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Abstract

We describe a novel variational segmentation algorithm
designed to split an image in two regions based on their in-
tensity distributions. A functional is proposed to integrate
the unknown probability density functions of both regions
within the optimization process. The method simultaneously
performs segmentation and non-parametric density estima-
tion. It does not make any assumption on the underlying
distributions, hence it is flexible and can be applied to a
wide range of applications. Although a boundary evolu-
tion scheme may be used to minimize the functional, we
choose to consider an alternative formulation with a mem-
bership function. The latter has the advantage of being
convex in each variable, so that the minimization is faster
and less sensitive to initial conditions. Finally, to improve
the accuracy and the robustness to low-frequency artifacts,
we present an extension for the more general case of local
space-varying probability densities. The approach readily
extends to vectorial images and 3D volumes, and we show
several results on synthetic and photographic images, as
well as on 3D medical data.

1. Introduction

Image segmentation is such an essential component of
modern computer vision applications that it remains a major
topic of research, despite considerable efforts made over the
last two decades in terms of theory and algorithms. In par-
ticular, variational principles have greatly helped the design
of consistent frameworks. The common assumption is that
the expected partitioning can be obtained by minimizing an
appropriate objective functional. The performance of such
segmentation models mainly depends on the relevance of
the functional for specific homogeneity requirements. Sta-

tistical criteria on low-level features such as intensity, color,
motion and texture have proved suitable to discriminate be-
tween image regions. With the success of active contours,
many recent attempts to embed such region-based statistics
into a variational formulation have relied on boundary evo-
lution. Among those, we shall here distinguish between
parametric and non-parametric approaches.

Using bayesian principles, the Region Competition algo-
rithm [18] has unified earlier works and paved the way for
subsequent efforts along the same line [6, 10, 16]. A review
of these parametric methods can be found in [7]. They can
incorporate complex multivariate texture and color cues [3]
and have in common to (a) derive a statistical criterion from
the maximization of the posterior probability of the segmen-
tation, given the observed image, and (b) make strong as-
sumptions about the distributions in the form of parametric
models, so that only a small set of statistical parameters are
optimized. The choice of a specific model, often Gaussian,
restricts the applicability to the limited set of images that
satisfy the underlying assumptions.

To overcome this limitation, non-parametric statistical
boundary evolution algorithms have emerged for segmen-
tation and tracking [8, 11, 12]. Using pure intensity dis-
tributions [12], complex multivariate texture [1] or motion
information [9], these methods follow a common methodol-
ogy: (a) derive a minimization criterion from information-
theoretic measures on the region distributions, and (b) use
the Parzen window technique [17] to estimate the unknown
densities. Typical measures use entropy, mutual informa-
tion or Kullback-Leibler distance between distributions.

The aforementioned variational approaches have two
practical shortcomings. First, the minimization is based
on boundary evolution schemes, whose convergence is rel-
atively slow and sensitive to initial conditions. Second, the
criteria assume that each region can be statistically repre-
sented by a single global distribution. There are many sit-
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uations where this global perspective is too simplistic to
achieve a precise delineation of the boundary, while a lo-
cal analysis of the distributions would be more discrimina-
tive. In this paper, we propose a novel method that has none
of these drawbacks and keeps both the robustness of non-
parametric approaches and the simplicity of Region Com-
petition. We focus on the two-phase case, already covering
a wide range of optimal separation problems.

We shall present our contributions as follows: In Section
2, we revisit the Region Competition and propose a novel
minimization criterion. It can be used in classical boundary
evolution schemes in order to discriminate regions accord-
ing to their global feature statistics, without any prior para-
metric model. In Section 3, an alternative convex formu-
lation is developed, optimizing membership functions in-
stead of boundaries. In Section 4, we expose an extension
for the more general case of space-varying, smooth, non-
parametric probability density functions. In Section 5, we
briefly describe a stable and efficient minimization strategy.
The flexibility of the method is shown with various 2D and
3D segmentation examples of synthetic, photographic and
medical images.

2. Non-Parametric Competition Model

The Region Competition algorithm [18] has inspired
many subsequent works on variational region-based image
partitioning. The principle is to minimize the sum of suit-
ably defined error functions in each phase and a regular-
ization term. When a two-phase partition of an image I is
considered over the domain Ω ⊂ IRn, a general form of the
functional is

F0(Σ, α1, α2) =

∫
∂Σ

ds +

∫
x∈Σ

r1(α1, x) +

∫
x∈Σc

r2(α2, x), (1)

where Σ ⊂ Ω is the foreground region, Σc = Ω\Σ the back-
ground and ∂Σ their common boundary. The first term is a
classical regularization penalizing the length of the bound-
ary. Functions ri : Ω → IR, are a priori given error func-
tions that encode the underlying model of each region. In
general, these error functions depend on some unknown pa-
rameters αi, typically a small set of scalars. The usual strat-
egy for the minimization of F0 is to perform successive
steps on the partition Σ and on the region parameters αi,
alternatively.

When the region parameters are considered fixed, the
minimization step on Σ is classically carried out using a
gradient-descent scheme. Based on the Euler-Lagrange
equation derived from F0, it consists in evolving the bound-
ary Γ = ∂Σ, through the equation

∂Γ

∂t
=

{
κ −

(
r1 − r2

)}
n (2)

Figure 1. Domain notations, distributions pi and kernel K.

where κ and n stand for the curvature and outward-pointing
normal of Γ. The mean curvature term κ ensures the
smoothness of the boundary, and the term r = r1 − r2 is
the competition that drives the evolution of Γ toward the ex-
pected segmentation. Thus, the choice of appropriate func-
tions ri and parameters αi is critical to control the result.

Bayesian inference and maximum-likelihood principles
are often used to determine error functions capable of mod-
eling image regions with statistical analysis [7, 16, 18]. The
corresponding general expression of ri is given by

ri(αi, x) = −λ log(Pi(I(x))|αi), (3)

where λ is a parameter balancing smoothness and compe-
tition. Pi are known probability densities, only their un-
known parameters αi have to be periodically optimized. A
classical assumption considers densities Pi to be Gaussian
N (mi, σi). In this case, the optimal parameters (m∗

i , σ
∗
i )

are at each step the mean and the variance of the image
in each region. If the variances are known, (3) becomes
ri(mi, x) = λi(I(x)−mi)

2 and (1) boils down to a widely
used method [6] for piecewise-constant images.

When reliable a priori information about the expected
distributions is available, these parametric models perform
remarkably well. Unfortunately, the specific choice of
a model can also limit their applicability to a restricted
class of images. For sake of generality, we seek a non-
parametric formulation that would consider the probability
density functions themselves to be the unknown region pa-
rameters. To that end, we propose a novel error term whose
expression is justified by the study of the corresponding op-
timality conditions and the competition function. If I is a
m-component vectorial image taking its values in A ⊂ IRm,
we define the following error functions:

ri(pi, x) = λ

∫
A

(
pi(a) − K(I(x) − a)

)2
da (4)

where K is a symmetric m-dimensional kernel such that:∫
A

K(a)da = 1 and K(a) > 0 ∀a ∈ A (5)



The expression of the non-parametric competition func-
tional is obtained by plugging these errors functions in (1):

F (Σ, p1, p2) =

∫
∂Σ

ds +λ

∫∫
x∈Σ,a∈A

(
p1(a) − K(I(x) − a)

)2

+λ

∫∫
x∈Σc,a∈A

(
p2(a) − K(I(x) − a)

)2

(6)
Let us now study the optimality conditions of F with respect
to functions pi. Standard calculus of variations leads to the
optimal expressions

p∗1(a) =
1

|Σ|

∫
Σ

K(I(x) − a)dx

p∗2(a) =
1

|Σc|

∫
Σc

K(I(x) − a)dx
(7)

They correspond to continuous versions of non-parametric
Parzen window density estimations [17] in the foreground
and the background. Thus, the periodic update of the distri-
butions in the alternate minimization scheme naturally in-
volves a well-established method for the estimation of the
probability densities in each region. Note that as soon as K
satisfies (5), then

∫
A

p∗i = 1, without any additional explicit
constraint in F .

For a complete understanding, it is essential to study the
effects of the new errors terms on the boundary evolution.
As already mentioned, the optimal position of the boundary
is driven by the competition r(x) = r1(p1, x) − r2(p2, x),
whose expression is now given by

r(x) = 2

∫
a∈A

(
p2(a)−p1(a)

)
K(I(x)−a) +

∫
a∈A

p1(a)2−p2(a)2

(8)
The first term measures the difference between the densities
in a window K around I(x) (see Fig. 1). It is a local like-
lihood test on I(x) driving the boundary toward the most
likely region. If this difference vanishes, no decision can be
made locally from I(x), and the second term is a bias driv-
ing the boundary toward the region of smaller density en-
ergy. A possible interpretation is that the final steady state
will define regions whose intensity distributions tend to be
well-separated and equally compact.

As most related approaches, functional (6) is defined
over the set of regions or equivalently their boundaries. For
optimization purpose, the unstructured nature of this set, in
particular its non-convexity, is a drawback and would re-
quire elaborated minimization strategies to avoid local min-
ima. In the following section, we rely on an alternative
formulation that ensures the convexity with respect to each
variable.

3. Fuzzy Membership Formulation

We recently proposed in [15] to perform the minimiza-
tion of any functional of the form (1) by considering a
closely related convex problem that does not involve bound-
ary evolution. This Fuzzy Region Competition formulation,
inspired by [5], has computational advantages and provides
solutions that are in practice less sensitive to initial condi-
tions. The idea is to replace in (1) the region Σ by a fuzzy
membership function u, and minimize instead

∫
Ω

|∇u| +

∫
x∈Ω

u(x)r1(α1, x) +

∫
x∈Ω

(1 − u(x))r2(α2, x), (9)

where u belongs to the convex set of bounded variation
functions between 0 and 1. It represents the membership
to the foreground and can be seen as a fuzzy version of its
characteristic function. The regularization term is the total
variation of u, i.e. the sum of the perimeters of its level
sets. This problem is convex in u and the set of its solu-
tions proves to be stable under thresholding [15]. Thus, to
any solution corresponds a thresholded binary characteris-
tic function that still minimizes (9) for given α1 and α2.
This defines a partition of the image that is also optimal
with respect to (1). Minimization of (9) most often leads to
a unique binary solution, making the thresholding step su-
perfluous. Moreover, one can use stable numerical schemes
based on total variation [2, 4] that offer notably faster con-
vergence than gradient-descent.

We propose to apply the same principle to the two-phase
region competition using non-parametric density functions
introduced in the previous section. Replacing in (6) the
foreground Σ by a fuzzy membership u constrained to take
its values in [0, 1], we shall now minimize:

FG(u, p1, p2) =

∫
Ω

|∇u| + λ

∫
x∈Ω

u(x)

∫
a∈A

(
p1(a)−K(I(x)−a)

)2

+λ

∫
x∈Ω

(1−u(x))

∫
a∈A

(
p2(a)−K(I(x)−a)

)2

(10)
The optimal p1 and p2 naturally depend in this case on the
function u, and it is easy to show that (7) becomes:

p∗1(a) =
1

‖u‖
1

∫
Ω

u(x)K(I(x) − a)dx

p∗2(a) =
1

‖1 − u‖
1

∫
Ω

(
1 − u(x)

)
K(I(x) − a)dx

(11)

where ‖u‖
1

=
∫
Ω

u(x)dx. These optimal functions now
correspond to continuous versions of weighted Parzen den-
sity estimates. The contribution of each point x to the es-
timation of the foreground distribution is weighted by its
membership u(x). Hence during minimization, each pixel



Figure 2. Synthetic images: In rows, we present 3 synthetic 2D experiments where foreground and background have been artificially gener-
ated by a global intensity density function. In each row, from left to right: original image; initial membership function u; two intermediate
states of u; result at convergence; corresponding boundary overlaid on the image; the initial (dashed) and final (solid) distributions of the
foreground (white) and background (black). First row shows uni-modal densities of distinct mean and variance, a Gaussian foreground
over a uniform background. Second row shows a uni-modal Gaussian foreground over a bi-modal Gaussian background, both distributions
having the exact same mean and variance. Last row shows a tri-modal Gaussian foreground on a bi-modal uniform background, with same
mean and same variance, with additional spatial correlations.

may contribute to both regions according to the certainty of
its current classification.

Observe that the expression of the functional FG in (10)
is convex with respect to each variable u, p1 and p2. Thus it
is convenient to employ an alternate minimization scheme,
successively considering each variable to be the only argu-
ment while the others are kept fixed. At each step, p1 and p2

are updated with their optimal expression (11). As for the
membership function u, a standard gradient-descent scheme
could be used, implementing the evolution equation:

∂u

∂t
= div

(
∇u

|∇u|

)
− (r1 − r2) (12)

Nonetheless, faster convergence and improved stability can
be obtained by considering a suitable approximation of F ,
avoiding the singularities of the curvature term. This tech-
nique will be further detailed in Section 5.

As exposed in the original Parzen’s paper on the non-
parametric estimation of probability densities [17], there are
a number of valid choices for the kernel K. For sake of
simplicity and efficiency, we use a m-dimensional Gaussian

K(a) =
1

(2π)
m/2|M |1/2

exp

(
−

1

2
aT M−1a

)
. (13)

M , the covariance matrix, is chosen diagonal in our exper-
iments. However, in the general case, it may be adjusted to
reflect the dependence between channels.

In Fig. 2, we show the results of the method on synthetic
images, where background and foreground have been gen-
erated by various gray-value density functions. The method
is able to cope with non-Gaussian, multi-modal, overlap-
ping distributions. In the last two examples, both distribu-
tions have identical mean and variance, making the fore-
ground virtually invisible.



In Fig. 4, realistic foreground segmentations of photo-
graphic images illustrate the multivariate case, using the
CIEL*a*b* color space.

The synthetic results are qualitatively similar to those re-
ported in [12], although our method uses neither informa-
tion theory nor curve evolution. Moreover, this new formu-
lation can be extended to the more challenging case of local
and space-varying non-parametric density functions. This
extension is the focus of the next section.

4. Extension to Local Densities

Like previous segmentation approaches with global re-
gion distributions, our model still has several practical lim-
itations. First, in real images, it is seldom possible to dis-
criminate between foreground and background with a single
probability density for each region. Especially critical are
the cases of cluttered and heterogeneous backgrounds and
the presence of low-frequency artifacts such as illumination
changes. Second, it may be difficult to obtain a precise de-
lineation of the boundary since the local contributions of
nearby pixels from both sides are diluted in the global es-
timation of the densities. Third, simple image operations
such as cropping to a region of interest can seriously affect
the background estimation and the final result. Those limi-
tations could be significantly reduced if the distributions pi

were defined locally and allowed to vary in space.

Our purpose is to formulate a generalization of the pre-
vious non-parametric region competition model that would
lead to a local estimation of the probability densities. To
that end, we introduce in the functional a sliding window in
order to localize the error. In (10), the global contribution
of the foreground to the total error is:

E =

∫
x∈Ω

u(x)

∫
a∈A

(
p1(a) − K(I(x) − a)

)2
(14)

We now consider the same error locally, around a point
y ∈ Ω: the contribution of each point is multiplied by a
symmetrical, positive and smooth window W : Ω → IR,

e(y) =

∫
x∈Ω

W (x − y)u(x)

∫
a∈A

(
p1(y, a) − K(I(x) − a)

)2
,

(15)
where the density p1(y, a) is now dependent on the position.
The total contribution of the foreground is obtained by in-
tegrating the local error e(y) in the whole domain. Adding
a similar contribution for the background and switching the

order of integration leads to the new functional to minimize:

FL(u, p1, p2) =

∫
Ω

|∇u|

+λ

∫
x∈Ω

u(x)

∫
y∈Ω

W (x−y)

∫
a∈A

(
p1(y, a)−K(I(x)−a)

)2

+λ

∫
x∈Ω

(1−u(x))

∫
y∈Ω

W (x−y)

∫
a∈A

(
p2(y, a)−K(I(x)−a)

)2

(16)
which corresponds to the definition of the following error
function:

ri(pi, x) = λ

∫
y∈Ω

W (x−y)

∫
a∈A

(
pi(y, a)−K(I(x)−a)

)2
(17)

The competition r(x) = r1(p1, x)− r2(p2, x) has a similar
form as in (8) and the classification is still driven by like-
lihood tests on I(x). Here, the local likelihood differences
are measured using a generalized neighborhood in both in-
tensity and space, with a window K around I(x) and W
around x. The study of the optimality conditions of (16)
leads to the optimal local density functions:

p∗1(y, a) =

∫
Ω

W (x − y)u(x)K(I(x) − a)dx∫
Ω

W (x − y)u(x)dx

p∗2(y, a) =

∫
Ω

W (x − y)(1 − u(x))K(I(x) − a)dx∫
Ω

W (x − y)(1 − u(x))dx

(18)
Defining function fa(x) = K(I(x)−a), this can be rewrit-
ten with convolutions,

p∗1(y, a) =
[W ∗ (u.fa)] (y)

[W ∗ u](y)

p∗2(y, a) =

[
W ∗

(
(1−u).fa

)]
(y)[

W ∗ (1−u)](y)
.

(19)

Even though no spatial regularity constraint on the local
probability densities is explicit in (16), the solutions are as
regular as the window W . Indeed, for a given image value
a we recognize in (19) normalized convolutions of fa with
W , the fuzzy membership functions u and (1 − u) being
the certainty measures. The theory of normalized convo-
lution, introduced in [13], is a simple and useful extension
of convolution that takes into account uncertain or missing
image samples. Here, for each value a, the local probability
densities are obtained by a spatial smoothing of fa. This
smoothing is selective: contributions to p1 are weighted by



Figure 3. Local Competition on the cameraman image. Left col-
umn, results of the global model, original image (top), global dis-
tributions pi (center) and final membership function u (bottom).
Right column, results of the local model, solid final boundary con-
tours with a dashed representation of the window W at two pixel
locations (top), local distributions pi (center) and final u (bottom).

the membership u while contributions to p2 are weighted
by 1 − u. The minimization process eventually provides
a binary solution, so that no smoothing occurs across the
boundary at convergence. Therefore, a solution (u∗, p∗1, p

∗
2)

can be interpreted as a piecewise-smooth approximation of
the local probability densitiy of the image.

A suitable choice for the window function W is the nor-
malized isotropic n-dimensional Gaussian kernel

W (x) = (2πσ2)−n/2 exp(− |x|2 /2σ2). (20)

The standard deviation σ explicitly provides the model with
an intrinsic spatial scale, related to the expected density
variations. When σ → ∞, we end up with the global model
of section 3. Furthermore, being positive, non-compactly
supported and C∞, the Gaussian window guarantees the reg-
ularity of pi functions everywhere in the domain Ω.

Fig. 3 illustrates on the cameraman image the advan-
tages of using local probability densities. The global inten-
sity distribution is mainly composed of 3 modes of increas-
ing mean value, corresponding to the cameraman, the grass
and the sky, respectively. On the left, the global model is
easily capable of roughly extracting the first mode, but fails
to precisely capture the boundary. On the right, we check
that the local model has more powerful discrimination capa-
bilities by carrying out the minimization of (16), using the
global model as initialization. Observe how the legs and the
camera are now precisely extracted from the background,
thanks to the use of local densities. The local equilibrium
between foreground and background densities implicitly se-
lects optimal spatially-adaptive thresholds, which is visible
on the distributions shown on the right. Although the back-
ground seems to be approximately Gaussian, locally, we do
not need to make that assumption explicit.

Fig. 4 shows a detailed 3D medical segmentation exper-
iment using exclusively our non-parametric models. The
advantages of the local densities as a refinement tool are
emphasized for the vascular case.

5. Minimization

We now describe a possible strategy to carry out the min-
imization of the component-wise convex functionals (10)
and (16). We focus on the minimization of FL, FG being a
particular case. As already mentioned, we follow an alter-
nate scheme where u, p1 and p2 are considered successively.
For the membership function u, a possible way would be to
rely on the gradient-descent scheme (12) derived from the
Euler-Lagrange equation. This involves the computation of
the curvature term, known to cause stability issues and lim-
ited convergence speed. Instead, we choose to follow the
strategy proposed by Bresson et al. [2] in a related context.
The crux is to introduce an auxiliary variable v and consider
the following approximation of FL:

∫
Ω

|∇u|+
1

2θ

∫
Ω

|u − v|2 +

∫
Ω

v r1 +

∫
Ω

(1− v) r2 (21)

where r1 and r2 are given by (17) and θ is chosen to be
small enough so that the two components of any minimiz-
ing couple (u∗, v∗) are almost identical. In that form, the
dependence on u is restricted to the first two terms, which
are exactly the terms of the minimization problem solved
by Chambolle with a dual approach in the context of de-
noising [4]. Thus his fast and remarkably stable projection
algorithm can be used to minimize w.r.t. u while the other
variables are kept fixed. Now, we only need to find optimal
solutions for p1, p2 and v taken independently. It turns out
that those solutions can be directly obtained, without addi-
tional iterative schemes. Indeed, optimal p∗1 and p∗2 are the
normalized convolutions (19), replacing u by v. The opti-



Figure 4. Color images: the global non-parametric model in the multivariate case. The images are samples from the Berkeley segmentation
database [14]. Feature space A is CIE L*a*b*, chosen for its ability to mimic the logarithmic response of the eye and linearize the
perception of color differences. Simple euclidean distance can be used in A, hence the covariance M for the kernel K can be set diagonal.
In all cases, initialization consists in setting initial u to a square region partly encompassing the foreground. The algorithm takes advantage
of all channels and discriminates between regions that have a compact and multi-modal distribution in the 3D feature space (L,a,b).

Figure 5. A medical application: the hierarchical segmentation of a 3D Computerized Tomography volume. The global model is used to
extract the boundaries of the lung from the multi-modal background, here composed of all surrounding organs. Initial u is set to a small
cube inside the lungs. At convergence, the exact same process is recursively applied to the foreground, to separate pulmonary vessels from
tissues. If distributions are expected to vary in space, which is a valid assumption for the vascular tree, the local competition model can
provide more precise boundaries. Thus it is finally used to refine the result. On the left, coronal and axial views of the volume, with overlaid
final parenchyma and vessel contours. Corresponding triangular meshes are rendered on the right: in the first column, the outer surface,
alone (top) and mixed with the final vessels (bottom); in the second column, the vessels before (top) and after (bottom) local refinement.



mal v∗ is given by [2]:

v∗(x) = min
{
max

{
0, u(x) − θr(x)

}
, 1

}
(22)

where r = r1 − r2 is the competition function.

6. Conclusion

We introduced a novel variational approach for the par-
titioning of n-dimensional vectorial images into two re-
gions based on the non-parametric estimation of local fea-
ture probability densities in each region. The crux is to use
a modified formulation of the region competition functional
whose arguments are not only the partition but also the
probability density functions themselves, without any para-
metric representation. In other words, the new functional
simultaneously controls both the non-parametric estimation
and the segmentation. The optimality conditions for the un-
known distributions naturally justify the use of continuous
non-parametric Parzen density estimation techniques.

To overcome the limitations of the minimization over the
non-convex set of boundaries or regions, we also presented
an alternative componentwise-convex formulation over the
set of fuzzy membership functions. The minimization is
less sensitive to initial conditions and can be carried out us-
ing fast and stable algorithms.

Finally, we developed an extension of the same princi-
ples when the unknown probability density functions are
allowed to vary in space. The segmentation is expected to
be more accurate and robust to low-frequency artifacts such
as illumination changes. The optimal local probability den-
sity functions involve convolutions, hence spatial smooth-
ing ensures the regularity of the solutions. Moreover, this
smoothing is selective and averages only values of the same
region, so that a piecewise-smooth approximation of the lo-
cal image intensity distribution can be obtained.

The wide range of applications and the performance of
these new methods have been demonstrated on various im-
ages of different nature: synthetic intensity, natural color
images and 3D medical volumes.

References

[1] S. P. Awate, T. Tasdizen, and R. T. Whitaker. Unsuper-
vised texture segmentation with nonparametric neighbor-
hood statistics. In European Conference on Computer Vision,
Proceedings,, pages 494–507, 2006.

[2] X. Bresson, S. Esedoglu, P. Vandergheynst, J.-P. Thiran,
and S. Osher. Fast global minimization of the active con-
tour/snake model. Jour. of Math. Imaging and Vision, 2007.

[3] T. Brox, M. Rousson, R. Deriche, and J. Weickert. Un-
supervised segmentation incorporating colour, texture, and
motion. Computer Analysis of Images and Patterns. Lecture
Notes in Computer Science, 2756:353–360, 2003.

[4] A. Chambolle. An algorithm for total variation minimization
and applications. Jour. of Math. Imaging and Vision, 20(1-
2):89–97, 2004.

[5] T. Chan, S. Esedoglu, and M. Nikolova. Algorithms for find-
ing global minimizers of image segmentation and denoising
models. UCLA CAM Report 04-54, 2004.

[6] T. Chan and L. Vese. Active contours without edges. IEEE
Trans. on Image Proc., 10(2):266–277, February 2001.

[7] D. Cremers, M. Rousson, and R. Deriche. A review of statis-
tical approaches to level set segmentation: Integrating color,
texture, motion and shape. Int. J. Comput. Vision, 72(2):195–
215, 2007.

[8] A. Herbulot, S. Jehan-Besson, M. Barlaud, and G. Aubert.
Shape gradient for multi-modal image segmentation using
mutual information. Proc. of IEEE Int. Conference on Image
Processing (ICIP), 10(8):2729–2732, October 2004.

[9] A. Herbulot, S. Jehan-Besson, S. Duffner, M. Barlaud, and
G. Aubert. Segmentation of vectorial image features using
shape gradients and information measures. Jour. of Math.
Imaging and Vision, 25(3):365–386, October 2006.

[10] S. Jehan-Besson, M. Barlaud, and G. Aubert. Dream2s: De-
formable regions driven by an eulerian accurate minimiza-
tion method for image and video segmentation. Int. Journal
of Computer Vision, 53(1):45–70, 2003.

[11] T. Kadir and M. Brady. Unsupervised non-parametric region
segmentation using level sets. 2:1267–1274, 2003.

[12] J. Kim, J. Fisher, A.Yezzi, M. Cetin, and A. Willsky. A non-
parametric statistical method for image segmentation using
information theory and curve evolution. IEEE Trans. on Im-
age Processing, 14:1486–1502, 2005.

[13] H. Knutsson and C. Westin. Normalized and differential con-
volution: Methods for interpolation and filtering of incom-
plete and uncertain data. In Proc. of Computer Vision and
Pattern Recognition, pages 515–523, 1993.

[14] D. R. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. pages 416–425, 2001.

[15] B. Mory and R. Ardon. Fuzzy region competition: A convex
two-phase segmentation framework. In International Con-
ference on Scale-Space and Variational Methods in Com-
puter Vision, Proceedings, pages 214–226, 2007.

[16] N. Paragios and R. Deriche. Geodesic active regions and
level set methods for supervised texture segmentation. Int.
Journal of Computer Vision, 46(3), 2002.

[17] E. Parzen. On the estimation of a probability density function
and mode. Annals of Mathematical Statistics, 33:1065–1076,
1962.

[18] S. C. Zhu and A. Yuille. Region competition: Unifying
snakes, region growing, and bayes/mdl for multiband image
segmentation. IEEE Trans. On Pattern Analysis and Ma-
chine Intelligence, 18(9):884–900, September 1996.


