
HAL Id: hal-00438857
https://hal.science/hal-00438857

Submitted on 4 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graphical simulation of the dynamic evolution of the
software architectures specified in Z
Riadh Ben Halima, Mohamed Jmaiel, Khalil Drira

To cite this version:
Riadh Ben Halima, Mohamed Jmaiel, Khalil Drira. Graphical simulation of the dynamic evolution
of the software architectures specified in Z. 8th International Workshop on Principles of Software
Evolution, Sep 2005, Lisbon, Portugal. pp.4. �hal-00438857�

https://hal.science/hal-00438857
https://hal.archives-ouvertes.fr

Graphical simulation of the dynamic evolution of the software architectures
specified in Z

Riadh Ben Halima, Mohamed Jmaiel
University of Sfax

National School of Engineers
B.P.W, 3038 Sfax, Tunisia

E-mail: {Riadh.BenHalima, Mohamed.Jmaiel}@enis.rnu.tn

Khalil Drira
LAAS-CNRS

7 avenue de Colonel Roche
31007 Toulouse Cedex 4, France

E-mail : Khalil@laas.fr

Abstract

This paper provides a graphical simulator that enables
to apprehend the dynamic of components-based software
architectures based on their formal specification. The sim-
ulator initially accepts (as an input) an already validated
Z specification using the Z/EVES tool. Then, it gener-
ates graphical entities, according to the UML notation,
representing software’s components and their connectors.
Thereafter, the user may generate architecture instances by
adding components and connections between them. Ar-
chitecture instances can be updated by destroying compo-
nents/connections or by modifying their interconnections.
The user actions are checked through the formal specifica-
tion of the architectural style.

1 Introduction

The architecture of a software system is its ”style and
method of design and construction” [4]. A software system
with dynamic architecture are adaptable applications whose
architecture evolves during their execution. The evolution
of a dynamic architecture results from the addition or the
removal of components and connections between them, and
from the modification of interconnections as described in
[5, 7]. Designing, this kind of applications is considered as
a complex task which requires a rigourous specification of
the corresponding architecture and its evolution.

In this work, we use formal methods for describing dy-
namic software architectures. We employ the Z notation
[9] to specify architectural styles as well as configuration
operations. The use of the formal approach allows us
to rigourously reason about architectural properties and to
prove that the architectural style is preserved during the ap-
plication execution. In order to consolidate this formal ap-
proach, we design and implement a graphical tool that en-

ables to apprehend the formal specification (written in Z) of
an architecture. This tool parses Z specifications and allows
to identify the elements of its architectural style as well as
the pre- and the post-conditions associated to a reconfigura-
tion operation. Moreover, it permits to generate diagram-
matically architecture instances, using UML 2.0 notation
[3], which respect the specified architectural style. Also,
we integrate our simulator with the Z/EVES tool [8] which
allows to edit, to check and to prove Z specification. Across
its graphic interface, the simulator allows to the designer,
who does not necessarily master formal specifications, to
understand the behaviour of the system to build.

This paper is organized as follows. Section 2 gives a sur-
vey on the related work. Section 3 introduces the approach
of the dynamic architectures description using Z. Section 4
presents the features and the design of our simulator. The
last section concludes the paper.

2 Related works

Currently, the Unified Modelling Language (UML) is ac-
cepted as a standard for designing software applications. Its
set of notations helps system designers to represent their
solutions in a way that is expressive and yet easy to under-
stand. However, UML is generally criticized for the lack
of means for verifying and validating the designed mod-
els. The advantage of our approach appears in its capacity
to produce a formal model presented to the user according
to the UML visual notations during the simulation process.
So, on one hand, contrary to an approach using only the for-
mal, we suppose that the user of our environment does not
need to be an expert in formal methods. On the other hand,
we do not reduce the rigourous capacity of our model by
limiting us to the informal side, using only the UML nota-
tions.

Several research works choose the use of formal meth-
ods for specifying dynamic software architectures. Among

these works, we mention the CHAM [10] approach which
is based on grammars and rewriting rules. This approach
uses reactions and evolutions to formalize, respectively, ar-
chitectural styles and reconfigurations. However, We note
the lack of tools for validating or simulating specifications
developed according to this approach. Other approaches,
like LEDA [2] and Wright [1] make use of process algebra
to specify dynamic software architectures. Wright presents
the structure of an architecture as a graph and specifies the
system behaviour and reconfigurations using a variant of
CSP. LEDA uses theπ-calculus to describe dynamic archi-
tectures. It supports prototype execution using aπ-calculus
analysis tool : theMobility Workbench. Another widely rec-
ognized approach is RAPIDE [6], in which a software archi-
tecture consists of a set of module interfaces interconnected
according to a set of connection rules and communication
constraints. These prominent approaches, although they
propose rigorous solutions for designing software architec-
tures, they lack tools for simulation and animation of soft-
ware architectures. RAPIDE is one of the few formalisms
which enable the animation of a program behaviour in term
of causal ordering of events.

On the other hand, there are several tools which tried
to animate Z specifications, namely, Jaza (Just Another Z
Animator), PiZA (A Z Animator which is implemented in
Prolog) and ZANS (Z ANimator System). Firstly, Jaza is
used to evaluate the schemas of a Z specification. How-
ever, it presents some drawbacks. Among his limits, we
can appoint : the absence of the treatment of all the Z lan-
guage constituents (e.g. generic definitions and axiomatic
declarations), the impossibility of declaring the functions
or relations infixed, prefixed and postfixed. Then, PiZA al-
lows the conversion of restricted parts of a Z specification
into Prolog and their execution. It is hard to use because
it requires the installation of other software and contains
at least two translation stages. Finally, ZANS permits the
evaluation of expressions and predicates and the execution
of operation schemas. It allows animating finite subsets of Z
specifications. Nevertheless, a formal specification anima-
tor executes and interprets traces on a specification. Thus,
animation can only show the presence of errors, never their
absence. Whereas, the visual simulation displays the spec-
ification lacks and deficits and gives more chance to fix er-
rors.

3 Specification of dynamic architectures

Our work is based on the approach [5], which relies on
the integration of graph grammars within the Z notation to
describe the static and dynamic aspects of software archi-
tectures. Its advantage is that it is expressive enough to
deal with the static aspects (component types, connection
types and architectural properties) as well as the dynamic

aspects (reconfiguration operations) of an architecture. This
approach aims, mainly, at guaranteeing the preservation of
architectural properties during the system evolution. Ac-
cording to this approach, the architectural style of a soft-
ware system is described using a Z schema as follows :

Style
Component types
Connection types

Architectural properties

Schema 1:Architectural style

To give more details on our approach, we present in this
section a simple example. The Patient Monitoring System
(PMS), which was used to illustrate work of [7]. It is a soft-
ware system which let the nurses (of typeNURSE) control-
ling their remote patients in a private clinic. A controller (of
typeBED MONITOR) is attached to the bed of the patient.

PMS
CN : F NURSE
PB : F BED MONITOR
ES : F EV SER
pull NE : NURSE ↔ EV SER
pull EB : EV SER ↔ BED MONITOR
push BE : BED MONITOR ↔ EV SER
push EN : EV SER ↔ NURSE

#ES <= 3
CN = dom pull NE ES = ran pull NE
ES = dom pull EB PB = ran pull EB
PB = dom push BE ES = ran push BE
ES = dom push EN CN = ran push EN
∀ s : ES • #{(ran({s}C push EN))} ≤ 5
∀ b : ES • #{(ran({b}C pull EB))} ≤ 15
∀ x : PB • ∃1 y : ES • (x , y) ∈ push BE
∀ x : PB • ∀ y : ES • ∃ z : CN • (x , y) ∈
push BE ⇒ (y , z) ∈ push EN
∀ x : CN • ∃1 y : ES • (x , y) ∈ pull NE

Schema 2:PMS schema

For each service of the private clinic (pediatric, cardiol-
ogy, maternity...), we associate an event service (of type
EV SERV) to manage the communications between nurses
and bed monitors (when necessary). The architectural style
is represented by schema 2.

In the first part this schema, we develop a declaration
part which specifies component types as well as connec-
tion types being able to exist between them. In this specifi-
cation,CN, PB andES represents respectively the nurses,
the bed monitors and the event services. This part inte-
grates also relations representing the communication links

between the components. In addition to the architectural
style constraints, an application can have specific properties
which must be satisfied during the evolution of its archi-
tecture. We will take some properties of thePMSsystem,
which are formulated in the second part of schema 2, such:

• The system must contain a maximum of 3 services.

• A service contains a maximum of 5 nurses and 15 pa-
tients.

• A nurse must be connected to only one service.

According to the approach presented in [5], the dynamic
part of an architecture is described using∆ (Delta) Z
schemas (cf Schema 3). Indeed, each∆ schema represents
a reconfiguration operation.

Operation Name
∆Style
Par1?;Par2?;....;Parn?

Pre-conditions
Post-conditions

Schema 3:A Delta schema

WherePari? denotes an input of the operation. The
PMS specification presents different operations of reconfig-
uration that make possible system evolution. The recon-
figuration is then performed if the functional and structural
constraints are satisfied. For example, theInsertion of an
event-serviceoperation (cf Schema 4) inserts an instance
of a component of typeEV SERprovided that the system
does not already contain three event services according to
the first predicate in the PMS schema.

insert ES
∆PMS
x? : EV SER

#ES < 3
ES ′ = ES ∪ {x?}

Schema 4:Insertion of an event-service

We used the Z/EVES tool [8] to edit and check the syn-
tax of the PMS specification as well as to prove that the
specified reconfiguration operation preserve the architec-
tural style. Indeed, if we start from a configuration which
satisfies the architectural style and we apply an operation of
reconfiguration to the latter, we obtain a new configuration
which also satisfies the architectural style. Formally and in
the case of the PMS specification, this is translated in the
following theorem:

∀ pms ∈ PMS ,∀ op ∈ Op PMS , pms ∧ op ⇒ pms ′

∧ (pms ′ satisfy the PMS pre-conditions)

With, Op PMS=insert ES, insert CN, insert PB, supp PB,
supp CN, supp ES;

With Z/EVES, the demonstration of this theorem corresponds
to demonstrate six sub-theorems where each considers an opera-
tion from the setOp PMS. For example, for theinsert ESopera-
tion, it is necessary to demonstrate the following theorem:

theorem Verif insert ES
PMS ∧ insert ES ⇒ PMS ′ ∧ (PMS ′ ⇒ pre PMS)

This theorem, proved by Z/EVES, shows that the initial architec-
tural style is preserved. The following section debates the visual
simulation of a Z specification.

4 The simulator : presentation and features

The simulator is a generic application which simulates the
functioning mode of component-based applications. It rep-
resents components and connections using UML 2.0 conven-
tions. Moreover, it provides the possibility of adding and/or re-
moving components and connections. Each reconfiguration ac-
tion (adding/removing) proceeds while respecting its description
within the Z notation, according to the approach presented in Sec-
tion 3. The main interface of the simulator (figure 1) contains
menus, a toolbox and a drawing panel.

Figure 1. The simulator GUI

We group in figure 2 the different operating scenarios of our
simulation environment. Its use proceeds according to following
phases :

1. The start up of the simulator.

2. The user commands to the simulator to read the specification
(with the Z notation) to simulate.

3. The simulator parses the specification in order to extract the
architectural style (the types of components and connections,
as well as the constraints) and to list the reconfiguration op-
erations.

4. The simulator prepares the toolbox (for each component or
connection type corresponds a button).

5. The simulation of reconfigurations: the user press on a but-
ton in the toolbox (which represents a component type or a
connection type) and clicks on the drawing panel in order to
represent graphically the component chosen according to the
UML 2.0 notation.

6. The simulator checks the compatibility of each reconfigura-
tion with the architectural style. If it generates an architec-
ture instance which respects the style, it executes the recon-
figuration, otherwise it breaks it.

7. If during simulation the user detects a case which does not
comply with the requirements, then we are brought to the
initial Z specification. To take into account of the new syn-
thesized property, we use the commandUpdateof the menu
Rule. Thus we put the new changes into practice.

Figure 2. Functional scenario

Our simulator examines and translates the architectural prop-
erties into a set of constraints to be respected by the user during
the simulation of a reconfiguration. If an operation does not obey
the constraints, the simulator prohibits it while showing an error
message. For example, when we begin with a configuration that
contains three events services and we want to add the fourth, we
creates an inconsistent state (because # ES<= 3). Therefore, our
simulator ignores this reconfiguration. Also, we cannot bind two
components as long as there is no connection specified in the archi-
tectural style between them. For example, it is impossible to bind
a nurse with a bed monitor because no relation between them is
specified. Additionally, we can update the specification whenever

we want to satisfy user’s need. An example in the case of PMS:
Due to the small number of patients, the clinic manager wants to
reduce the expenses. He wants to limit the nurses’s number to
twenty. To allow the taking into account of the new rule (in the Z
specification), we add the following line to the architectural prop-
erties of PMS :|# CN< 20. To forbid the simulation of such con-
figuration, the simulation must reload the modified specification
with theupdatecommand. After that, the simulator prohibits any
configuration to simulate with a nurses number superior to twenty.

3.

5 Conclusion

Our purpose in this paper is to provide to the designers a visual
tool that allows to conceive UML2.0 diagram of a system accord-
ing to his formal specification with the Z notation. The interest of
this environment is to enable designers, who are not familiar with
formal techniques, to better understand the architectural properties
of the system formally specified with Z. The graphic visualization
of an erroneous configuration helps to identify the specification
defects and to rectify them.

In perspective, we intend to take into account the behaviour
of components. For that goal, we envisage the integration of a
formal language which supports the description of processes such
as process algebra.

References

[1] R. Allen, R. Douence, and D. Garlan.Specifying and an-
alyzing dynamic software architectures. Lecture Notes in
Computer Science. 1998.

[2] C. Canal, E. Pimentel, and J. M. Troya. Specification and
refinement of dynamic software architectures. InIn Software
Architecture, pages 107–126. Kluwer Academic Publishing,
February 1999.

[3] O. M. Group. Uml superstructure 2.0 - draft adopted speci-
fication. 2003.

[4] B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, and
M. Balabanovic. A domain-specific software architecture
for adaptive intelligent systems.IEEE Trans. Softw. Eng.,
21(4):288–301, 1995.

[5] I. Loulou, A. H. Kacem, M. Jmaiel, and K. Drira. Toward
a unified graph-based framework for dynamic component-
based architectures description in z. InACS/IEEE Interna-
tional Conference on Pervasive Services ICPS’04, 2004.

[6] D. C. Luckham, J. L. Kenney, L. M. Augustin, J. Vera,
D. Bryan, and W. Mann. Specification and analysis of sys-
tem architecture using rapide. InIEEE Trans. on Software
Engineering, volume 21, pages 336–355, 1995.

[7] D. L. Métayer. Describing software architecture styles using
graph grammars.IEEE Transactions on Software Engineer-
ing, 24(7):521–553, July 1998.

[8] ORA. Z/eves. http://www.ora.on.ca/Z-eves.
[9] J. Spivey. The Z Notation : a Reference Manual, Series in

Computer Science. Prentice-Hall, 1992.
[10] J. Vera, L. Perrochon, and D. C. Luckham. Event-based ex-

ecution architectures for dynamic software systems. Inthe
Working IFIP Conf. on Software Architecture, pages 22–24,
1999.

