1 − ε]σev)σxv

. (25)

Suppose we now would like to find the value ofε such
that the admissible uncertainty levelδ(ε) is maximal. Since
dδ2(ε)

dε
= [1−(1−ε)σev ]σxv

µ−2σxeσev+[1−(1−ε)σev]σxv

≥ 0 for any max{1 −
1

σev

, 1 − 1
σxv

} ≤ ε < 1, maximizing robustness requires
maximizing (actually taking supremum of)ε and thus taking
it close to 1. This yields that the maximal value ofδ can
become arbitrarily close to

δ(1) =

√
1

µ−2σxeσev + σxv

(26)

while still guaranteeing stability. Hence, for maximizing
robustness in terms of maximizingδ(ε), we should maximize
ε meaning that the performance in terms of the decay factor√

ε is worst. As such, we encountered a “classical” tradeoff
between robustness and performance.

The reasoning above maximizes robustness forfixedvalues
of σxv, σev and σxe. Since we have determined this max-
imum given theseσ’s, we can now optimize robustness by
appropriately selecting the gainsLi and Ki, i = 1, . . . , N .
From (26) it is clear that we have to minimizeµ−2σxeσev +

σxv to get the maximal value forδ(1) =
√

1
µ−2σxeσev+σxv

(for decay factor equal to1). This gives rise to the follow-
ing procedure to get maximal robustness in the mismatch
between the scheduling parameterρ̂k and the actual oneρk

as reflected inδ.

Design procedure
Step 1 : Minimizeσev subject to (11) fori, j = 1, . . . , N

(i.e. optimization problem (14)). This gives the
minimumσ∗

ev and the corresponding observer gains
Li, i = 1, . . . , N .

Step 2 : Givenσ∗
ev at in Step 1. Fixµ > 0 and minimize

the expressionµ−2σxeσ
∗
ev + σxv subject to the

2Note that the hypotheses guarantee thatσev > 1 andσxv > 1.

LMIs given in (18). This results in the feedback
gainsKi, i = 1, . . . , N .

The optimization problems in Step 1 and 2 are convex
problems as we are minimizing linear costs subject to LMI
constraints. Step 2 might even be extended by perform-
ing a line search inµ and applying the above procedure
repetitively. Once, the minimal valueµ∗−2σ∗

xeσ
∗
ev + σ∗

xv is
found, one can on the basis of Theorem 11 and (25) still
make tradeoffs between transient performance in terms of the
decay factor

√
ε and robustness in terms ofδ(ε). Letting ε

increase frommax{1− 1
σev

, 1− 1
σxv

} (maximal performance,
minimal robustness) to1 (minimal performance, maximal
robustness), tradeoff curves between performance and robust-
ness are obtained.

VII. I LLUSTRATIVE EXAMPLE

Consider the LPV system (5) withA(ρk) =[
0.25 1 0
0 0.1 0
0 0 0.6 + ρk

]

, B = [1 0 1]T , C = [1 0 2],

D = 0 and ρk ∈ [0 , 0.5], k ∈ N. In this case we can
take the functionsξ1(ρ) = 0.5−ρ

0.5 and ξ2(ρ) = ρ
0.5 with

A1 = A(0) and A2 = A(0.5). The observer is designed
using Theorem 2 along with the optimization problem (14)
(Step 1). The optimal solution is given byσ∗

ev = 5.8277 with
observer gainsL1 =

[
−0.0835 −0.0011 0.3870

]T

and L2 =
[
−0.0835 −0.0011 0.7094

]T
. With this

optimal observer and the associated slope of the linear
ISS gainσ∗

ev, a line search involvingµ > 0 is performed
in order to minimize the costJ = µ−2σxeσ

∗
ev + σxv

subject to the LMIs given in (18) for alli, j (Step
2). Fig. 1 shows the minimum ofJ for each fixedµ,
which is the smallest Note that for each fixedµ we
have a convex programming problem to solve (linear cost
criterion with LMI constraints). forµ∗ = 0.2986 yielding
σ∗

xe = 0.2663 and σ∗
xv = 13.9284 and corresponds to the

controller gainsK1 = [−0.0327 − 0.1241 − 0.2387],
K2 = [0.0005 − 0.0010 − 0.6148].
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Fig. 2. Tradeoff performance/robustness

As a consequence, the maximum level of uncertainty
is δ∗max =

√
1

µ∗−2σ∗

xe
σ∗

ev
+σ∗

xv

= 0.1786. Hence, for

∆A(ρk, ρ̂k) = |ρk − ρ̂k| ≤ δ < 0.1786 GES of the closed-
loop system (24) is guaranteed (with a decay factor close to
1). Letting ε increase frommax{1− 1

σ∗

ev

, 1− 1
σ∗

xv

} to 1 leads
to the tradeoff curves between performance in terms of the
decay factor

√
ε and robustness to uncertainty∆A(ρk, ρ̂k)

in terms ofδ as depicted in Fig. 2.

VIII. C ONCLUSIONS

In this paper the design of robustly stabilizing output-
based feedback controllers is considered for discrete-time
LPV systems in which the scheduling parameters are only
known up to a given precision. The output-based controllers
are obtained using separate design of the observer and the
state feedback and we showed that the interconnection of
the LPV plant, observer and state feedback leads to a stable
closed-loop system for certain levels of mismatch between
estimated and true parameters. The non-conservatism of
our approach is demonstrated by showing that well known
conditions for nominally stabilizing observers and feedbacks
(i.e. without mismatch between true and available parame-
ters) imply our LMI-based conditions. The flexibility in the
framework allows to construct the controller that guarantees
stability for the largest level of parameter uncertainty and
to make tradeoffs between performance in terms of decay
factor and robustness with respect to parameter uncertainty.
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