N
N

N

HAL

open science

Model-based QoS-enabled self-healing Web Services
Olga Nabuco, Riadh Ben Halima, Khalil Drira, Maria Grazia Fugini, Stefano

Modafferi, Enrico Mussi

» To cite this version:

Olga Nabuco, Riadh Ben Halima, Khalil Drira, Maria Grazia Fugini, Stefano Modafferi, et al.. Model-
based QoS-enabled self-healing Web Services. 1st International Workshop on Data Management in

Virtual Engineering, Sep 2008, Turin, Italy. pp.711-715. hal-00438850

HAL Id: hal-00438850
https://hal.science/hal-00438850
Submitted on 4 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00438850
https://hal.archives-ouvertes.fr

Model-based QoS-enabled self-healing Web Services

O. Nabuco?®, R. Ben Halima! K. Driral, M.G. Fugini?, S. Modafferi?, E. Mussi?,

'LAAS-CNRS, Université de Toulouse; 7 avenue de Colonel Roche, 31077 Toulouse, France
DEI, Politecnico di Milano; Piazza da Vinci, 32 1-20133 Milano, ITALY
SCENPRA; Rod. D. Pedro I, Km 143,6 - Campinas 13069-901 BRAZIL

Abstract

Failures during web service execution may depend
on a wide variety of causes, such as network faults,
server crashes, or application-related errors, such as
unavailability of a requested web service, errors in the
orchestration of choreography of applications, missing
data or parameters in an execution flow, or low Quality
of Service (QoS). In this paper, we propose a healing
architecture able to handle web service faults in a self-
healing way, discussing infrastructural foults and web
service and Web application faults. The self-healing ar-
chitecture manages repair actions, such as substitution
of a faulty service or duplication of overloaded services.
Implemented prototypes involving QoS in coordinated
web services are illustrated and discussed. *

1 Introduction

The creation of e-services, based on dynamic re-
sources, requires innovative design approaches to guar-
antee service quality; in particular the services must
be reliable and available and must comply to qual-
ity dimensions, such as accordance to requisites, QoS
aspects (such as the timeliness in the service execu-
tion, its transactional properties, security, and simi-
lar), stability, etc. The goal of integrating heteroge-
neous components has been addressed in the Service
Oriented Architecture research area. Although web
services address integration issues such as communi-
cation through firewalls and interoperability between
heterogeneous components, QoS management is still
an open issue. For instance, failures are handled and
possibly recovered in a static way by employing pre-
compiled compensation strategies (e.g., see BPEL). As

1This work has been developed within the WS-Diamond UE
FET-STREP Project n IST-516933, started September 15¢, 2005
with 30 months duration.

a step forward in this direction, dynamic handling of
failure and recovery should be supplied. In general, ex-
ceptions and faulty states are a primary issue in web
service and workflow design, rather than a mechanism
added after the fact via a library approach. Excep-
tion handling, a primary feature in language design,
must be integrated with other major features, includ-
ing advanced control flow, objects, coroutines, concur-
rency, real-time, and polymorphism. Self-healability is
the property that enables a system to perceive that
it is not operating correctly and, without human in-
tervention, make the necessary adjustments to restore
itself to normality [1]. Self-healing systems are clearly
recovery-oriented and require monitoring the system to
detect transitions to faulty modes, to diagnose the sit-
uation, and to appropriately choose and execute a re-
covery strategy. In order to apply diagnostic method-
ologies to web services, we focus on both composite
and conversationally complex web services. Therefore,
the diagnostic process needs to take into account not
only the different cooperating services, but also the
complexity of their interactions, that can take differ-
ent turns and dynamically change the internal status
of each service. Moreover, the diagnostic process needs
to be hierarchical and decentralized: a different diag-
nostic process should take care of each composite web
service, but such processes need to communicate in or-
der to achieve a satisfactory diagnosis. Another type of
error may be due to the inability of services(s) to fulfill
QoS requirements. Service level agreements and con-
tract specification have been studied in the literature
[2,3]. In web services, QoS has to be tackled also during
the execution of the services. Quality parameters are
likely to be highly variable, in particular in mobile con-
texts, and with dynamically evolving services, so there
is a need to observe and measure them on line. An
ontology-based approach can bring the shared vocab-
ulary among the partners defining a formal language
that can evolve describing classes’ relationship in terms

of axioms and rules. This paper addresses self-healing
systems through an ontology and a tools architecture.

Section 2 presents the Self-healing ontology, Section
3 the process-level self-healing architecture, Section 4
the interaction-level self-healing architecture, and Sec-
tion 5 our concluding remarks.

2 WS-Diamond Self-Healing Ontology

The objective of a self-healing ontology is to describe
a self-healing model. It can also provide or point to
more detailed ontologies depending on the domain of
application and other specifities. The concepts used in
the construction of the ontology were gathered from the
deliverables generated by the WS-Diamond project.

(QoSParameters F

& RepanForHe:lmg l

‘ HeallngTarget *

gnosisFarHzaling b
" HandlzdFaults b

———11
| HealingPalicy ¥

Figure 1. Healing ontology detail

These descriptions also support the detailed repro-
duction of the model by other implementers creating
the “healing” vocabulary to project developers. More-
over each class has its role in the healing model pro-
viding a consistent service description and interaction.

The ontology has an upper level providing defini-
tions of Scope, Service Level, Acting Level, and Behav-
ior, giving the necessary context to designers, providers
and consumers. The ActingLevel describes if the heal-
ing intervention action will occur: at the Process — the
service running procedure - or at the Interaction level —
service communication. The next two sections describe
interventions in both levels. Scope: can be Local -if the
repair action will take place in a single web service or
Global - the context of a complex and composed web
service.

WSLevel is composed of Instance — indicating if the
intervention of healing is been taken in a occurrence
of a single or global service and Class — indicating if
the intervention is been taken in the model description
(this task is performed by a human specialist).

WSBehaviorDescription - Each service has a de-
scription composed of its orchestration and/or its

choreography, or BPEL or OWL-S description. The
model doesn’t prescribe nor language neither ontology
to do so but indicates that it shall have one and indi-
cates the nature and point where the description is.

The DiamondHealingModel is the class that encom-
passes the healing model. As shown in Fig.1 the classes
correspond to the used concepts: Goals, Policies, and
Targets to be pursued by the healing components. Defi-
nition of components to Monitoring, Diagnosis and Re-
pair as also the classes that can determine if a service
is decaying its performance, corresponding to designed
expectations in QoS, and what parameters can be sen-
sors for the service (Observable Parameters).

The healing process begins defining its goals: pre-
vent or repair web services from QoS deviations. In
order to prevent errors, it has to monitor specific QoS
parameters, defined at the selection phase of the com-
position of the service, through observable parameters
(that can be part of the original service or be added
to it). Monitoring of these observable parameters can
be done at the service level — the instance that can be
observed by its choreography —or the flow level —the
procedure of running the sequence of web services.

———
e RepairForHeaIing 2]
Ser\rlceRepalr
S -;

e . 5
Redao-Retry M Suhstitution)

(Substitute : I Resume '.._ Skip /1

Dupllcatlon

Compensate 1

Figure 2. RepairForHealing Class detail

This healing process was translated into classes, pa-
rameters, rules, and relationships of the DiamondHeal-
ingModel ontology.

In order to Recover from QoS degradation, the heal-
ing model takes advantage of the Diagnoser which re-
ceives information from the monitor module. The Di-
agnoser then analyzes the situation recommending the
repairing actions described by the Repair for Healing
class.

RepairForHealing class contains two classes, rep-
resenting the possible repair actions able to prevent or
recover from faulty states. ServiceRepair class repre-
sents the preventive action at Service target. It has re-
lationship with the choreographed description, and can
have Local or Global scope. Actions can be in terms
of Substitute — for a semantic equivalent or Duplicate -
starting the same service using another infrastructure -
a service. The FlowRepair class represents the repair
actions at Flow target, for orchestrated services. Ac-
tions can be taken during workflow execution in terms
of Redo-Retry, Compensate, Resume, Adjust, Inform,
Skip and ValChange. The QoSParameters class rep-

resents the attributes that characterize the desirable
behavior of the service representing shared concepts for
users and providers. The QoS classes and parameters
are based on previous and current works defining the
QoS in web service domain [4], [5], [6] among others.

Monitoring for Healing class determines what
parameters can be monitored at MessageLevel — in
terms of message’s envelope or protocol — or Pro-
cessLevel — parameters inside the workflow, for in-
stance, time out related parameters. HandledFaults
class means if the kind of fault the system can deal
with, like data semantic faults or non-functional faults,
like QoS violations.

Policies take into account the managing actions and
components that deal with the preventive or recovery
characteristics of the chosen healing.

Standard
BPEL Engine

e

Gther Alarms

Ewent Logs

Figure 3. Diagnosis and Repair approach and
SH-BPEL engine architecture

3 Process-Level Self-Healing Manage-
ment

Self-healing can be obtained at the level of the single
service, and also at a more global level, with support
to identify critical misbehavior of groups of services
and to provide web services with reaction mechanisms
to global level failures. Our goal is not only to provide
methodologies and techniques for on-line diagnosis and
recovery of web services, but also to provide guidelines
for designing diagnosable and recoverable web services.
The focus of WS-Diamond is on composite and conver-
sationally complex web services.

Composite Web Service: a composite web ser-
vice relies on the integration of various other services:
the integrated service is the result of the interaction
among simple services, each carrying out a part of
the job. Such interaction, which can be described as
a workflow, is hidden from the consumer application,
which perceives the overall service as an atomic one.
Conversationally Complex Web Service: a web
service can be complex in the sense that during the

service provision it needs to carry out a complex in-
teraction with the consumer application, where several
conversational turns are exchanged. In some cases, the
order of the conversation turns is not completely pre-
determined, but depends on the activities carried out
by the web service.

In WS-Diamond, two self-healing levels are ad-
dressed: process and interaction. The process level
acts on the BPEL flows using SH-BPEL (Self-Healing
BPEL) [7], a self-healing plug in for BPEL engines.
In Fig.3, the overall integrated WS-Diamond approach
to diagnosis and repair is depicted. The mechanism
works with a possible notification to the Diagnoser of
a Symptom, detected through a timeout, and the cor-
responding faulty service. The Diagnoser can be acti-
vated either through this Symptom or by its internal
monitoring routines. The Diagnoser sends a fault no-
tification to the Recovery Selector which determines
the appropriate repair action. In WS-Diamond, a Ser-
vice Execution Engine handles the correct execution
of complex services based on such integrated diagno-
sis and repair approach. The focus of the Engine is
on mechanisms to execute self-healing actions on web
services of a process. Process representation in the
self-healing environment supports monitoring of web
services choreography/orchestration and its conversa-
tional behavior, and data and temporal dependencies
among process activities. The activity performed in
this layer is the evaluation of actual and potential vi-
olations of process functions and quality, for obtaining
self-healing composed services by exploiting diagnosis
and repair actions.

Recovery in WS-Diamond acts both on single web
services and on processes composed of several web ser-
vices. One tool provided for self-healing services and
processes is SH-BPEL (see Fig.3), designed to execute
recovery actions such as: (i) retry the execution of a
process activity, (ii) redo the execution of a process
activity but using parameters different from the ones
used in the previous execution, (iii) compensate a pro-
cess activity by executing proper recovery actions, (iv)
update the value of an internal process variable, and (v)
substitute one or more faulty web services. In particu-
lar, the substitution can be indifferently performed over
both stateless and statefull web services. SH-BPEL
can be controlled by means of a Management Inter-
face implemented using the WSDM standard. From
the methodological point of view, SH-BPEL performs
recovery actions by means of three different mecha-
nisms (see [7] for details): i) Standard BPEL recovery
mechanisms explicitly defined by the designer; ii) Pre-
Processing based BPEL recovery mechanisms obtained
by requesting to the designer the insertion of proper

recovery tags, the tagged BPEL is then pre-processed
by an interpreter that transforms it in a standard one
able to perform also the selected recovery actions; iii)
FEaxtended recovery mechanisms. These are executed by
a separate module of the SH-BPEL plugin and do not
interfere with the process orchestration, in that recov-
ery actions are transparently executed.

Techniques are being developed for providing recov-
ery mechanisms in self-healing web services, in addition
to fault handlers and with more general functionalities
not requiring specific programming by the designer. In
particular, services and processes have a Management
Interface enabling the analysis of the state of a ser-
vice/process and hence allowing the execution of given
business operations on it (e.g., a repair action), depend-
ing on its state. Compared with the existing web ser-
vice enabled application servers, a WS-Diamond server
provides an environment to run adaptive web services
on the basis of a QoS driven approach. The requester
may specify quality requirements at web service invo-
cation time or these requirements may be implicitly
specified as annotations of the services. If the WS-
Diamond platform realizes that the QoS of a web ser-
vice is decreasing, then it perform a channel switching,
or web service substitution. Similarity computation,
supported by the ontology, is based on a semantic-
based analysis of the involved web service. Since sub-
stituted and substituting web services might have dif-
ferent signatures, a semi-automatic wrapper generator
reconciliates differences in the provided interfaces, pos-
sibly with human intervention.

Monitoring captures process-related potentially
faulty behaviors and triggers recovery actions. The fo-
cus of monitoring is on aspects which are not under
investigation in the diagnostic modules, and in partic-
ular: proactively monitoring time constraints, to antic-
ipate possible future time violations; monitoring errors
due to architectural problems, or to QoS violations;
monitoring conversations and analyzing their behavior
with respect to their expected behavior. Repair actions
are performed on web services through the manage-
ment interface part of the SH-BPEL engine (see Fig.
3) through which they can be invoked for a given pro-
cess to be repaired from a failed state. Repair actions
can be classified as service level actions and as flow
level actions. The output set of extensions is built so
that it meets two requirements. i) The set of exten-
sions is sound and complete with respect to the input.
This means that the portion of model represented by
the assignments in the set is equivalent to the por-
tion of the model represented by the input assignment
plus possibly the local observations. ii) Each exten-
sion in the set is admissible with respect to the local

model. The notion of admissibility is meant to for-
malize the least-commitment strategy: intuitively, a
partial assignment is admissible if it does not allow in-
ferring anything about the unassigned variables that
couldn’t be inferred using the model alone.

Diagnosed faults indicate which service originated
the fault and faulty messages, in particular the erro-
neous message(s) deriving from the wrong execution in
the faulty service. A fault is identified by a service-
message pair =< S, M > (S is the faulty service, M
is the erroneous message). For each failure-fault pair, a
plan contains the repair actions needed to resume the
correct process execution. Repair actions in a plan are
those defined above for SH-BPEL, and include repair
from QoS faults.

4 Interaction-Level Self-Healing Archi-
tecture

The interaction level acts on the communication
protocols. It proceeds by intercepting messages, by
extending headers with QoS parameters values, and
by processing content’s information at the body level
of the SOAP envelope. The interaction level relies
on a connector-based architecture which interconnects
WS requesters to WS providers. The monitoring-
level connectors manage QoS by monitoring, stamp-
ing, measuring and logging requests and responses.
The repair-level connectors are generated automati-
cally from WSDL specifications. They are capable
of substituting a deficient web service by a function-
ally equivalent web service. The repair-level con-
nectors may be deployed on the requester-side or on
the provider-side according to a set of authorizations.
Three main steps are distinguished in the self-healing
process [8]: Monitoring to extract information about
the system health (using knowledge about the system
configuration), diagnosis to examine and analyze them,
and repair by executing recovery actions in order to
heal the system. In our architecture, we operate these
three steps in three software layers: the Monitoring
Layer, the Diagnosis and Planning Layer, and the Re-
configuration Layer. Each layer is composed of sev-
eral components interconnected as depicted in Fig.4
and exchanging messages which are presented in Ta-
ble 1.The WS Requester sends a request (message M1)
to the Virtual WS Provider. This message is inter-
cepted by the Requester Side Monitoring Connector.
Message M1 is then extended by the first QoS param-
eter value (QoSP1) in the output message M2. For
example, QoSPI may represent the invocation time of
the service by the requester. Message M2 is intercepted
by the Provider Side Monitoring Connector for a sec-

ond time. M2 is extended by the QoS parameter value
(QoSP2) in the output message M3.

ws ws
Requester 1 Requester 2
SH-BPEL SH-BPEL
Engine Engine
/.
Requester Side Requester Side
Monitoring Connector|2: M2:5 (M1, QoSP1) Monitoring Connector

VA
7: M5:5 (M4, QoSP3) Y

Provider Side |
onitoring Connectol
A
6: M4:= (RespMi| 3: M3:= (M2, QoSP2)

QoSP1, QoSP2)

WS
\IProvider 3
e
4: M3 Provider 2/

I Reconfiguration
Enactment Connector| [« Provider

5: DummyResp:=

(QoSP1, QoSP2, QoSP3, QoSP4)

(DummyValues, QoSP1, QoSP2)

L ostic] [Reconti 4 o[WS
9:ReqMes J Provider 1

8:L1:

5: RespM1
Key: . N
ws — i of Req/Resp
T—— Notification messages n:M:=(C1..Ck) : Content

Figure 4. Interaction-level SH architecture

Message Description

M1 Request Message

QoSP1 QoS parameter associated with the request
M1 at the requester side

QoSP2 QoS parameter associated with the request
M1 at the provider side

RespM1 Response Message for M1

QoSP3 QoS parameter associated with the re-
sponse RespM1 at the provider side

QoSP4 QoS parameter associated with the re-
sponse RespM1 at the requester side

L1 Stored log of monitored QoS values

ReqMes/RespMeg Extracted statistical measures related to
QoS

Diag Diagnosis report

Act Reconfiguration plan

Table 1. QoS Message Description

For example, QoSP2 may represent the communi-
cation time spent by the message to reach the provider
side network. Message M3 is intercepted by the Re-
configuration Enactment Connector (REC). The func-
tional data are extracted from M3. This corresponds
to the initial content of message MI. This content is
used to dynamically create an invocation request with
the same content towards the concrete WS Provider
being bound to REC. It is also forwarded to the Vir-
tual WS Provider. Responses of these two services are
collected by REC which substitutes the Virtual WS
response values by the concrete WS response values.
In other terms, it replaces DummyValues by RespM1
in the message DummyResp. As a result, we obtain
Mj as a response for the request. M4 is intercepted
by the Provider Side Monitoring Connector for a third
extension by the QoS parameter value (QoSP3) in the
output M5. For example, QoSP3 may represent the
execution time associated with the request. M5 is in-
tercepted by the Requester Side Monitoring Connec-

tor. It is then extended by the fourth QoS parameter
value (QoSP4). For example, QoSP/ may represent
the time the response took to reach the provider side.
The QoS data is extracted at this connector-level, and
sent to Logging Manager (LM), a web service which
saves data in a MySQL Data Base. The Diagnostic En-
gine (DE) interrogates periodically LM (message Re-
gMes/ RespMes), analyzes statistically QoS values, and
sends alarms and diagnostic reports (message Diag) to
the Reconfiguration Decision Planner (RDP). When
QoS degradation is detected, The RDP plans a re-
configuration and solicits REC' for enactment (message
Act). For example, RDP can ask for abandoning WS
Provider 1 and binding requesters to WS Provider 2.
Consequently, requests will be redirected to the WS
Provider 2 instead of WS Provider 1.

5 Concluding Remarks

The WS-Diamond approach to self-healing web ser-
vices provides a reference architecture and a self-
healing platform: (1) for monitoring orchestration and
choreography and detecting misbehaviour symptoms in
complex WS-based applications, (2) for executing the
diagnosis of functional faults and QoS degradation, and
(3) for selecting and executing repair plans to recover
from or to prevent QoS degradation.

References

[1] D. Ghosh, R.Sharman, H. R. Rao, and S. Upadhyaya.
Selfhealing systems: survey and synthesis. Decision Sup-
port Systems. 42(4):2164-2185, 2007

[2] Keller A. and Ludwig H. ”The WSLA Framework:
Specifying and Monitoring Service Level Agreements for
web services”, Journal of Network and Systems Manage-
ment Springer 11(1), 2003 pp. 57-8

[3] G. Wang, et al., ”Service Level Management us-
ing QoS Monitoring, Diagnostic, and Adaptation for Net-
worked Enterprise Systems”. In EDOC Proc., 2005

[4] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K.
Kochut. Quality of service for workflows and web service
processes. Journal of Web Semantics. (2004).

[5] Menascé, Daniel A. Response-Time Analysis for
Composite web services. IEEE Internet Computing.
January-February 2004. Pages 90-92.

[6] C. Zhou, L.T. Chia, B.S. Lee. DAML-QoS Ontology
for web services. In ICWS Proc.,2004

[7] S. Modafferi, E. Mussi, B. Pernici. SH-BPEL - A
Self-Healing plug-in for Ws-BPEL engines. In Workshop
MW4SOC proc. (Melbourne, Au), 2006

[8] R. Ben Halima, M. Jmaiel, K. Drira. A QoS-driven
reconfiguration management system extending web services
with self-healing properties. In WETICE, 2007, Paris.

