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We study in this paper the parallel spin current in an antiferromagnetic thin film

where we take into account the interaction between itinerant spins and lattice spins.

The spin model is an anisotropic Heisenberg model. We use here the Boltzmann’s

equation with numerical data on cluster distribution obtained by Monte Carlo simu-

lations and cluster-construction algorithms. We study the cases of degenerate and

non-degenerate gas of itinerant spins. The spin resistivity in both cases is shown to

depend on the temperature with a broad maximum at the transition temperature of

the lattice spin system. The shape of the maximum depends on the spin anisotropy

and on the magnetic field. It shows however no sharp peak in contrast to ferroma-

gnets. Our method is applied to systems such as MnTe. Comparison to experimental

data is given.

PACS numbers:

I. INTRODUCTION

The behavior of the spin resistivity ρ as a function of temperature (T ) has been shown

and theoretically explained by many authors during the last 50 years. Among the ingredients

which govern the properties of ρ, we can mention the scattering of the itinerant spins by the

lattice magnons suggested by Kasuya1, the diffusion due to impurities2, and the spin-spin

correlation.3,4,5
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Experiments have been performed on many magnetic materials ranging from metals to

semiconductors. These results show that the behavior of the spin resistivity depends on the

material : some of them show a large peak of ρ at the magnetic transition temperature

Tc,
6 others show only a change of slope of ρ giving rise to a peak of the differential resisti-

vity dρ/dT .7,8 Very recent experiments such as those performed on ferromagnetic SrRuO3

thin films9, superconducting BaFe2As2 single crystals10, La1−xSrxMnO3
11 and Mn1−xCrxTe12

compounds show different forms of anomaly of the magnetic resistivity at the magnetic phase

transition temperature.

The mechanism due to the spin-spin correlation proposed long-time ago by De Gennes

and Friedel3, Fisher and Langer4, and recently by Kataoka5 has been shown to be responsible

for the shape of ρ. In a recent work, Zarand and al2 have showed that in magnetic diluted

semiconductors the shape of the resistivity as a function of temperature T depends on the

interaction between the itinerant spins and localized magnetic impurities. Expressing phy-

sical quantities in terms of Anderson-localization length around impurities, they calculated

ρ and showed that its peak height depends on the localization length.

In our previous work13,14,15 we have studied the spin current in ferromagnetic thin films.

The behavior of the spin resistivity as a function of temperature (T ) has been shown and

explained as an effect of magnetic domains formed in the proximity of the phase transi-

tion point. This new concept has an advantage over the mechanism due to the spin-spin

correlation since the distribution of clusters is more easily calculated using Monte Carlo

simulations. Although the formation of spin clusters and their sizes are a consequence of

spin-spin correlation, the direct access in numerical calculations to the structure of clusters

allows us to study complicated systems such as thin films, systems with impurities, systems

with high degree of instability etc. On the other hand, the correlation functions are very dif-

ficult to calculate. Moreover, as will be shown in this paper, the correlation function cannot

be used to explain the behavior of the spin resistivity in antiferromagnets where very few

theoretical investigations have been carried out. One of these is the work by Suezaki and

Mori16 which simply predicted that the behavior of the spin resistivity in antiferromagnets

is that in ferromagnets if the correlation is short-ranged. It means that correlation should be

limited to ”selected nearest-neighbors”. Such an explanation is obviously not satisfactory in

particular when the sign of the correlation function between antiparallel spin pairs are taken

into account. In a work with a model suitable for magnetic semiconductors, Haas has shown
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that the resistivity ρ in antiferromagnets is quite different from that of ferromagnets.17 In

particular, he found that while ferromagnets show a peak of ρ at the magnetic transition of

the lattice spins, antiferromagnets do not have such a peak. We will demonstrate that all

these effects can be interpreted in terms of clusters used in our model.

The paper is organized as follows. In section II, we show and discuss our general model

and its application to the antiferromagnetic case using the Boltzmann’s equation formula-

ted in terms of clusters. We also describe here our Monte Carlo simulations to obtain the

distributions of sizes and number of clusters as functions of T which will be used to solve

the Boltzmann’s equation. Results on the effects of Ising-like anisotropy and magnetic field

as well as an application to the case of MnTe is shown in section 3. Concluding remarks are

given in section 4.

II. THEORY

Let us recall briefly principal theoretical models for magnetic resistivity ρ. In the metallic

system, de Gennes and Friedel3 have suggested that the magnetic resistivity comes from

the spin-spin correlation. As a consequence, in ferromagnetically ordered systems, ρ shows

a divergence at the transition temperature Tc, similar to the susceptibility. However, in

order to explain the finite cusp of ρ experimentally observed in some experiments, Fisher

and Langer4 suggested to take into account only short-range correlations in the de Gennes-

Friedel’s theory. Kataoka5 has followed the same line in proposing a model where he included,

in addition to a parameter describing the correlation range, some other parameters describing

effects of the magnetic instability, the density of itinerant spins and the applied magnetic

field.

For antiferromagnetic systems, Suezaki and Mori16 proposed a model to explain the ano-

malous behavior of the resistivity around the Néel temperature. They used the Kubo’s

formula for an s − d Hamiltonian with some approximations to connect the resistivity to

the correlation function. However, it is not so easy to resolve the problem. Therefore, the

form of the correlation function was just given in the molecular field approximation. They

argued that just below the Néel temperature TN a long-range correlation appears giving

rise to an additional magnetic potential which causes a gap. This gap affects the electron

density which alters the spin resistivity but does not in their approximation interfere in
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the scattering mechanism. They concluded that, under some considerations, the resistivity

should have a peak close to the Néel point. This behavior is observed in Cr, α − Mn and

some rare earth metals. Note however that in the approximations used by Haas17, there is

no peak predicted. So the question of the existence of a peak in antiferromagnets remains

open.

Following Haas, we use for semiconductors the following interaction

V =
∑

n

J(~r − ~Rn)s · Sn (1)

where J(~r− ~Rn) is the exchange interaction between an itinerant spin s at ~r and the lattice

spin Sn at the lattice site ~Rn. Haas supposed that V is weak enough to be considered as a

perturbation to the lattice Hamiltonian given by Eq. (9) below. This is what we also suppose

in the present paper. He applied his model to ferromagnetic doped CdCr2Se4
18,19,20 and anti-

ferromagnetic semiconductors MnTe. Note however that the model by Haas as well as other

existing models cannot treat the case where itinerant spins, due to the interaction between

themselves, induce itinerant magnetic ordering such as in (Ga,Mn)As shown by Matsukura

et al.6 Note also that both the up-spin and down-spin currents are present in the theory

but the authors considered only the effect of the up-spin current since the interaction ”itine-

rant spin”-”lattice spin” is ferromagnetic so that the down-spin current is very small. This

theory was built in the framework of the relaxation-time approximation of the Boltzmann’s

equation under an electric field. As De Gennes and Friedel, Haas used here the spin-spin

correlation to describe the scattering of itinerant spins by the disorder of the lattice spins.

As a result, the model of Haas shows a peak in the ferromagnetic case but no peak in the

antiferromagnetic semiconductors. Experimentally, the absence of a peak has been observed

in antiferromagnetic LaFeAsO by McGuire et al.21 and in CeRhIn5 by Christianson et al.22

A. Boltzmann’s equation

In the case of Ising spins in a ferromagnet that we studied before15, we have made a

theory based on the cluster structure of the lattice spins. The cluster distribution was incor-

porated in the Boltzmann’s equation. The number of clusters η and their sizes ξ have been

numerically determined using the Hoshen-Kopelmann’s algorithm (section IIB).23 We work

in diffusive regime with approximation of parabolic band and in a s− d model. We consider
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in this paper that in our range of temperature the Hall resistivity is constant (constant

density). To work with the Born approximation we consider a weak potential of interaction

between clusters of spin and conduction electrons. We suppose that the life’s time of clusters

is larger than the relaxation time. In our previous paper15 we used the following expression

of relaxation time obtained by the Boltzmann’s equation

1

τk
=

Ω

(2π)3

∫
[ωk,k′(1 − cos(θ))]sin(θ)k′2dk′dθdφ (2a)

ωk,k′ =
(2π)m

~3k
| < k′|V |k > |2δ(k′ − k) with V (r) = V0e

−r/ξ (2b)

where V (r) is a phenomenological potential. Note that V0 is directly related to the exchange

integral of Eq. (1). After some algebra, we arrive at the following relaxation time

1

τkf

=
32V 2

0 mπ

(2k~)3
ηξ2[1 − 1

1 + (2ξkf)2
− (2ξkf)

2

[1 + (2ξkf)2]2
] (3)

where kf is the Fermi wave vector. As noted by Haas17, the mobility is inversely proportional

to the susceptibility χ. So, in examining our expression and in using the following expression

χ =
∑

s2n(s),24 where n(s) is the number of clusters of size s, one sees that the first term

of the relaxation time is proportional to the susceptibility. The other two terms are the

corrections.

The mobility in the x direction is defined by

µx =
e~2

3m2

∑
k k2(∂f 0

k /∂ǫ)τk∑
k f 0

k

(4)

We resolve the mobility µx explicitly in the following two cases

– Degenerate semiconductors

∑
k

f 0
k = 2π(

2m

~2
)3/2[

2

3
ǫ
3/2

f ] (5a)

∑
k

k2(∂f 0
k /∂ǫ)τk = 2π(

2m

~2
)3/2

ǫ
1/2

f

D
(
2mǫf

~2
)5/2[

1 + 8mξ2ǫf/~
2

8mξ2ǫf/~2
]2 (5b)

where D =
η4V 2

0 mπξ2

~3
. We arrive at the following mobility

µx =
e~2

2m2

ǫ−1
f

D
(
2mǫf

~2
)5/2[

1 + 8mξ2ǫf/~
2

8mξ2ǫf/~2
]2 (6a)

σ = neµ =
ne2

mDkf
[
1 + 4ξ2k2

f

4ξ2
]2 (6b)
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The resistivity is then

ρ =
η4V 2

0 m2πkfξ
2

ne2~3
[

4ξ2

1 + 4ξ2k2
f

]2 (7a)

We can check that the right-hand side has the dimension of a resistivity :
[kg][m]3

[C]2[s]
=

[Ω][m]. Note that V0 has an energy dimension and that V0 is obviously proportional to

the exchange integral.

– Non-degenerate semiconductors

One has in this case f 0
k = exp(−βǫk)

∑
k

f 0
k = 2π(

2m

~2
)3/2β−3/2

√
π/2 (8a)

∑
k

k2(∂f 0
k /∂ǫ)τk = 2π(

2m

~2
)3/2 1

2D(4ξ2)2β
(
2m

~2
)1/2[1 +

2 × 16mξ2

~2β
+

6(8mξ2)2

~4β2
] (8b)

σ = neµ =
ne2

~
2

m2D(4ξ2)2
√

π
(
2mβ

~2
)1/2[1 +

2 × 16mξ2

~2β
+

6(8mξ2)2

~4β2
] (8c)

ρ =
1

σ
(8d)

where D =
η4V 2

0 mπξ2

~3

The formulation of our theory is thus physically reliable. It can be generalized to the case

of Heisenberg spins where the calculation of the number of clusters and their sizes is more

complicated as seen below. In section IIIA we will examine values of parameter V0 where

the Born’s approximation is valid.

B. Algorithm of Hoshen-Kopelmann and Wolff’s procedure

We use the Heisenberg spin model with an Ising-like anisotropy for an antiferromagnetic

film of body-centered cubic (BCC) lattice of Nx ×Ny ×Nz cells where there are two atoms

per cell. The film has two symmetrical (001) surfaces, i.e. surfaces perpendicular to the z

direction. We use the periodic boundary conditions in the xy plane and the mirror reflections

in the z direction. The lattice Hamiltonian is written as follows

H = J
∑
〈i,j〉

Si · Sj + A
∑
〈i,j〉

Sz
i S

z
j (9)



7

where Si is the Heisenberg spin at the site i,
∑

〈i,j〉 is performed over all nearest-neighbor

(NN) spin pairs. We assume here that all interactions including those at the two surfaces

are identical for simplicity : J is positive (antiferromagnetic), and A an Ising-like anisotropy

which is a positive constant. When A is zero, one has the isotropic Heisenberg model and

when A → ∞, one has the Ising model. The classical Heisenberg spin model is continuous,

so it allows the domain walls to be less abrupt and therefore softens the behavior of the

magnetic resistance.

For the whole paper, we use Nx = Ny = 20, and Nz = 8. The finite-size effect as well

as surface effects are out of the scope of the present paper. Using the Hamiltonian (9), we

equilibrate the lattice at a temperature T by the standard Monte Carlo simulation. In order

to analyze the spin resistivity, we should know the energy landscape seen by an itinerant

spin. The energy map of an itinerant electron in the lattice is obtained as follows : at each

position its energy is calculated using Eq. (1) within a cutoff at a distance D1 = 2 in unit of

the lattice constant a. The energy value is coded by a color as shown in Fig. 1 for the case

A = 0.01. As seen, at very low T (T = 0.01) the energy map is periodic just as the lattice, i.

e. no disorder. At T = 1, well below the Néel temperature TN ≃ 2.3, we observe an energy

map which indicates the existence of many large defect clusters of high energy in the lattice.

For T ≈ TN the lattice is completely disordered. The same is true for T = 2.5 above TN .

We shall now calculate the number of clusters and their sizes as a function of T in order

to analyze the temperature-dependent behavior of the spin current.

The scattering by clusters in the Ising case in our previous model15 is now replaced in

the Heisenberg spin model studied here, by a scattering due to large domain walls. Counting

the number of clusters in the Heisenberg case requires some particular attention as seen in

the following :

– we equilibrate the system at T

– we generate first bonds according to the algorithm by Wolff :25,26 it consists in replacing

the two spins where the link is verified the Wolff’s probability, by their larger value

(Fig 2)

– we next discretize Sz, the z component of each spin, into values between −1 and 1 with

a step 0.1

– only then we can use the algorithm of Hoshen-Kopelmann to form a cluster with the
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Fig. 1: Energy map of an itinerant spin in the xy plane with D1 = 2 in unit of the lattice constant

a and A = 0.01, for T = 0.01, T = 1.0, T = 2.0 and T = 2.5 (from left to right, top to bottom,

respectively).

neighboring spins of the same Sz. This is how our clusters in the Heisenberg case are

obtained.

Note that we can define a cluster distribution by each value of Sz. We can therefore

distinguish the amplitude of scattering : as seen below scattering is stronger for cluster with

larger Sz.

Fig. 2: Application of the algorithm by Wolff.

We have used the above procedure to count the number of clusters in our simulation of

an antiferromagnetic thin film. We show in Fig. 3 at several temperatures the distribution

of clusters where the color variation corresponds to the evolution of Sz.

We have in addition determined the sizes and the average number of these clusters as

a function of T . The results are shown in Fig. 4 where one observes, as expected, that the
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values of Sz are indicated on the figure.

number of clusters of any value of Sz increases with T .
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Fig. 4: Average size of clusters versus temperature for several values of Sz indicated on the figure

and for anisotropy A = 0.01 (left) and A = 1 (right).

The resistivity, as mentioned above, depends indeed on the amplitude of Sz as seen in

the expression

ρ =
m

ne2

1

τ
=

m

ne2

Sz∑
i=−Sz

1

τi

(10)
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III. RESULTS

A. Effect of Ising-like Anisotropy

At this stage, it is worth to return to examine some fundamental effects of V0 and A. It

is necessary to know acceptable values of V0 imposed by the Born’s approximation. To do

this we must calculate the resistivity with the second order Born’s approximation.

σB
k (θ, φ) = |F (θ, φ)

4π
|2 (11a)

F (θ, φ) =
2mΩ

~2
[

∫
d3re−iK.rV (r) − 1

4π

∫
d3re−iK.rV (r)

r

∫
d3r′e−iK.r′V (r′)] (11b)

K = |k − k′| = k[2(1 − cosθ)]1/2 and V (r) = V0e
−r/ξ (11c)

we find, with D =
η32πΩm

~3
,

1

τk
= DV 2

0 k[
2ξ6

[1 + (2ξk)2]2
− V0

3[1 + (2ξk)2]2
(1 +

4

[1 + (2ξk)2]2
) +

V 2
0 ξ6

12(2k2)2
] (12)

The first term is due to the first order of Born’s approximation and the second and third

terms to corrections from the second order. We plot ρ(Born2)/ρ(Born1) versus temperature

T in Fig. 5 for different values of V0, ρ(Born1) and ρ(Born2) being respectively the resis-

tivities calculated at the first and second order. We note that the farther this ratio is away

from 1, the more important the corrections due to the second-order become. From Fig. 5,

several remarks are in order :

– The first order of Born’s approximation is valid for small values of V0 as seen in the case

V0 = 0.01 corresponding to a few meV. In this case the resistivity does not depend on

T . This is understandable because with such a weak coupling to the lattice, itinerant

spins do not feel the effect of the lattice spin disordering.

– In the case of strong V0 such as V0 = 0.05, the second-order approximation should be

used. Interesting enough, the resistivity is strongly affected by T with a peak corres-

ponding to the phase transition temperature of the lattice.

We examine now the effect A. Figure 6 shows the variation of the sublattice magneti-

zation and of TN with anisotropy A. We have obtained respectively for A = 0.01, A = 1,

A = 1.5 and pure Ising case the following critical temperatures TN ≃ 2.3, 4.6, 5.6 and 6.0.

Note that the pure Ising case has been simulated with the pure Ising Hamiltonian, not
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See text for comments.

with Eq. (9) (we cannot use A = ∞). We can easily understand that not only the spin

resistivity will follow this variation of TN but also the change of A will fundamentally alter

the resistivity behavior as will be seen below.
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The results shown in Fig. 7 indicate clearly the appearance of a peak at the transition

which diminishes with increasing anisotropy. If we look at Fig. 4 which shows the average

size of clusters as a function of T , we observe that the size of clusters of large Sz diminishes

with increasing A.

We show in Fig. 8 the pure Heisenberg and Ising models. For the pure Ising model, there

is just a shoulder around TN with a different behavior in the paramagnetic phase : increase

or decrease with increasing T for degenerate or non degenerate cases. At this stage it is

worth to mention that MC simulations for the pure Ising model on the simple cubic and
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BCC antiferromagnets where interactions between itinerant spins are taken into account,

in addition to Eq. (1), show no peak at all27,28. These results are in agreement with the

tendency observed here for increasing A.
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B. Effect of Magnetic Field

We apply now a magnetic field perpendicularly to the electric field. To see the effect of

the magnetic field it suffices to replace the distribution function by

f 1
k =

e~τk

m
(−∂f 0

∂ǫ
)k.

(E − eτk

mc
H ∧ E)

1 + (
eτkH

mc
)2

(13)



13

From this, we obtain the following equations for the contributions of up and down spins

ρ↓ =

+1∑
Sz=−1

(Sz + 1)2η4V 2
0 m2πkfξ

2

ne2~3
[

4ξ2

1 + 4ξ2k2
f

]2 (14)

ρ↑ =
+1∑

Sz=−1

(Sz − 1)2η4V 2
0 m2πkfξ

2

ne2~3
[

4ξ2

1 + 4ξ2k2
f

]2 (15)

where Sz is the domain-wall spin (scattering centers) and V0 is proportional to the exchange

integral between an itinerant spin and a lattice spin [see Eq. (1)].

Figures 10 and 11 show the resistivity for several magnetic fields. We observe a split in

the resistivity for up and down spins which is larger for stronger field. Also, we see that the

minority spins shows a smaller resistivity due to their smaller number. The reason is similar

to the effect of A mentioned above and can be understood by examining Fig. 9 where we

show the evolution of the number and the average size of clusters with the temperature in

front of a magnetic field. We can see that for Sz > 0 the number of clusters and also the size

of this cluster are bigger than for Sz < 0. It is easy to understand this situation : when we

apply a magnetic field, the spins want to align themselves to the field so the up-spin domain

walls become larger, critical fluctuations are at least partially suppressed, the transition is

softened.
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Fig. 11: Resistivities of up and down spins versus temperature for two magnetic field’s strengths

in the non degenerate case. Left (right) : B = 0.6(1.5).

C. Application to MnTe

The family of the Manganese doped II-VI compounds AII
1−xMnxC

V I shows interes-

ting combinations of magnetism and semiconductivity phenomena. Galazka, Nagata and

Keesom29 studied three magnetic properties depending of x parameter : (i) for x ≤ 0.17, the

alloy is paramagnetic ; (ii) for 0.17 < x ≤ 0.60, a spin-glass phase is observed ; and (iii) for

larger x the antiferromagnetic phase is suggested. In the case of Cd1−xMnxTe, the question

of the crystal structure, depending on the doping concentration remains open. Cd1−xMnxTe

can have one of the two structures, the so-called NiAs structure or the zinc-blend one, or a

mixed phase.30,31,32,33,34

The pure MnTe crystallizes in either the zinc-blend structure35 or the hexagonal NiAs



15

one36 (see Fig. 12). MnTe is a well-studied p-type semiconductor with numerous applications

due to its high Néel temperature. We are interested here in the case of hexagonal structure.

For this case, the Néel temperature is TN = 310 K36.

Fig. 12: Structure of the type NiAs is shown with Mn atoms only. This is a stacked hexagonal

lattice. Up spins are shown by black circles, down spins by white ones. Nearest-neighbor (NN)

bond is marked by 1, next NN bond by 2, and third NN bond by 3.

The cell parameters are a = 4.158Å and c = 6.71Å and we have an indirect band gap of

Eg = 1.27eV.

Magnetic properties are determined mainly by an antiferromagnetic exchange integral

between nearest-neighbors (NN) Mn along the c axis, namely J1/kB = −21.5±0.3 K, and a

ferromagnetic exchange J2/kB ≈ 0.67± 0.05 between in-plane (next NN) Mn. Third NN in-

teraction has been also measured with J3/kB ≃ −2.87±0.04 K. Note that the spins are lying

in the xy planes perpendicular to the c direction with an in-plane easy-axis anisotropy36.

The magnetic structure is therefore composed of ferromagnetic xy hexagonal planes anti-

ferromagnetically stacked in the c direction. The NN distance in the c direction is therefore

c/2 ≃ 3.36 shorter than the in-plane NN distance a.

We have calculated the cluster distribution for the hexagonal MnTe using the details

described above taken from the literature36,37,38,39. The result is shown in Fig. 13. The spin

resistivity in MnTe is then obtained with our theoretical model. This is presented in Fig. 14

for a density of itinerant spins corresponding to n = 2 × 1022 cm−3.

Several remarks are in order :
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obtained from Monte Carlo simulations.
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et al.39 See text for comments.

i) the peak temperature of our theoretical model is found at 310 K corresponding the the

experimental Néel temperature although for our fit we have used only the above-mentioned

values of exchange integrals

ii) our result is in agreement with experimental data obtained by Chandra et al.39 for

temperatures between 140 K and 280 K above which Chandra et al. did not unfortunately

measured

iii) at temperatures lower than 140 K, the experimental curve increases with decreasing T .

There are several explanations for this behavior among which the itinerant electrons may be

frozen (crystallized) due to their interactions with localized spins and between themselves,
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giving rise to low mobility. Our theoretical model based on the scattering by defect clusters

cannot account for this behavior because there are no defects at very low T . This is the

validity limit of our model. Direct Monte Carlo simulation shows that the freezing indeed

occurs at low T both in ferromagnets15,27 and antiferromagnets28 giving rise to an increase

of the spin resistivity with decreasing T

iv) the existence of the peak at TN = 310 K of the theoretical spin resistivity shown in

Fig. 14 is in agreement with experimental data recently published by Li et al.12 (see the

inset of their Fig. 5). Note that their experimental resistivity increases also with decreasing

T below 140K just as that of Chandra et al.39. Unfortunately, we could not renormalize the

resistivity values of Li et al.12 to put in the same figure with our result for a quantitative

comparison.

To close this section, let us note that it is also possible, with some precaution, to apply our

model on other families of antiferromagnetic semiconductors like CeRhIn5 and LaFeAsO.

An example of supplementary difficulties but exciting subject encountered in the latter

compound is that there are two transitions in a small temperature region : a magnetic

transition at 145 K and a tetragonal-orthorhombic crystallographic phase transition at 160

K. An application to ferromagnetic semiconductors of the n-type CdCr2Se4
40 is under way.

IV. CONCLUSION

We have shown in this paper the behavior of the magnetic resistivity ρ as a function

of temperature in antiferromagnets. The main interaction which governs this behavior is

the interaction between itinerant spins and the lattice spins. Our analysis, based on the

Boltzmann’s equation which uses the temperature-dependent cluster distribution obtained

by MC simulation, is in agreement with the theory by Haas :17 we observe a broad shoulder

of ρ in the temperature region of the magnetic transition without a sharp peak observed

in ferromagnets. Note however that the non-degenerate case shows a peak which is more

pronounced than that of the degenerate case. We would like to emphasize that the shape of

the peak and even its existence depend on several physical parameters such as interactions

between different kinds of spins, the spin model, the crystal structure etc. In this paper we

applied our theoretical model on the degenerate magnetic semiconductor MnTe. We found

a good agreement with experimental data near the transition region. We note however that
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our model using the cluster distribution cannot be applied at very low T where spin freezing

dominates the resistivity behavior.
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