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SUMMARY

Behavior of a poroelastic material bonded onto a vibrating plate is investigated in the
low frequency range. From the analysis of dissipation mechanisms, a model accounting
for damping added by the porous layer on the plate is derived. This analysis is based on a
3-D finite element formulation including poroelastic elements based on Biot displacement
theory. First, dissipated powers related to thermal, viscous and viscoelastic dissipation
are explicited. Then a generic configuration (simply supported aluminium plate with a
bonded porous layer and mechanical excitation) is studied. Thermal dissipation is found
negligible. Viscous dissipation can be optimized as a function of air flow resistivity.
It can be the major phenomenon within soft materials, but for most foams viscoelastic
dissipation is dominant. Consequently an equivalent plate model is proposed. It includes
shear in the porous layer and only viscoelasticity of the skeleton. Excellent agreement is
found with the full numerical model.
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1. INTRODUCTION

Porous materials like polymer foam and glass wool are widely used for noise control
in several engineering activities such as aeronautics and automotive industries. Their
properties are twofold : sound absorption and damping of the nearby structure.

Excited through the coupling with the fluid [1] or directly by the structure when in
contact with it [2], the skeleton participate to damping through viscoelastic dissipation.

In the literature, the efficiency of porous material is shown in applications dealing
with sound absorption, transmission loss of panels [3,4] or noise in enclosure coupled with
elastic panels [5,6]. Some are based on finite element calculations including poroelastic
elements [3,5]. In these studies damping effect is shown for various boundary conditions
and materials, but no general tendencies is drawn about the nature of dissipation. Other
reports give analytical predictions [7,8] of the importance of viscous dissipation induced
by the vibration of the skeleton, but they are approximative and limited to 1-D or 2-D
applications.

The present analysis is based on a partition of dissipated and reactive powers in
poroelastic media, as similarly proposed by Rasolofosaon [9]. In order to treat any 3-D
structure, the calculation relies on a 3-D finite element formulation [10] with poroelastic
elements based on Biot displacement theory [11].

Well suited for low frequency range analysis, this formulation has been validated for
various applications [10,12]. Note that a similar study can be done using the mixed
displacement-pressure (u, P ) formulation [13]. However, this latter formulation is not
used here, since the presented work has been initiated with the (u, U) displacement
model. Both formulations have been shown to be equivalent [14]. However the cost of
(u, U) formulation is higher since three fluid displacement components are involved while
the (u, P ) formulation relies on a single pressure degree of freedom for the fluid phase.

A comparison of the different terms of dissipated power gives the relative importance
of dissipation mechanisms : viscous, thermal or viscoelastic. The analysis is performed on
a structures comprising a simply supported plate associated with a porous layer excited
by a point force (figure 1). The influence of its thickness, stiffness and air flow resistivity
is studied. The goal is to determine major dissipation mechanisms in order to derive a
simplified model of this two layers structrure. This model gives the characteristics of an
equivalent plate accounting for mass, stiffness and viscoelastic damping added on the
plate. Well suited for low frequency analysis, this model provides an efficient alternative
to the full Biot model in terms of reduction of memory requirement and computation
time.

2. POWER PARTITION

The discretized motion equation of the two layer system is given by Panneton [10]
[

[Ze] 0
0 [Zp]

]{

{w}
{

u

U

}

}

= {F} , (1)
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where [Ze] and [Zp] are respectively the impedance matrix related to the elastic and
poroelastic media. {F} is the vector of nodal forces , applied to the elastic and poroelastic
media. {w}, { u

U
} are the complex amplitude of the nodal displacements of the plate,

the skeleton and the air comprised in the pores respectively. In the case where the
porous material is bonded onto the plate, there is a continuity of the displacements at
the interface

u = w, Un = un, (2)

where subscript n denotes normal displacement. Tangential fluid displacement is not
affected by continuity relations at the interface. These linear relations are applied by
multiplication with a contraction matrix.

Harmonic time dependence of the form ejωt is assumed so that instantaneous
quantities are expressed as

a(t) = ℜ(a ejwt), (3)

where a is complex amplitude and ℜ denotes real part. Instantaneous input power P(t) of
the discretized system is the product of the instantaneous velocities by the instantaneous
input forces F(t),

P(t) =
〈

ẇ(t), u̇(t), U̇(t)
〉

{

F(t)
}

, (4)

where symbols 〈 〉, { } and ˙ denote respectively line and column vector, and time
derivation. This instantaneous power can be decomposed in two components related
to power absorbed by the structure and energy exchanged between the excitation and
the structure, such as

P(t) = D
(

1 + cos2(ωt)
)

+R sin2(ωt). (5)

The mean power dissipated during one cycle D and the amplitude of the reactive power
R derive from the complex power P , given by

P =
1

2
jω

〈

w∗, u∗, U∗

〉

{

F
}

(6)

= D + jR, (7)

where ∗ denotes a complex conjugate quantity. Using equation (1), complex power can
be rewritten in the form

P =
1

2
jω

〈

w∗, u∗, U∗

〉

[

[Ze] 0
0 [Zp]

]{

{w}
{

u

U

}

}

, (8)

depending only on the uncoupled impedance matrix, and on the solution of the global
system accounting for interface continuity. For the plate, impedance matrix

[Ze] = [Ke]− ω2[Me], (9)

comprises a real mass matrix [Me] and a complex stiffness matrix [Ke] accounting
for various loss phenomena, such as structural dissipation, acoustic radiation and loss
through boundary conditions. Impedance matrix of the poroelastic media is given by
Panneton [10]

[Zp] = [Kp] + jω[Cp]− ω2[Mp]. (10)
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This matrix comprises a real mass matrix [Mp], a complex viscous loss matrix [Cp] and
a complex stiffness matrix

[Kp] =

[

[Kss]

[Ksf ]

[Ksf ]
T

[Kff ]

]

, (11)

where [Kss] is the complex stiffness matrix of the solid phase, accounting for structural
dissipation. [Ksf ] and [Kff ] are complex matrix related respectively to elastic coupling
and bulk modulus of the fluid phase. They include also thermal losses from fluid to
skeleton. Coupling, viscous and thermal losses are fonction of φ porosity, α∞ tortuosity,
σ air flow resistivity, Λ and Λ′ viscous and thermal characteristic lengths respectively,
according to Johnson-Allard-Lafarge theory [11,15,16,17]. Relations between low and
high frequency effects are governed by shape factors. Viscous shape factor M is defined
by

M =
8µα∞

σφΛ2
, (12)

where µ is the viscosity of the air. Thermal shape factor M ′ is defined by

M ′ =
8k′

0

φΛ2
, (13)

where k′
0
is the thermal permeability. This quantity is deduced from equation 13

assuming M ′=1, as in a cylindrical pore.
Using equations (8-11), complex power can be split into several terms, such as

P = Dke +Dks +Dkf +Dcp

+ j(Rke +Rkp +Rme +Rmp), (14)

where Rke and Rkp are elastic reactive powers of the plate and porous media. Rme and
Rmp are inertial reactive powers of the plate and porous media. Dke, Dks, Dkf and Dcp

are dissipated powers related to initial damping of the plate, structural, thermal and
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viscous dissipations within the porous material. Their expressions are

Rke =
1

2
ℑ
(

jω 〈w∗〉
[

Ke

]

{w}
)

, (15)

Rkp =
1

2
ℑ
(

jω
〈

u∗, U∗

〉

[

Kp

]

{ u

U

})

, (16)

Rme =
1

2
ℑ
(

−jω3 〈w∗〉
[

Me

]

{w}
)

, (17)

Rmp =
1

2
ℑ
(

−jω3

〈

u∗, U∗

〉

[

Mp

]

{ u

U

}

−jω2

〈

u∗, U∗

〉

[

Cp
]

{ u

U

} )

, (18)

Dke =
1

2
ℜ
(

jω 〈w∗〉
[

Ke

]

{w}
)

, (19)

Dks =
1

2
ℜ
(

jω 〈u∗〉
[

Kss

]

{u}
)

, (20)

Dkf =
1

2
ℜ

(

jω
〈

u∗, U∗

〉

[

0

[Ksf ]

[Ksf ]
T

[Kff ]

]

{ u

U

}

)

, (21)

Dcp =
1

2
ℜ
(

−jω2

〈

u∗, U∗

〉

[

Cp
]

{ u

U

})

, (22)

where ℑ and ℜ denotes respectively imaginary and real parts.
A global loss factor ηg can be calculated for the whole structure. It is expressed as

the ratio of total dissipated power over the elastic reactive power of the structure

ηg =
Dke + (Dks +Dkf +Dcp)

Rke +Rkp

. (23)

This expression is consistent with modal loss factor.

3. DISSIPATION MECHANISMS

Dissipation mechanisms are studied for a simply supported aluminium plate with a
bonded academic porous layer. Continuity of displacement is insured between the plate
and the porous layer according to equation (2).

Along the other faces of the porous layer, skeleton and fluid displacements are not
constrained : this means that external fluid loading is neglected. This hypothesis, usually
assumed for a heavy structure immerged in a light fluid, might have an influence on
our conclusions [18-19]. However, plate-foam experimental tests [20] have shown good
correlation between experiments and numerical simulations with the above assumption.

The rectangular plate (22 cm × 28 cm) is meshed by 13 × 13 thin shell quadragular
elements. Excitation is achieved by a normal point force on the plate, located at (7.7
cm, 9.8 cm). The porous layer is meshed by 13 × 13 × 7 linear hexahedric elements.
This mesh is suitable for the present study, but could be reconsidered for a more critical
application due to slow convergence of linear poroelastic elements [21].
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Calculations performed for various porous materials and thicknesses show that only
structural and viscous dissipations are relevant. Thermal dissipation is always found
less than 2 % of the total dissipation. This shows that the fluid is not significantly
compressed : this is due firstly to the nature of excitation that does not create a straight
compression of the fluid in the pore like an acoustical excitation would do, and secondly
to the free boundary conditions of the porous layer that do not constrain the fluid in a
given volume.

The relative importance of structural and viscous dissipation is now analyzed by
varying the related parameters. Structural dissipation induced by the porous layer on
the plate is function of the structural loss factor η2 and the Young’s modulus E2 of the
skeleton. It is studied for two couples (E2, η2), including most of mineral wool or polymer
foam characteristics : (E2=60 kPa, η2=0.07) used for a soft material and (E2=400 kPa,
η2=0.15) for a stiff and more dissipative material. The aluminium plate properties are :
thickness h1=1 mm, Young’s modulus E1=69 GPa, Poisson ratio ν1=0.33 and density
ρ1= 2778 kg/m3. The loss factor of the plate η1 is set to 0.01 to account for various
dissipation phenomena such as structural damping, acoustic radiation and losses through
boundary.

In the low frequency range, viscous dissipation is mainly related to flow resistivity
σ of the material. Its influence is determined from 103 to 108 Nsm−4. Characteristic
lengths varies with resistivity so that the used material remains realistic : viscous shape
factor M is kept constant (Equation 12) and the ratio between thermal and viscous
characteristic lengths is fixed to 2.5 . The other parameters are fixed and correspond to
usual foam or glass wool characteristics : porosity φ=0.98, tortuosity α∞=1.3, skeleton
density ρ2=40 kg/m3 and Poisson ratio ν2 = 0. The influence of thickness h2 of the
porous layer is also investigated, being set to 2 cm or 5 cm.

Figure 2.a presents viscous dissipation relative to total dissipation, Dcp/(Dks+Dkf +
Dcp), as a function of flow resistivity, for the two thicknesses and materials. It is given
for the first bending mode (65 Hz < f11 < 68 Hz) of the structure.

An optimal value of flow resistivity appears for each case. Its location tends to
smaller flow resistivity when thickness increases. This is consistent with the calculation
of Okuno [8], given for a sealed poroelastic beam undergoing bending deformation

σ ≃
φ K0

2.5 h2
2
fi
, (24)

where K0 is the bulk modulus of the air and f the frequency. Relative viscous damping
increases with the thickness. It reaches a maximum of 84% for the soft material, being
the major dissipating mechanism. However it is limited to 27% for the stiff material :
structural damping is the major dissipating mechanism.

Figure 2.b presents global loss factor of the multilayer, ηg. For very low air flow
resistivity, this factor depends only on the structural damping and on the thickness of
the porous layer. For a thickness of 2 cm, only stiff polymer foam adds a significant
amount of damping. For soft material, damping becomes significant for a thicker layer
and only where the viscous dissipation is important : a maximum loss factor of 6% is
then reached with 5 cm. However, according to Okuno [8], the optimized value of air
flow resistivity depends on the frequency : it is not suitable for a large frequency range.
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The most reliable way to get damping in the low frequency range is to optimize
viscoelastic dissipation with a most dissipative and stiff skeleton. In that case, the
amount of added damping is no more dependent on air flow resistivity. Then, air flow
resistivity can be then optimized for other purposes such as acoustic absorption.

4. EQUIVALENT PLATE MODEL

Viscoelastic dissipation is now assumed to be the major source of damping. In this
context, only the skeleton behavior is relevant. The porous layer can be considered as a
monophasic viscoelastic media and characteristics of an equivalent plate to the two layer
structure can be determined. Development of such an equivalent plate is interesting
to reduce computational cost. Moreover, this model can be coupled with an acoustical
admittance model [22] when the porous layer is connected to a cavity : in such a case,
both acoustical and structural effects of the porous layer, on the cavity and on the elastic
structure, are taken into account respectively.

The geometry of th problem is described by figure 3. The two layers are characterized
by Young’s modulus E1 and E2, Poisson’s ratios ν1 and ν2, densities ρ1 and ρ2 and
thicknesses h1 and h2. Subscript 1 refers to the plate and 2 to the porous layer.

For pure bending deformation of the structure, the equivalent plate parameters can
be calculated from Ross-Kerwin-Ungar (RKU) theory [23] of multilayer plate. Total
bending rigidity D12 is simply the sum of bending rigidities D1 and D2 of the two layers
related to the neutral fiber of the plate,

D12 = D1 +D2, (25)

where D1 and D2 are given in the appendix by equations (48) and (49). The equivalent
density is given by

ρ12 =
ρ1h1 + ρ2h2
h1 + h2

. (26)

Equivalent loss factor is given by the ratio of the imaginary and the real part of the total
bending rigidity D12. However and as expected RKU theory overestimates the equivalent
loss factor in comparison with numerical calculation, for a relatively thick layer (figure
4.b). This confirms that porous layer, past a certain thickness, do not exhibit a pure
bending deformation.

A more accurate model is achieved by taking into account shear strain in the porous
layer (figure 3). Hamilton’s principle is used to get the equation of motion of the two
layer plate.

Classical thin plate theory is used for the plate. Only calculation related to the
porous layer are exposed. For the porous layer, displacement vector {u}T = 〈u, v, w〉 of
a particle is assumed to be







u(x, y, z, t) = −z ∂w
∂x

− (z − z1)ψx,
v(x, y, z, t) = −z ∂w

∂y
− (z − z1)ψy,

w(x, y, t) = w,

(27)
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where w is the deflection of the plate, ψx and ψy deviation angles due to shear strain
(figure 3). The components of the strain tensor {ǫ2}

T = 〈εx, εy, γxy, γxz, γyz〉 are



























εx = −z ∂
2w
∂x2

− (z − z1)
∂ψx

∂x
,

εy = −z ∂
2w
∂y2

− (z − z1)
∂ψy

∂y
,

γxy = −2z ∂2w
∂x∂y

− (z − z1)(
∂ψx

∂y
+ ∂ψy

∂x
),

γxz = −ψx,
γyz = −ψy.

(28)

Stress-strain relations are given by

{σ2} = [H2]{ǫ2} (29)

where {σ2} = 〈σx, σy, τxy, τxz, τyz〉 is the stress tensor and [H2] is the viscoelastic tensor
for a bidimensional isotropic material

[H2] =
E2

1− ν2
2













1 ν2
ν2 1

1−ν2
2

1−ν2
2

1−ν2
2













. (30)

Strain energy V of the multilayer is the sum of bending strain energy of the plate, bending
and shear strain energies of the porous layer

V = Vbending1 +Vbending2 +Vshear2 (31)

where,

Vb1 =
1

2

E1

1− ν2
1

∫

S

∫ z1

−z1

〈εx, εy, γxy〉





1 ν1
ν1 1

1−ν1
2











εx
εy
γxy







dxdydz, (32)

Vb2 =
1

2

E2

1− ν2
2

∫

S

∫ z2

z1

〈εx, εy, γxy〉





1 ν2
ν2 1

1−ν2
2











εx
εy
γxy







dxdydz, (33)

Vs2 =
1

2

∫

S

∫ z2

z1

〈γxz, γyz〉

{

τxz
τyz

}

dx dy dz. (34)

(35)

The kinetic energy of the system is given by

T =
1

2

∫

S

m12ẇ
2 dS, (36)

with the equivalent density

m12 = ρ1h1 + ((1− φ)ρs + φρ0)h2, (37)
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where φ is the porosity, ρs is the density of the solid comprising the skeleton and ρ0 is
the density of the air.

Applying Lagrange’s equations respectively to each variable, w, ψx and ψy, and
summing the equations related to ψx and ψy gives the two equations of motion

D1∆∆w +D2∆∆w +D4∆θ +m12

∂2w

∂t2
= 0, (38)

D3∆θ +D4∆∆w − C2θ = 0, (39)

with θ = ∂ψx

∂x
+ ∂ψy

∂y
and ∆ = ∂2

∂x2
+ ∂2

∂y2
, and where D3 and D4 are bending rigidities

given in appendix by equations (50) and (51). For a steady state motion, w and θ are
assumed to be of the form

w(x, y, t) = w0 sin(kxx) sin(kyy) sin(ωt), (40)

θ(x, y, t) = θ0 sin(kxx) sin(kyy) sin(ωt), (41)

where kx and ky are wavenumbers associated to the directions x and y. They are related
to the wavenumber k by

k2 = k2x + k2y. (42)

If the plate is simply supported and a× b sized, its modes (ra, rb) correspond to

kx = π
ra
a

and ky = π
rb
b
, (43)

where ra and rb are modal orders along x and y directions respectively (ra > 1, rb > 1).
The dispersion equation of the system (38 - 39) can then be written in the form

ω2 = k4
D12

m12

Cs(k
2), (44)

where Cs(k
2) is the correction factor of the bending rigidity D12, accounting for shear,

given by

Cs(k
2) = 1−

D2

4
k2

D12(D3k2 + C2)
. (45)

As Cs is less than 1, shear will lower the resonance frequencies of the system. Cs de-
pends on the wavenumber, thus on frequency. For a simply supported plate, Cs can be
calculated for discrete values of frequency, corresponding to natural frequencies of the
plate, given by equations (43) and (44). However Cs can be expressed continuously as a
function of frequency by solving equation (44) that is a polynomial equation of the third
degree on k2.

The developed equivalent model and the full numerical model using poroelastic
elements are compared in figure 4, in the case described in section 3 where viscoelastic
dissipation is dominating. This is also the case where shear is the most important in
the porous layer due to its large thickness. The porous layer is of a 5 cm thick and
corresponds to the stiff material (E2=400 kPa, η2=0.15) with air flow resistivity σ=
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5000 Nsm−4. Characteristics of the equivalent plate are first calculated for the given
configuration and frequency range. Then they are introduced as properties of a single
plate. Equivalent loss factor is given by the ratio of the imaginary and the real part of
the corrected bending rigidity Cs(k

2) D12.
The RKU model is found insufficient for the plate-foam configuration : damping

and eigenfrequencies are overestimated. The proposed equivalent model gives a good
estimation of mean quadratic velocity of the plate and global loss factor for the first
three modes. Comparison has not been performed for higher modes because of the
computational cost of the poroelastic finite element method. However it can be seen that
the equivalent plate model tends to underestimate damping as frequency increases. One
reason is the increase of viscous forces along with frequency. This shows the limitation
of the present model to the low frequency range.

CONCLUSION

Partition of dissipated and reactive powers is presented according to the 3-D formula-
tion coupling elastic and poroelastic elements. Dissipation analysis has been performed
in the low frequency range for a two layers structure comprising a porous layer bonded
onto a plate. It shows that viscous and viscoelastic dissipation dominate. According to
Okuno [8], viscous dissipation can be optimized by choosing a proper flow resistivity : it
becomes the major dissipation mechanism within soft materials. However for stiff poly-
mer foams, viscoelastic dissipation in the skeleton is widely dominating. Because viscous
dissipation requires tuning of flow resistivity as a function of thickness and frequency,
optimizing damping is most efficiently achieved by using the most viscoelastic and stiff
porous material. Determination of an optimized flow resistivity is rather connected to
sound absorption properties.

Consequently, an equivalent plate model accounting for the effect of the porous
layer on the plate has been derived : it includes shear in the porous layer and only
viscoelasticity of the skeleton. Good results have been obtained in comparison with the
model using poroelastic elements for the three first modes, even for a thick porous layer.

The analysis performed on the two layers structure demonstrated the validity of the
method based on power partition. Relying on a 3-D finite element formulation, this
approach can be applied to any structure associating acoustic, elastic and poroelastic
media. With a best understanding of the behavior of such structures, suitable simplified
models can be derived avoiding the use of poroelastic elements, well-known for high
computational cost.
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APPENDIX

Vb1 =
D1

2

∫

S

(

∂2w

∂x2

)2

+

(

∂2w

∂y2

)2

+ 2ν1
∂2w

∂x2
∂2w

∂y2
+ 2(1− ν1)

(

∂2w

∂x∂y

)2

dS, (46)

Vb2 =
1

2

∫

S

D2

[

(

∂2w

∂x2

)2

+

(

∂2w

∂y2

)2

+ 2ν2
∂2w

∂x2
∂2w

∂y2
+ 2(1− ν2)

(

∂2w

∂x∂y

)2
]

+D3

[

(

∂ψx
∂x

)2

+

(

∂ψy
∂y

)2

+ 2ν2
∂ψx
∂x

∂ψy
∂y

+
1− ν2

2

(

∂ψx
∂y

+
∂ψy
∂x

)2
]

+ 2D4

[(

∂2w

∂x2
∂ψx
∂x

+
∂2w

∂y2
∂ψy
∂y

)

+ ν2

(

∂2w

∂x2
∂ψy
∂y

+
∂2w

∂y2
∂ψx
∂x

)

+(1− ν2)
∂2w

∂x∂y

(

∂ψx
∂y

+
∂ψy
∂x

)]

dS, (47)

with the bending rigidities

D1 =
E1

1− ν2
1

∫ z1

−z1

z2 dz =
E1h

3

1

12(1− ν2
1
)
, (48)

D2 =
E2

1− ν2
2

∫ z2

z1

z2 dz =
E2

1− ν2
2

z3
2
− z3

1

3
, (49)

D3 =
E2

1− ν2
2

∫ z2

z1

(z − z1)
2 dz, (50)

D4 =
E2

1− ν2
2

∫ z2

z1

z(z − z1) dz. (51)

Vs2 =
1

2
C2

∫

S

ψ2

x + ψ2

y dS, (52)

with the shear rigidity

C2 = κ h2
E2

2(1 + ν2)
, (53)

and κ, accounting for the variation of the shear stresses and strains through the thickness,
taken to 5

6
.
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Figure captions

Figure 1. Simply supported plate with a bonded porous layer and mechanical excita-
tion.

Figure 2. Percentage of viscous dissipation relative to total dissipation in the porous
layer (a), global loss factor of the multilayer (b), as a function of flow
resistivity for two materials : long dashed line − −, 2 cm thick stiff material;
continuous line −, 5 cm thick stiff material; dotted line · · · , 2 cm thick soft
material; short dashed line - - -, 5 cm thick soft material.

Figure 3. Geometry of the two layer plate with shear.
Figure 4. Comparison of equivalent model results with full discretized structure for a

5 cm thick low resistive (σ=5000 Nsm−4) and stiff (E2=400 kPa, η2=0.15)
foam layer. (a) Mean quadratic velocity of the plate , (b) Global loss factor
of the multilayer : continuous line −, plate with poroelastic elements;
dashed line - - -, equivalent plate with pure bending; dotted line · · · ,
equivalent plate with shear.
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Figure 2.
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Figure 3.
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Figure 4.
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