
HAL Id: hal-00438854
https://hal.science/hal-00438854

Submitted on 4 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A QoS-driven reconfiguration management system
extending Web services with self-healing properties

Riadh Ben Halima, Khalil Drira, Mohamed Jmaiel

To cite this version:
Riadh Ben Halima, Khalil Drira, Mohamed Jmaiel. A QoS-driven reconfiguration management sys-
tem extending Web services with self-healing properties. IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises (WETICE’2007): Workshop on Informa-
tion Systems & Web Services ISWS, Jun 2007, Evry, France. pp.6. �hal-00438854�

https://hal.science/hal-00438854
https://hal.archives-ouvertes.fr

A QoS-driven reconfiguration management system extending Web services with
self-healing properties ∗

Riadh Ben Halima, Khalil Drira

LAAS-CNRS

7 avenue de Colonel Roche

31077 Toulouse Cedex 4, France

E-mail: {rbenhali, Khalil}@laas.fr

Mohamed Jmaiel

University of Sfax

National School of Engineers

B.P.W, 3038 Sfax, Tunisia

E-mail: Mohamed.Jmaiel@enis.rnu.tn

Abstract

This paper addresses QoS management for self-healing
Web services. The objective is to provide a healing frame-
work based on service monitoring and architectural-level
repair actions. We address these topics in the context of
the European project WS-DIAMOND. We implemented and
assessed a connector-based healing layer capable of inter-
cepting, analyzing and enhancing SOAP traffic and message
contents with QoS data. Our framework supports Service
Monitoring and dynamic run-time reconfiguration based on
reflective programming.
key words: Self-healing Web services, QoS management,
reconfiguration, repair, service monitoring.

1 Introduction

Internet progress has enabled data exchange between re-

mote collaborators and the spread of on-line services. To-

day several platforms of services are provided to support the

design, deployment and implementation of these services

in reduced scales of time. The high dynamics of the Web

requires new management infrastructures appropriate for

Web services. This implies the necessity of deploying enti-

ties for supervising traffic between Web service providers

and requesters in order to act for healing or preventing

[3]. This includes also run-time QoS management in or-

der to satisfy evolving process requirements and changing

constraints. Research about self-managing and self-healing

systems addresses such objectives [9, 1]. These systems are

generally applied when the reliability and/or the QoS are re-

quired [5, 4]. A (QoS-centric) self-healing system inspects

and changes its own behavior when the evaluation indicates

∗This work was supported by EU Commission within the Project WS-

Diamond (Web Services - DIAgnosability, MONitoring and Diagnosis,

grant IST-516933).

that the intended QoS is not achieved, or when a better func-

tionality or performance is required.

In the WS-Diamond project framework, three self-

healing levels are addressed. The service-level repair which

acts on manageable Web services having extended inter-

faces for management and applies to WSDM-compliant ser-

vices. The flow-level repair which applies for orchestrated

services and acts on the BPEL level using an extended man-

ageable process execution engine. The communication-

level repair which is the subject of this paper and acts on

the exchanged messages. It proceeds by intercepting mes-

sages, extending headers with QoS parameters values, and

substituting content’s information at the body-level of the

SOAP envelope. The communication-level repair relies on

a connector-based architecture which interconnects WS re-

questers to WS providers. Some of the connectors process

QoS management by monitoring, stamping, measuring and

logging requests and responses. The repair-level connec-

tors are generated automatically from WSDL specifications.

They are capable of substituting a deficient or degraded Web

service by another, functionally equivalent, Web service.

The connectors managing substitutions may be deployed

on the requester-side and/or on the provider-side accord-

ing to the available authorizations. Service monitoring and

substitution may be conducted without any provider-related

assumptions that may lead to restrictive constraints on the

practicability of the process.

This paper is organized as follows. Section 2 describes

our layered self-healing architecture. It represents an illus-

trative example of the reconfiguration layer action. In sec-

tion 3, we describe the dynamic generation of the Recon-

figuration Enactment Connector and associated operations.

An overview of our current experimentations is presented in

section 4. Section 5 discusses related work. The last section

concludes the paper.

HD: Diagnostic

Engine

Requester Side Monitoring

Connector

HRV: Virtual

WS Provider

WS

Requester 2

HRP:

Reconfiguration

Decision Planner

Log

WS

Requester 1

HMP: Provider Side

Monitoring Connector

WS

Provider 2

HMR: Requester Side

Monitoring Connector

WS

Provider 1

WS

Provider 3

HML: Logging

Manager

11: Diag

1: M1

2: M2:= (M1, QoSP1)

3: M3:= (M2, QoSP2)

7: M5:= (RespM1, QoSP3)

6: M4:= (RespM1,

QoSP1, QoSP2)

8: L1:= (QoSP1, QoSP2, QoSP3, QoSP4)

4: M1

5: RespM1

9:ReqMes

12: Act

8: RespM1

4: M3

5: DummyResp:=

(DummyValues , QoSP1, QoSP2)

HRC: Reconfiguration

Enactment Connector

10:RespMes

Req/Resp WS invocation

Interception/Forward of req/resp messages

Key:

Notification messages between components

SequenceNumber: MessageName:= Contentn:M:=(C1..Ck)

Figure 1. QoS-driven, connector-based proactive healing system architecture

2 Connector-based self-healing architecture

Three main steps are distinguished in the self-healing

process [6]: Monitoring to extract information about the

system health (using knowledge about the system configu-

ration), diagnosis to examine and analyze them, and repair
to heal the system by executing actions. In our architec-

ture, we implement these three steps in three software lay-

ers. Each layer is composed of several components (see

table 2). Messages exchanged are presented in table 1.

In this paper, we present the reconfiguration enactment

step in the self-healing process in the framework of the WS-

DIAMOND European project.

The WS requester sends a request message M1 to the

Virtual WS Provider. This message is intercepted by the

Requester-Side Monitoring Connector. Message M1 is then

extended by the first QoS parameter value (QoSP1) in the

output message M2. For example, QoSP1 may represent

the invocation time of the service by the requester. Message

M2 is intercepted by the Provider-Side Monitoring Connec-

tor for a second time. M2 is extended by the QoS parameter

value (QoSP2) in the output message M3. To illustrate this,

QoSP2 may represent the communication time spent by the

message to reach the provider-side network. Message M3

is intercepted by the Reconfiguration Enactment Connector.

The functional data is extracted from M3. This corresponds

Message Description
M1 Request Message

QoSP1 QoS parameter associated with the

request M1 at the requester-side

QoSP2 QoS parameter associated with the

request M1 at the provider-side

RespM1 Response Message for M1

QoSP3 QoS parameter associated with the

response RespM1 at the provider-

side

QoSP4 QoS parameter associated with the

response RespM1 at the requester-

side

L1 Stored log of monitored QoS values

ReqMes/

RespMes

Extracted statistical measures re-

lated to QoS

Diag Diagnosis report

Act Reconfiguration plan

Table 1. Description of service-level and
healing-level messages.

Self-healing layers and components Description

Monitoring and Measurement Layer
HMR: Requester Side Monitoring Con-

nector

Implements the Healing Monitoring at the requester-side (in short: HMR).

Intercepts requests (M1) and responses (M5), inserts QoSP1 and QoSP4 values

HMP: Provider Side Monitoring Con-

nector

Implements the Healing Monitoring at the provider-side (in short: HMP).

Intercepts requests (M2) and responses (M4), inserts QoSP2 and QoSP3 values

HML: Logging Manager Implements the Healing Monitoring data Logging management (in short: HML).

A Web service used remotely to store QoS parameters

Diagnosis and Planning Layer
HD: Diagnostic Engine Implements the Healing Diagnostic (in short: HD).

Interrogates periodically HML, analyzes statistically QoS values, and sends alarms and

diagnostic reports to HRP

HRP: Reconfiguration Decision Plan-

ner

Implements the Healing Reconfiguration Planning algorithms (in short: HRP).

Analyzes diagnostic reports, and decides to enforce a reconfiguration action sequence

appropriately to the current context

Reconfiguration Layer
HRC: Reconfiguration Enactment Con-

nector

Implements the Healing Repair Connector (in short: HRC).

Intercepts requests adressed to HRV, duplicates parameters for a concrete WS provider

(CWS), substitutes HRV response values by CWS’s response values

HRV: Virtual WS Provider Implements the Healing Repair Virtual WS (in short: HRV).

A dummy Web service (automatically generated from CWS WSDL description), it al-

ways responds with a dummy message to HRC

Table 2. Description healing layer components.

to the initial content of message M1. This latter is used to

dynamically create an invocation request with the same con-

tent towards the concrete WS being bound to HRC. It is also

forwarded to the Virtual WS Provider. Responses of these

two services are collected by HRC. The HRC substitutes

HRV response values by CWS’s response values. In other

terms, it replaces the DummyValues by RespM1 in the mes-

sage DummyResp. As a result, we obtain the Message M4

as a response for the request. Message M4 is intercepted

by the Provider-Side Monitoring Connector for a third ex-

tension by the QoS parameter value (QoSP3) in the output

message M5. For example, QoSP3 may represent the exe-

cution time associated with the request. Message M5 is in-

tercepted by the Requester-Side Monitoring Connector. It is

then extended by the fourth QoS parameter value (QoSP4).

For example, QoSP4 may represent the time the response

took to reach the requester-side. The QoS data is extracted

at this connector-level, and sent to the Logging Manager

(HML), a Web service which saves the data in a MySQL

Database.

The Diagnostic Engine (HD) questions periodically

HML (message ReqMes/RespMes), analyzes statistically

QoS values, and sends alarms and diagnostic reports to

HRP (message Diag). When a QoS degradation is detected,

HRP plans a reconfiguration and solicits HRC for enact-

ment (message Act). For example, HRP can ask for leaving

WS Provider 1 and binding requesters to WS Provider 2.

<soapenv:Envelope>

<soapenv:Header>

<TimeResponseInterceptServer

soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0">1152008215762</TimeResponseInterceptServer>

<TimeRequestInterceptServer

soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0">1152008215715</TimeRequestInterceptServer>

<TimeRequestInterceptClient

soapenv:actor=http://schemas.xmlsoap.org/soap/actor/next

soapenv:mustUnderstand="0">1152008215481</TimeRequestInterceptClient>

</soapenv:Header>

<soapenv:Body>

<sommeResponse>

<sommeReturn>5</sommeReturn>

</sommeResponse>

</soapenv:Body>

</soapenv:Envelope>

<soapenv:Envelope>

<soapenv:Header>

<TimeRequestInterceptClient

soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0">1152008215481</TimeRequestInterceptClient>

<TimeRequestInterceptServer

soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0">1152008215715</TimeRequestInterceptServer>

</soapenv:Header>

<soapenv:Body>

<sum>

<a>1

4

</sum>

</soapenv:Body>

</soapenv:Envelope>

SOAP Message Request (M3)

QosP1&2 params

Functional parameters values a, b of

“int sum(int a, int b)” method of WSDL
(initially = M1 content)

SOAP Message Request (M5)

QosP1&2&3 params

Functional parameters values

result of “int sum(int a, int b)”

method of WSDL

(initially = RespM1 content)

Figure 2. SOAP Examples

SSWS

code

HRC
code

IWS URL

SWS

WSDL

HRC DP

SSWS DP
WSDLC: WSDL

Compiler

HRCCG: HRC

Code Generator

HRCDM: HRC

Deployment

Manager

CRM: Container

Remote Manager

JRC: Java

Runtime Compiler Upload notification

Figure 3. Generating the Reconfiguration Enactment Connector (HRC)

Consequently, requests will be routed to WS Provider 2 in-

stead of WS Provider 1.

As an illustration, a first experience is done with a simple

Web service which adds two integers and returns the sum

(Web Service Provider 1). The Virtual WS Provider (HRV)

and the Reconfiguration Enactment Connector (HRC) will

be dynamically generated and deployed.

Figure 2 shows the SOAP content of exchanged mes-

sages of this example. Message M1 represents the initial

SOAP message sent by the requester. It contains requester

parameters (”1” and ”4”). Message M3 is extended with

two QoS parameters values that indicate the communica-

tion between the two sides.

In figure 2, message M5 represents a SOAP message re-

quest enriched with QoS parameters values. It shows the

WS Provider invocation result bound to the Virtual WS

SOAP message Request.

3 Implementation and experiments

3.1 Substitution policies

The substitution of service functionalities (that do not

respect the required QoS) may be done through one or many

other services. We distinguish three different cases:

The complete substitution: The substitute Web service

(WS2) includes an over-set of the offered services by

the faulty one (WS1). It will be used when the ser-

vice WS1 is declared definitely a non-compliant ser-

vice and has to be substituted. So, we redirect all

requests to another service (WS2) which replaces en-

tirely the WS1.

Functionalities (WS1)⊂ Functionalities (WS2).

The partial substitution: We substitute only the faulty

methods. The connector will act on a part of the

requester messages for the faulty methods, and redi-

rect them to another service (WS2) which provides the

same functionalities of the faulty WS1 methods.

Functionalities (WS1)
⋂

Functionalities (WS2) =

Functionalities(Requester).

The selective substitution: The offered functionality of

the faulty Web service will be substituted by a set of

Web services (WS2, SW3, ..., WSN). Each WSi will

replace a part of the erroneous Web service.

Functionalities (WS1) = Functionalities (WS2)
⋃

Functionalities (WS3)
⋃

...
⋃

Functionalities (WSN).

We plan to extend the HRC for supporting all the sub-

stitution strategies while specifying substitution rules

like work in [8].

3.2 Automated design of the Reconfigura-
tion Enactment Connector (HRC)

The HRC is dynamically created and automatically de-

ployed (see figure 3). Table 3 describes the generation pro-

cess. In case of permanent QoS violation, the system de-

ploys HRC in order to reroute requests towards a suitable

Web service (SWS).

We use axis [http://ws.apache.org/axis/](version 1.4) as

a middleware for Web services, tomcat (version 5.5.17) as

a container and Java (version 1.5) as a programming lan-

guage.

The routing process, implemented by HRC, is composed

of five main operations as shown in figure 4. It is able to

parse SOAP messages towards IWS (Using Axis and Jdom1

APIs), and to dynamically create requests to SWS (Using

Java Reflection2).

1http://www.jdom.org/: XML parser in Java
2http://java.sun.com/j2se/1.3/docs/guide/reflection/

Internal components Description
IWS: Initial Web Service The faulty Web service to be substituted

SWS: Substitute Web Service The new Web service selected to solve QoS degradation generated by IWS

WSDLC: WSDL Compiler Adapted WSDL compiler with configurable options for JVM management.

It compiles SWS WSDL

HRCCG: HRC Code Generator Generates the Java classes of the Reconfiguration Enactment Connector

(HRC)

HRCDM: HRC Deployment Manager Deploys all the connector files on the WS container

CRM: Container Remote Manager A Web service that invoked remotely by HRCDM for reloading the new

context and enacting HRC

Generated code for runtime built
healing entities

Description

HRC code Java classes implementing the Reconfiguration Enactment Connector

(HRC) behavior

HRC DP: HRC Deployment Package Dynamically compiled and packaged Java classes of HRC

SSWS code: Stub for SWS code Dynamically generated stub for SWS invocation by HRC

SSWS DP: Stub for SWS Deployment

Package

Dynamically packaged Java classes for SWS stub deployment

Table 3. Description of HRC generation and deployment.

Reconfiguration Enactment Connector Behavior

for each IWS call :
{
 Param[]= GetParamfromHRVSOAPRequest(SOAPEnvelopeReq);
 // extract functional parameters from intercepted request messages
 ParamTypes[]=GetParamTypefromSWSWSDL(SWSWsdlUrl);
 // extract functional parameter types from WSDL
 Stub= BuildStubforSWS();
 // Create stub for the currently bound concrete WS Provider
 ResSWS= InvokeSWS(Stub, Param[],ParamTypes[]);
 // invoke the currently bound concrete WS Provider
 SetResult2HRVSOAPResponse(ResSWS, SOAPEnvelopeResp);
 // substitute content of SOAP response message
}

Figure 4. The Reconfiguration Enactment
Connector Operations

3.3 Experiments

In order to experiment our system in real scale condi-

tions, we implemented the Conference Management Sys-

tem (CMS), a Web service-based networked application

for the management of the ”cooperative review” process.

This Web service-based architecture aims at ensuring data

exchange flexibility between system components, namely:

Committee Chair, Reviewer, and Author. We developed a

service-oriented architecture composed of 24 services, 18

tables to manage data, and about 9000 code lines. We are

currently conducting large scale experiments for measuring

QoS under the French Grid5000.

We have deployed our architecture on a set of 382 nodes

of the Grid5000. After more than a day of application run-

ning, requesters have sent about 30 millions requests and

the monitoring system has saved about 3 Gigabytes of QoS

parameters values. In the following, we give an idea about

measured values (in millisecond):

Execution Time Communication Time
Min= 0 Min= 10

Max= 1044 Max= 45742

Avg= 1.217 Avg= 38.355

The execution time ranges between few ms and 1000 ms

with an average of 1.2. The communication time ranges

between few ms and several dozen of thousands (from 10

to 45700) with a big average of 38.3. With a first analy-

sis, this shows the sensitiveness of such systems to com-

munication context and demonstrates the importance of the

communication-level preventive and reactive healing.

A second experiment is carried out while varying re-

quester numbers. The measurement results show a real sen-

sitiveness to the variation of requester numbers. The com-

munication time varies between about 50 for 10 requesters

to 1000 for 100 requesters. It increases highly with the num-

ber of requesters showing the importance of this parameters

in response time observed by the requesters. Such infor-

mation is being analyzed and modelled to support a correct

monitoring and diagnosis for this application. Measurement

details are summarized in table 4.

Client
num-
ber

Request
num-
ber

Communication
Time

Execution Time

10 4953 Min= 15, Max=

553, Avg= 53.00

Min= 8, Max= 387,

Avg= 29.45

50 5065 Min= 23, Max=

48167, Avg= 686.74

Min= 9, Max=

6472, Avg= 46.24

100 5386 Min= 32, Max=

70053, Avg= 848.99

Min= 11, Max=

7775, Avg= 108.98

Table 4. Experimental results.

4 Related Work

Different approaches propose reconfiguration to imple-

ment self-healing [7, 2, 8]. Some of them act at the commu-

nication level. They offer a third party for reconfiguration

between the WS requester and provider, as mediator [2], or

community [8]. Other works like [7], act at both: compo-

nent level and communication level.

Authors of [7] propose to include a healing layer in com-

ponents and connectors. Therefore, the self-healing connec-

tor contains two layers: a communication layer which man-

ages exchanged messages, and a healing layer which recon-

figures stub at this level. The self-healing component con-

sists of a service layer and a healing layer which launches

reconfiguration after an anomaly detection.

In [8], authors provide a solution for Web service substi-

tution. They propose a ”WS community” which regroups

Web services having similar functionalities. This commu-

nity is represented with an ”Abstract WS Interface” which

is a common interface for all alike Web services. The map-

ping interface between the Concrete WS Interface and the

Abstract one are ensured dynamically by the Open Source

Connectivity while respecting mapping rules.

Work in [2] proposes to group one or more Web services

with QoS features inside a unique wrapper and to publish

it as a standard Web service. Clients invoke this wrapper

(called also virtual Web service) which is responsible for

invoking real providers.

However, in these works, if the concrete Web service

crashes, they can not perform the substitution, because they

can not maintain a SOAP canal for response. In our work,

we address requests to a Virtual WS which does not imple-

ment the WS interface. This may lighten the Virtual WS and

minimize its crashes, and give us the possibility to re-route

requests on the fly from one concrete WS to another.

5 Conclusion

In this paper, we presented a self-healing framework for

QoS management in Web service-based applications. The

framework has been implemented on top of reflective pro-

gramming libraries. It relies on intercepting and handling

the content of SOAP-level communication messages.

Our implementation has been assessed on top of the

GRID5000 infrastructure with ad hoc application scenarios.

It is now being used within the European WS-DIAMOND

project for two case studies. The first case study addresses

collaborative activities. It implements WS support for au-

thoring and reviewing activities with discovering and pub-

lishing capabilities. We have already implemented this sce-

nario and measured its QoS-enhanced traffic for complex

interactions with multiple Web services. The analysis of

Logs is now being conducted to tune the measuring and

diagnosis processes that act upstream of the repair level.

We are now working on the deployment of a second Web

service-based application of the family of supplier chain

management. This constitutes the second scenario of the

WS-DIAMOND project. Our approach will be applied for

communication-level healing management associated with

service-level and flow-level healing management.

References

[1] S. A. Gurguis and A. Zeid. Towards autonomic web services:

achieving self-healing using web services. In DEAS ’05: Pro-
ceedings of the 2005 workshop on Design and evolution of
autonomic application software, pages 1–5, New York, NY,

USA, 2005. ACM Press.

[2] J. A. J.F. Vilas and A. Vilas. An architecture for building

web services with quality-of-service features. In In 5th Inter-
national Conference on Web-Age Information Management
(WAIM 2004), 2004.

[3] J. O. Kephart and D. M. Chess. The vision of autonomic

computing. Computer, 36(1):41–50, 2003.

[4] D. A. Menascé. Qos issues in web services. IEEE Internet
Computing, 6(6):72–75, 2002.

[5] D. A. Menascé. Response-time analysis of composite web

services. IEEE Internet Computing, 8(1):90–92, 2004.

[6] P. Robertson and B. Williams. Automatic recovery from soft-

ware failure. Commun. ACM, 49(3):41–47, 2006.

[7] M. E. Shin and J. H. An. Self-reconfiguration in self-healing

systems. In EASE ’06: Proceedings of the Third IEEE In-
ternational Workshop on Engineering of Autonomic & Au-
tonomous Systems (EASE’06), pages 89–98, Washington, DC,

USA, 2006. IEEE Computer Society.

[8] Y. Taher, D. Benslimane, M.-C. Fauvet, and Z. Maamar. To-

wards an Approach for Web services Substitution. In IEEE,

editor, 10th IEEE International Database Engineering and
Applications Symposium (IEEE IDEAS 2006), dec 2006.

[9] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and W. Ma.

Management applications of the web service offerings lan-

guage (wsol). In Advanced Information Systems Engineering,
15th International Conference, CAiSE 2003, Klagenfurt, Aus-
tria, June 16-18, 2003, Proceedings, volume 2681 of Lecture
Notes in Computer Science, pages 468–484. Springer, 2003.

