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We study in this paper the parallel spin current in an antiferromagnetic thin film where we

take into account the interaction between itinerant spins and lattice spins. The spin model

is an anisotropic Heisenberg model. We use here the Boltzmann’s equation with numerical

data on cluster distribution obtained by Monte Carlo simulations and cluster-construction

algorithms. We study the cases of degenerate and non-degenerate gas of itinerant spins. The

spin resistivity in both cases is shown to depend on the temperature with a broad maxi-

mum at the transition temperature of the lattice spin system. The shape of the maximum

depends on the spin anisotropy and on the magnetic field. It shows however no sharp peak

in contrast to ferromagnets. Our method is applied to systems such as MnTe. Comparison

to experimental data is given.
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1. Introduction

The behavior of the spin resistivity ρ as a function of temperature (T ) has been shown

and theoretically explained by many authors during the last 50 years. Among the ingredients

which govern the properties of ρ, we can mention the scattering of the itinerant spins by the

lattice magnons suggested by Kasuya,1) the diffusion due to impurities,2) and the spin-spin

correlation.3–5)

Experiments have been performed on many magnetic materials ranging from metals to

semiconductors. These results show that the behavior of the spin resistivity depends on the ma-

terial: some of them show a large peak of ρ at the magnetic transition temperature Tc,
6) others

show only a change of slope of ρ giving rise to a peak of the differential resistivity dρ/dT .7, 8)

Very recent experiments such as those performed on ferromagnetic SrRuO3 thin films,9) Ru-

doped induced ferromagnetic La0.4Ca0.6MnO3,
10) antiferromagnetic ǫ-(Mn1−xFex)3.25Ge,11)

semiconducting Pr0.7Ca0.3MnO3 thin films,12)superconducting BaFe2As2 single crystals,13)

∗E-mail address: diep@u-cergy.fr
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La1−xSrxMnO3
14) and Mn1−xCrxTe

15) compounds show different forms of anomaly of the

magnetic resistivity at the magnetic phase transition temperature.

The mechanism due to the spin-spin correlation proposed long-time ago by De Gennes and

Friedel,3) Fisher and Langer,4) and recently by Kataoka5) has been shown to be responsible

for the shape of ρ. In a recent work, Zarand and al2) have showed that in magnetic diluted

semiconductors the shape of the resistivity as a function of temperature T depends on the

interaction between the itinerant spins and localized magnetic impurities. Expressing physical

quantities in terms of Anderson-localization length around impurities, they calculated ρ and

showed that its peak height depends on the localization length.

In our previous work16–18) we have studied the spin current in ferromagnetic thin films. The

behavior of the spin resistivity as a function of temperature (T ) has been shown and explained

as an effect of magnetic domains formed in the proximity of the phase transition point. This

new concept has an advantage over the mechanism due to the spin-spin correlation since the

distribution of clusters is more easily calculated using Monte Carlo simulations. Although the

formation of spin clusters and their sizes are a consequence of spin-spin correlation, the direct

access in numerical calculations to the structure of clusters allows us to study complicated

systems such as thin films, systems with impurities, systems with high degree of instability etc.

On the other hand, the correlation functions are very difficult to calculate. Moreover, as will

be shown in this paper, the correlation function cannot be used to explain the behavior of the

spin resistivity in antiferromagnets where very few theoretical investigations have been carried

out. One of these is the work by Suezaki and Mori19) which simply predicted that the behavior

of the spin resistivity in antiferromagnets is that in ferromagnets if the correlation is short-

ranged. It means that correlation should be limited to ”selected nearest-neighbors”. Such an

explanation is obviously not satisfactory in particular when the sign of the correlation function

between antiparallel spin pairs are taken into account. In a work with a model suitable for

magnetic semiconductors, Haas has shown that the resistivity ρ in antiferromagnets is quite

different from that of ferromagnets.20) In particular, he found that while ferromagnets show

a peak of ρ at the magnetic transition of the lattice spins, antiferromagnets do not have such

a peak. We will demonstrate that all these effects can be interpreted in terms of clusters used

in our model.

The paper is organized as follows. In section 2, we show and discuss our general model and

its application to the antiferromagnetic case using the Boltzmann’s equation formulated in

terms of clusters. We also describe here our Monte Carlo simulations to obtain the distributions

of sizes and number of clusters as functions of T which will be used to solve the Boltzmann’s

equation. Results on the effects of Ising-like anisotropy and magnetic field as well as an

application to the case of MnTe is shown in section 3. Concluding remarks are given in

section 4.
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2. Theory

Let us recall briefly principal theoretical models for magnetic resistivity ρ. In the metallic

system, de Gennes and Friedel3) have suggested that the magnetic resistivity comes from

the spin-spin correlation. As a consequence, in ferromagnetically ordered systems, ρ shows a

divergence at the transition temperature Tc, similar to the susceptibility. However, in order to

explain the finite cusp of ρ experimentally observed in some experiments, Fisher and Langer4)

suggested to take into account only short-range correlations in the de Gennes-Friedel’s theory.

Kataoka5) has followed the same line in proposing a model where he included, in addition to

a parameter describing the correlation range, some other parameters describing effects of the

magnetic instability, the density of itinerant spins and the applied magnetic field.

For antiferromagnetic systems, Suezaki and Mori19) proposed a model to explain the

anomalous behavior of the resistivity around the Néel temperature. They used the Kubo’s

formula for an s− d Hamiltonian with some approximations to connect the resistivity to the

correlation function. However, it is not so easy to resolve the problem. Therefore, the form

of the correlation function was just given in the molecular field approximation. They argued

that just below the Néel temperature TN a long-range correlation appears giving rise to an

additional magnetic potential which causes a gap. This gap affects the electron density which

alters the spin resistivity but does not in their approximation interfere in the scattering mech-

anism. They concluded that, under some considerations, the resistivity should have a peak

close to the Néel point. This behavior is observed in Cr, α−Mn and some rare earth metals.

Note however that in the approximations used by Haas,20) there is no peak predicted. So the

question of the existence of a peak in antiferromagnets remains open.

Following Haas, we use for semiconductors the following interaction

V =
∑
n

J(~r − ~Rn)s · Sn (1)

where J(~r − ~Rn) is the exchange interaction between an itinerant spin s at ~r and the lattice

spin Sn at the lattice site ~Rn. In practice, the sum on lattice spins Sn should be limited at

some cut-off distance as will be discussed later. Haas supposed that V is weak enough to

be considered as a perturbation to the lattice Hamiltonian given by Eq. (15) below. This

is what we also suppose in the present paper. He applied his model to ferromagnetic doped

CdCr2Se4
21–23) and antiferromagnetic semiconductors MnTe. Note however that the model

by Haas as well as other existing models cannot treat the case where itinerant spins, due to

the interaction between themselves, induce itinerant magnetic ordering such as in (Ga,Mn)As

shown by Matsukura et al.6) Note also that both the up-spin and down-spin currents are

present in the theory but the authors considered only the effect of the up-spin current since

the interaction ”itinerant spin”-”lattice spin” is ferromagnetic so that the down-spin current

is very small. This theory was built in the framework of the relaxation-time approximation of
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the Boltzmann’s equation under an electric field. As De Gennes and Friedel, Haas used here

the spin-spin correlation to describe the scattering of itinerant spins by the disorder of the

lattice spins. As a result, the model of Haas shows a peak in the ferromagnetic case but no

peak in the antiferromagnetic semiconductors. Experimentally, the absence of a peak has been

observed in antiferromagnetic LaFeAsO by McGuire et al.24) and in CeRhIn5 by Christianson

et al.25)

2.1 Boltzmann’s equation

In the case of Ising spins in a ferromagnet that we studied before,18) we have made a theory

based on the cluster structure of the lattice spins. The cluster distribution was incorporated

in the Boltzmann’s equation. The number of clusters η and their sizes ξ have been numerically

determined using the Hoshen-Kopelmann’s algorithm (section 2.2).26) We work in diffusive

regime with approximation of parabolic band and in a s− d model. We consider in this paper

that in our range of temperature the Hall resistivity is constant (constant density). To work

with the Born approximation we consider a weak potential of interaction between clusters of

spin and conduction electrons. We suppose that the life’s time of clusters is larger than the

relaxation time. As in our previous paper18) we use in this paper the expression of relaxation

time obtained from the Boltzmann’s equation in the following manner. We first write the

Boltzmann’s equation for f , the distribution function of itinerant electrons, in a uniform

electric field E

(
~k.eE

m
)(
∂f0

∂ε
) = (

∂f

∂t
)coll, (2)

where f0 is the equilibrium Fermi-Dirac function, k the wave vector, e and m the electronic

charge and mass, ǫ the electron energy. We next use the following relaxation-time approxima-

tion

(
∂fk
∂t

)coll = −(
f1
k

τk
), f1

k = fk − f0
k , (3)

where τk is the relaxation time. Supposing elastic collisions, i. e. k = k′, and using the detailed

balance we have

(
∂fk
∂t

)coll =
Ω

(2π)3

∫
[wk′,k(f

1
k′ − f1

k )]dk
′, (4)

where Ω is the system volume, wk′,k the transition probability between k and k′. We find with

Eq. (3) and Eq. (4) the following well-known expression

(
1

τk
) =

Ω

(2π)3

∫
[wk′,k(1− cos θ)]

× sin θk′2dk′dθdφ, (5)

where θ and φ are the angles formed by k′ with k, i. e. spherical coordinates with z axis

parallel to k.
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We use now in Eq. (5) the ”Fermi golden rule” for ωk,k′ and we obtain

1

τk
=

Ω

(2π)3

∫
[ωk,k′(1− cos(θ))]sin(θ)k′2dk′dθdφ (6a)

ωk,k′ =
(2π)m

~3k
| < k′|J(r)|k > |2δ(k′ − k) (6b)

where J(r) is the exchange integral between an itinerant spin and a lattice spin which is given

in the scattering potential, Eq. (1). One has

J(r) ≡ J(|~r′ − ~Rn|) (7)

Note that for simplicity we have supposed here that the interaction potential J(r) depends

only on the relative distance r′ = |~r− ~Rn|, not on the direction of ~r− ~Rn. We suppose in the

following a potential which exponentially decays with distance

J(r) ≡ V0e
−r/ξ (8)

where V0 expresses the magnitude of the interaction and ξ the averaged cluster size. After

some algebra, we arrive at the following relaxation time

1

τkf
=

32V 2
0 mπ

(2k~)3
ηξ2[1− 1

1 + (2ξkf )2
− (2ξkf )

2

[1 + (2ξkf )2]2
] (9)

where kf is the Fermi wave vector. As noted by Haas,20) the mobility is inversely proportional

to the susceptibility χ. So, in examining our expression and in using the following expres-

sion χ =
∑

ξ2η(ξ),27) where η(ξ) is the number of clusters of size ξ, one sees that the first

term of the relaxation time is proportional to the susceptibility. The other two terms are the

corrections.

The mobility in the x direction is defined by

µx =
e~2

3m2

∑
k k

2(∂f0
k/∂ǫ)τk∑

k f
0
k

(10)

We resolve the mobility µx explicitly in the following two cases

• Degenerate semiconductors

∑
k

f0
k = 2π(

2m

~2
)3/2[

2

3
ǫ
3/2
f ] (11a)

∑
k

k2(∂f0
k/∂ǫ)τk = 2π(

2m

~2
)3/2

ǫ
1/2
f

D
(
2mǫf
~2

)5/2[
1 + 8mξ2ǫf/~

2

8mξ2ǫf/~2
]2 (11b)

where D =
η4V 2

0 mπξ2

~3
. We arrive at the following mobility

µx =
e~2

2m2

ǫ−1
f

D
(
2mǫf
~2

)5/2[
1 + 8mξ2ǫf/~

2

8mξ2ǫf/~2
]2 (12a)
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σ = neµ =
ne2

mDkf
[
1 + 4ξ2k2f

4ξ2
]2 (12b)

The resistivity is then

ρ =
η4V 2

0 m
2πkf ξ

2

ne2~3
[

4ξ2

1 + 4ξ2k2f
]2 (13a)

We can check that the right-hand side has the dimension of a resistivity:
[kg][m]3

[C]2[s]
=

[Ω][m].

• Non-degenerate semiconductors

One has in this case f0
k = exp(−βǫk)

∑
k

f0
k = 2π(

2m

~2
)3/2β−3/2√π/2 (14a)

∑
k

k2(∂f0
k/∂ǫ)τk = 2π(

2m

~2
)3/2

1

2D(4ξ2)2β
(
2m

~2
)1/2[1 +

2× 16mξ2

~2β
+

6(8mξ2)2

~4β2
] (14b)

σ = neµ =
ne2~2

m2D(4ξ2)2
√
π
(
2mβ

~2
)1/2[1 +

2× 16mξ2

~2β
+

6(8mξ2)2

~4β2
] (14c)

ρ =
1

σ
(14d)

where D =
η4V 2

0 mπξ2

~3

Note that the formulation of our theory in terms of cluster number η and cluster size ξ is

numerically very convenient. These quantities are easily calculated by Monte Carlo simulation

for the Ising model. The method can be generalized to the case of Heisenberg spins where

the calculation is more complicated as seen below. In section 3.1 we will examine values of

parameter V0 where the Born’s approximation is valid.

2.2 Algorithm of Hoshen-Kopelmann and Wolff’s procedure

We use the Heisenberg spin model with an Ising-like anisotropy for an antiferromagnetic

film of body-centered cubic (BCC) lattice of Nx ×Ny × Nz cells where there are two atoms

per cell. The film has two symmetrical (001) surfaces, i.e. surfaces perpendicular to the z

direction. We use the periodic boundary conditions in the xy plane and the mirror reflections

in the z direction. The lattice Hamiltonian is written as follows

H = J
∑
〈i,j〉

Si · Sj +A
∑
〈i,j〉

Sz
i S

z
j (15)

where Si is the Heisenberg spin at the site i,
∑

〈i,j〉 is performed over all nearest-neighbor

(NN) spin pairs. We assume here that all interactions including those at the two surfaces

are identical for simplicity: J is positive (antiferromagnetic), and A an Ising-like anisotropy

which is a positive constant. When A is zero, one has the isotropic Heisenberg model and
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when A → ∞, one has the Ising model. The classical Heisenberg spin model is continuous,

so it allows the domain walls to be less abrupt and therefore softens the behavior of the

magnetic resistance.

For the whole paper, we use Nx = Ny = 20, and Nz = 8. The finite-size effect as well

as surface effects are out of the scope of the present paper. Using the Hamiltonian (15), we

equilibrate the lattice at a temperature T by the standard Monte Carlo simulation. In order

to analyze the spin resistivity, we should know the energy landscape seen by an itinerant spin.

The energy map of an itinerant electron in the lattice is obtained as follows: at each position

its energy is calculated using Eq. (8) within a cutoff at a distance D1 = 2 in unit of the lattice

constant a. The energy value is coded by a color as shown in Fig. 1 for the case A = 0.01.

As seen, at very low T (T = 0.01) the energy map is periodic just as the lattice, i. e. no

disorder. At T = 1, well below the Néel temperature TN ≃ 2.3, we observe an energy map

which indicates the existence of many large defect clusters of high energy in the lattice. For

T ≈ TN the lattice is completely disordered. The same is true for T = 2.5 above TN .

We shall now calculate the number of clusters and their sizes as a function of T in order

to analyze the temperature-dependent behavior of the spin current.

Fig. 1. Energy map of an itinerant spin in the xy plane with D1 = 2 in unit of the lattice constant

a and A = 0.01, for T = 0.01, T = 1.0, T = 2.0 and T = 2.5 (from left to right, top to bottom,

respectively). The values of energy corresponding to different colors are given on the right.

The scattering by clusters in the Ising case in our previous model18) is now replaced in

the Heisenberg spin model studied here, by a scattering due to large domain walls. Counting

the number of clusters in the Heisenberg case requires some particular attention as seen in
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the following:

• we equilibrate the system at T

• we generate first bonds according to the algorithm by Wolff:28, 29) it consists in replacing

the two spins where the link is verified the Wolff’s probability, by their larger value (Fig 2)

• we next discretize Sz, the z component of each spin, into values between −1 and 1 with

a step 0.1

• only then we can use the algorithm of Hoshen-Kopelmann to form a cluster with the

neighboring spins of the same Sz. This is how our clusters in the Heisenberg case are

obtained.

Note that we can define a cluster distribution by each value of Sz. We can therefore

distinguish the amplitude of scattering: as seen below scattering is stronger for cluster with

larger Sz. We have used the above procedure to count the number of clusters in our simulation

Wolff

Hoshen-Kopelmann

subtract by the lattice at T=0

only Sz contribution

Fig. 2. The successive steps in the application of the algorithm by Wolff to the case of Heisenberg

spin. See text for explanation.

of an antiferromagnetic thin film. We show in Fig. 3 the number of cluster η versus T for several

values of Sz.

We have in addition determined the average size of these clusters as a function of T . The

results are shown in Fig. 4. One observes that the size and the number of clusters of any value

of Sz change the behavior showing a maximum at the transition temperature.

The resistivity, as mentioned above, depends indeed on the amplitude of Sz as seen in the

expression

ρ =
m

ne2
1

τ
=

m

ne2

Sz∑
i=−Sz

1

τi
(16)
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Fig. 3. Number of clusters versus temperature for anisotropy A = 0.01 (upper) and A = 1 (lower).

The values of Sz are 1, 0.8 and 0.6 denoted by circles, squares and triangles, respectively. Lines

are guides to the eye.

3. Results

3.1 Effect of Ising-like Anisotropy

At this stage, it is worth to return to examine some fundamental effects of V0 and A. It is

necessary to know acceptable values of V0 imposed by the Born’s approximation. To do this

we must calculate the resistivity with the second order Born’s approximation.

σB
k (θ, φ) = |F (θ, φ)

4π
|2 (17a)

F (θ, φ) =
2mΩ

~2
[

∫
d3re−iK.rJ(r)− 1

4π

∫
d3re−iK.rJ(r)

r

∫
d3r′e−iK.r′J(r′)] (17b)

K = |k− k′| = k[2(1 − cos θ)]1/2 and J(r) = V0e
−r/ξ

we find, with D =
η32πΩm

~3
,

1

τk
= DV 2

0 k[
2ξ6

[1 + (2ξk)2]2
− V0

3[1 + (2ξk)2]2
(1 +

4

[1 + (2ξk)2]2
) +

V 2
0 ξ

6

12(2k2)2
] (18)
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Fig. 4. Average size of clusters versus temperature for anisotropy A = 0.01 (upper) and A = 1

(lower). The values of Sz are 1, 0.8 and 0.6 denoted by circles, squares and triangles, respectively.

Lines are guides to the eye.

The first term is due to the first order of Born’s approximation and the second and third terms

to corrections from the second order. We plot ρ(Born2)/ρ(Born1) versus temperature T in

Fig. 5 for different values of V0, ρ(Born1) and ρ(Born2) being respectively the resistivities

calculated at the first and second order. We note that the larger this ratio is, the more

important the corrections due to the second-order become. From Fig. 5, several remarks are

in order:

• The first order of Born’s approximation is valid for small values of V0 as seen in the case

V0 = 0.01 corresponding to a few meV. In this case the resistivity does not depend on T .

This is understandable because with such a weak coupling to the lattice, itinerant spins

do not feel the effect of the lattice spin disordering.

• In the case of strong V0 such as V0 = 0.05, the second-order approximation should be used.

Interesting enough, the resistivity is strongly affected by T with a peak corresponding to

the phase transition temperature of the lattice.
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Fig. 5. Ratio ρ(Born2)/ρ(Born1) versus temperature for V0=0.05 (squares, upper curve) and 0.01

(circles, lower curve). See text for comments.

We examine now the effect A. Figure 6 shows the variation of the sublattice magnetization

and of TN with anisotropy A. We have obtained respectively for A = 0.01, A = 1, A = 1.5

and pure Ising case the following critical temperatures TN ≃ 2.3, 4.6, 5.6 and 6.0. Note that

the pure Ising case has been simulated with the pure Ising Hamiltonian, not with Eq. (15)

(we cannot use A = ∞). We can easily understand that not only the spin resistivity will

follow this variation of TN but also the change of A will fundamentally alter the resistivity

behavior as will be seen below.

0 2 4 6 8
T

0

0,2

0,4

0,6

0,8

1

M
ag

ne
tiz

at
io

n(
M

/M
0)

Fig. 6. Sublattice magnetization versus temperature for several values of anisotropy A. From left to

right A = 0.01, A = 1, A = 1.5 and pure Ising spin.

The results shown in Fig. 7 indicate clearly the appearance of a peak at the transition

which diminishes with increasing anisotropy. If we look at Fig. 4 which shows the average size

of clusters as a function of T , we observe that the size of clusters of large Sz diminishes with

increasing A.
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We show in Fig. 8 the pure Heisenberg and Ising models. For the pure Ising model, there

is just a shoulder around TN with a different behavior in the paramagnetic phase: increase or

decrease with increasing T for degenerate or non degenerate cases. It is worth to mention that

MC simulations for the pure Ising model on the simple cubic and BCC antiferromagnets where

interactions between itinerant spins are taken into account in addition to Eq. (1), show no

peak at all.30, 31) These results are in agreement with the tendency observed here for increasing

A.
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Fig. 7. Spin resistivity versus temperature for several anisotropy values A in antiferromagnetic BCC

system: A = 0.01 (circles), 1 (squares), 1.5 (triangles). Upper (lower) curves: degenerate (non

degenerate) system.
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Fig. 8. Spin resistivity for pure Heisenberg (circles) and Ising (squares) models in antiferroamgnetic

BCC system. Upper (lower) curves: degenerate (non degenerate) system.

3.2 Effect of Magnetic Field

We apply now a magnetic field perpendicularly to the electric field. To see the effect of

the magnetic field it suffices to replace the distribution function by

f1
k =

e~τk
m

(−∂f0

∂ǫ
)k.

(E− eτk
mc

H ∧E)

1 + (
eτkH

mc
)2

(19)

From this, we obtain the following equations for the contributions of up and down spins

ρ↓ =

+1∑
Sz=−1

(Sz + 1)2
η4V 2

0 m
2πkf ξ

2

ne2~3
[

4ξ2

1 + 4ξ2k2f
]2 (20)

ρ↑ =

+1∑
Sz=−1

(Sz − 1)2
η4V 2

0 m
2πkf ξ

2

ne2~3
[

4ξ2

1 + 4ξ2k2f
]2 (21)
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where Sz is the domain-wall spin (scattering centers) and V0 is the coefficient of the exchange

integral between an itinerant spin and a lattice spin [see Eq. (8)].

Figures 9 and 10 show the resistivity for several magnetic fields. We observe a split in

the resistivity for up and down spins which is larger for stronger field. Also, we see that the

minority spins shows a smaller resistivity due to their smaller number. The reason is similar

to the effect of A mentioned above and can be understood by examining Fig. 11 where we

show the evolution of the number and the average size of clusters with the temperature in a

magnetic field. By comparing with the zero-field results shown in Figs. 3 and 4, we can see

that while the number of clusters does not change with the applied field, the size of clusters

is significantly bigger. It is easy to understand this situation: when we apply a magnetic field,

the spins want to align themselves to the field so the up-spin domains become larger, critical

fluctuations are at least partially suppressed, the transition is softened.

3.3 Application to MnTe

In the case of Cd1−xMnxTe, the question of the crystal structure, depending on the doping

concentration x remains open. Cd1−xMnxTe can have one of the following structures, the so-

called NiAs structure or the zinc-blend one, or a mixed phase.32–35)

The pure MnTe crystallizes in either the zinc-blend structure36) or the hexagonal NiAs

one37) (see Fig. 12). MnTe is a well-studied p-type semiconductor with numerous applications

due to its high Néel temperature. We are interested here in the case of hexagonal structure.

For this case, the Néel temperature is TN = 310 K.37)

The cell parameters are a = 4.158Å and c = 6.71Å and we have an indirect band gap of

Eg = 1.27eV.

Magnetic properties are determined mainly by an antiferromagnetic exchange integral be-

tween nearest-neighbors (NN) Mn along the c axis, namely J1/kB = −21.5 ± 0.3 K, and a

ferromagnetic exchange J2/kB ≈ 0.67 ± 0.05 between in-plane (next NN) Mn. Third NN in-

teraction has been also measured with J3/kB ≃ −2.87± 0.04 K. Note that the spins are lying

in the xy planes perpendicular to the c direction with an in-plane easy-axis anisotropy.37) The

magnetic structure is therefore composed of ferromagnetic xy hexagonal planes antiferromag-

netically stacked in the c direction. The NN distance in the c direction is therefore c/2 ≃ 3.36

shorter than the in-plane NN distance a.

We have calculated the cluster distribution for the hexagonal MnTe using the details

described above taken from the literature.37–40) The result is shown in Fig. 13. The spin

resistivity in MnTe is then obtained with our theoretical model. This is presented in Fig. 14

for a density of itinerant spins corresponding to n = 2× 1022 cm−3.

Several remarks are in order:

i) the peak temperature of our theoretical model is found at 310 K corresponding the the

experimental Néel temperature although for our fit we have used only the above-mentioned
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Fig. 9. Resistivities of up (circles) and down (squares) spins versus temperature for two magnetic

field’s strengths in the degenerate case. Top (bottom): B = 0.6(1.5).

values of exchange integrals

ii) our result is in agreement with experimental data obtained by Chandra et al.40) for

temperatures between 140 K and 280 K above which Chandra et al. did not unfortunately

measured

iii) at temperatures lower than 140 K, the experimental curve increases with decreasing T .

Note that many experimental data on various materials show this ’universal’ feature: we can

mention the data by Li et al.,15) Du et al.,11) Zhang et al.,12) McGuire et al.24) among others.

There are several explanations for this behavior among which the itinerant electrons may be

frozen (crystallized) due to their interactions with localized spins and between themselves,

giving rise to low mobility. Our theoretical model based on the scattering by defect clusters

cannot account for this behavior because there are no defects at very low T . Direct Monte Carlo

simulation shows however that the freezing indeed occurs at low T both in ferromagnets18, 30)
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Fig. 10. Resistivities of up (circles) and down (squares) spins versus temperature for two magnetic

field’s strengths in the non degenerate case. Top (bottom): B = 0.6(1.5).

and antiferromagnets31) giving rise to an increase of the spin resistivity with decreasing T .

iv) the existence of the peak at TN = 310 K of the theoretical spin resistivity shown in

Fig. 14 is in agreement with experimental data recently published by Li et al.15) (see the inset

of their Fig. 5). Unfortunately, we could not renormalize the resistivity values of Li et al.15)

to put in the same figure with our result for a quantitative comparison. Other data on various

materials11, 12, 24) also show a large peak at the magnetic transition temperature.

To close this section, let us note that it is also possible, with some precaution, to apply our

model on other families of antiferromagnetic semiconductors like CeRhIn5 and LaFeAsO. An

example of supplementary difficulties but exciting subject encountered in the latter compound

is that there are two transitions in a small temperature region: a magnetic transition at 145 K

and a tetragonal-orthorhombic crystallographic phase transition at 160 K.24, 25) An application

to ferromagnetic semiconductors of the n-type CdCr2Se4
41) is under way.
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Fig. 11. Upper: Number of clusters, Lower: Average size of clusters, versus temperature for several

values of Sz and for magnetic field B = 1.5. Circles: Sz = 1, squares: Sz = 0.8, triangles: Sz = 0.6.

Lines are guides to the eye.

4. Conclusion

We have shown in this paper the behavior of the magnetic resistivity ρ as a function

of temperature in antiferromagnets. The main interaction which governs this behavior is

the interaction between itinerant spins and the lattice spins. Our analysis, based on the

Boltzmann’s equation which uses the temperature-dependent cluster distribution obtained

by MC simulation, is in agreement with the theory by Haas:20) we observe a broad shoulder

of ρ in the temperature region of the magnetic transition without a sharp peak observed

in ferromagnets. Note however that the non-degenerate case shows a peak which is more

pronounced than that of the degenerate case. We would like to emphasize that the shape of

the peak and even its existence depend on several physical parameters such as interactions

between different kinds of spins, the spin model, the crystal structure etc. In this paper we
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Fig. 12. Structure of the type NiAs is shown with Mn atoms only. This is a stacked hexagonal lattice.

Up spins are shown by black circles, down spins by white ones. Nearest-neighbor (NN) bond is

marked by 1, next NN bond by 2, and third NN bond by 3.

applied our theoretical model on the degenerate magnetic semiconductor MnTe. We found

a good agreement with experimental data near the transition region. We note however that

our model using the cluster distribution cannot be applied at very low T where spin freezing

dominates the resistivity behavior.
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Fig. 14. Normalized spin resistivity versus temperature in MnTe : theoretical non-degenerate case

(circles), theoretical degenerate case (squares) and experimental results (stars) from Chandra et

al.40) Experimental data lie on the degenerate line for T ≥ 140 K. See text for comments.
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