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Abstract

This work introduces a specific application of bayesian nonparametric statistics in the food risk analysis

framework. The goal is to determine cocktails of pesticide residues to which the French population is

simultaneously exposed, so as to give directions for future toxicological experiments for studying possible

combined effects of those cocktails. For that, the joint distribution of exposures to a large number of

pesticides, called the co-exposure distribution, is assessed from the available consumption data and food

contamination analyses. We propose to model the co-exposure by a Dirichlet process mixture based on a

multivariate Gaussian kernel so as to determine groups of individuals with similar co-exposure patterns.

The study of the correlation matrix of these sub-populations will permit to define the cocktails of pesticides

to which they are jointly exposed at high doses. The posterior distributions and the optimal partition are

computed through a Gibbs sampler based on stick-breaking priors. To reduce computational time due to

the high dimension of the data, a random block sampling is used. As an extension, we propose to account

for the uncertainty of food contamination through the introduction of an additional level of hierarchy in the

model. The results of both specifications are exposed and compared.

1 Introduction

Each food product may contain several residues of pesticides, consequently meals daily ingested may
include a large range of pesticides. Therefore, all consumers are expected to be exposed to complex
cocktails of pesticides, for which combined effects on health are still unknown. This work proposes
a novel methodology to respond to the following question ”what are the cocktails of pesticides to
which the French population is simultaneously and the most exposed ?” Cocktails of pesticides are
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selected based on their joint probability to occur at high doses in the French diet. The population
exposure to the P different pesticides found in the diet, called the co-exposure, is firstly estimated
considering both the food residue level patterns obtained from the monitoring programmes and the
dietary habits of n sounded individuals of the French consumption study INCA 2 (AFSSA, 2009).
Secondly, we have developed a method to cluster the population co-exposures to define groups of
individuals with similar design of exposures to the P pesticides. Thirdly, the correlations between
exposures to the P pesticides of the most exposed individuals have been studied to characterize
the relevant cocktails of pesticides. To define homogeneous group of individuals, the population
co-exposure to the P pesticides was modeled with a bayesian nonparametric model relying on the
use of Dirichlet process, Ferguson (1973). This fully bayesian approach consists of building an
infinite mixture model, in which the number of mixture components is potentially unlimited, and
is itself a random variable that is part of the overall model. In our pesticide study, a multivariate
Normal distribution was chosen as the kernel density of the mixture. In that way, the correlations
of the P pesticides were modelled and individuals were clustered both on their co-exposure levels
and on their co-exposure correlations. The mixing distribution G was modelled with a Dirichlet
process which is the most popular modeling tool as a prior distribution for infinite mixture models
in a nonparametric bayesian context, Lo (1984). Indeed, the DP can be viewed as a probabilistic
measure on the space of probability measures and fulfills required proprieties defined by Ferguson
(1973), Antoniak (1974) to be used as a prior distribution. To integrate the uncertainty of individual
exposure to each pesticide, we modified the base model with a hierarchical DP approach, similar
to the one proposed by Teh et al. (2006).

As it is often the case in bayesian statistics, inference was conducted via Monte Carlo Markov
Chain techniques. A Gibbs sampling method based on the stick-breaking (SB) representation of
the DP was retained to account for the complexity of the hierarchy within an effective algorithm,
Ishwaran and James (2001). Indeed, the stick-breaking priors can be simply constructed using
a sequence of independent Beta random variables. However, due to the high dimension of the
datasets and to the iteration principle of the MCMC process, computational time is heavy and
must be reduced. In that respect, the random block sampling proposed by Cabrera et al. (2009)
was applied to the SB algorithm. This procedure consists of subsampling d variates among the
available P dimensions at each iteration.

In the first section, the data of residue levels, consumed quantities and the co-exposure esti-
mation are described. In the second section, infinite mixture and Dirichlet process are outlined.
Then, the chosen prior distributions and the model in its hierarchical form are presented. To give
practical purposes, the SB and the random block-SB algorithms are detailed. Finally, the models
are applied to a set of simulated data and to the French population co-exposures to pesticides.
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2 Co-exposure to pesticides application

The pesticide food exposure was estimated from the available datasets on individual food consump-
tion from national dietary survey and on residue levels obtained from national pesticide residues
monitoring programmes. Concerning dietary exposure assessment to pesticides residues, it is nec-
essary to identify and take into account all foodstuffs in which significant residues might occur, as
well as all pesticides that may be present in the food. Therefore, a first step consists in the identifi-
cation of food/pesticide combinations to include in the exposure assessment. Most of the chemical
analyses of pesticide residues are said ”left-censored” when the concentrations levels are lower than
the limit of quantification (abbreviated LOQ) of the laboratories. To deal with a large number of
quantified data, a selection criteria is used: only the pesticides that have been quantified (residue
level over the LOQ) in at least 10% of the analyses realized in one commodity are retained. Because
their quantified residues levels were of the same order than the corresponding LOQ, some pesticides
for which the percentage of quantified data was lower than 10% have been however included in the
study. In such a case, it was considered that the pesticide is really present in the food but has not
been quantified due to analytical restrictions. Therefore, even if the quantification level is rather
low, the pesticide is of concern in term of risk of exposure.

2.1 Food consumption data

Consumption data are provided by the second ”Individual and National Study of Food Consump-
tion”, INCA2 survey, carried out by the French Food Safety Agency, AFSSA (2009). The study
was conducted into three fieldwork waves between late 2005 and April 2007 in order to cover sea-
sonal variation. Two independent populations were included in the study: 2, 624 adults aged 18-79
years and 1, 455 children aged 3-17 years. Participants were selected using a three-stage random
probability design stratified by region of residence, size of urban area and population category
(adults or children). Each subject was asked to complete a seven-day food diary as well as other
questionnaires on anthropometrical and socio-economical factors. Food were subsequently coded
into 1, 305 ”as consumed” food items (INCA2 classification). In order to match the consumption
data to pesticide residues data, which are measured on raw agricultural commodities (RAC), the
food items defined in the INCA2 survey were decomposed into 181 RAC. For that, 763 standardized
recipes, which have been defined by the French Food Safety Agency taking account of industrial
processes, home cooking habits and edible portions for the INCA2 survey (AFSSA, 2009) , were
used.

In order to consider the heterogeneity of inclusion probabilities, we have created two samples of
n = 2, 624 adults and n = 1, 455 children from the original sample, by carrying out random trials
with replacement and respecting the provided sampling weights of each individual.
In the context of an acute risk, the time window is the 24 hour day, so among the available 7 days of
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consumption of each individual, one was randomly selected. Only normo-reporters i.e. individuals
whose energetic needs are covered by the declared consumptions, were considered for this study.
Therefore, two samples of normo-reporters of 1, 898 adults and of 1, 439 children were used for the
analysis.

2.2 Pesticide residues levels data

The data source on pesticide residues in food and drinking water corresponds to the annual mon-
itoring programmes implemented in 2006 by the French administrations (Ministry of Economy,
Ministry of Agriculture, Ministry of Health). These surveys provide sample distributions of residues
for up to 300 pesticides for about 150 RAC. The number of samples collected varies from about
10 for minor commodities up to 480 for staples (apple, lettuce, etc.). Following the selection cri-
teria described at the begining of this section, 79 pesticides have been retained for the analysis.
Residues of the selected pesticides were analyzed in 120 RAC and in drinking water consumed by
the INCA2 population. A total of 306, 899 analytical results corresponding to 8, 364 combinations
of pesticide/commodity were used in this work.

2.3 Dietary co-exposure assessment

For each commodity a treated with the pesticide p, the daily consumption cia was multiplied by one
residue level qpa and adjusted by the body weight wi of the consumer i. For the acute exposure, the
daily consumption cia corresponds to the sum of all the quantities of commodity a consumed during
the selected day. The intakes calculated for each commodity were summed to obtain a total exposure
in milligrams of the chemical per kilogram of body weight of the consumer (mg/kg bw). This process
was performed for m = 1, . . . ,M values randomly selected in the contamination distribution of each
pesticide/commodity combination to account for the residue level uncertainty. The final data set

comprised of a serie of M possible daily exposures xpim =
Ap∑
a=1

(cia × qpam)/wi to each pesticide

p = 1, . . . , P , for each individual i = 1, . . . , n. In order to deal with quantitative values, each
censored data was uniformly selected between 0 and its censoring value (LOD). Similarly, for each
pesticide/commodity combination, random contamination values were uniformly selected between
the different observed residues levels, in respect to the probability of being into the interval. Scaling
problems between pesticide exposure levels were ruled out by passing to log scale and normalizing
the data. Two datasets were created, one considering the 95th percentile of the distribution of the
M exposures to the pesticide p of each individual i (one high exposure per individual), the other
one considering the entire distribution empirically described by the M exposure values. Therefore,
computations were realized, in the first case with a co-exposure matrix of size n × P and in the
second case with a matrix of size n×M × P .
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3 Methodology

3.1 Nonparametric bayesian model based clustering

A common approach to assign data to clusters is to construct a model in which data are generated
from a mixture of probability distributions. In that way, the co-exposure of the n individuals to the
P pesticides arise from a distribution composed of different sub-distributions, namely the mixture
components. Therefore, the groups of individuals with similar patterns of pesticide co-exposure
are identified as the ones sharing the same sub-distributions. Let the observed co-exposures x =
(x1, . . . , xi, . . . , xn) with xi a P dimensional vector xi = (xi1, . . . , xip, . . . , xiP ), distributed with a
density of probability

f(xi) =
∫

Θ
k(xi|θ)G(dθ) (1)

where k(.|θ) is the known density of the mixture components called the kernel density, with
parameter θ ∈ Θ and G the unknown mixing distribution. Under a nonparametric perspective, the
unknown density G is one of an infinite-dimensional function space. In a bayesian approach, the
challenge is to place an appropriate prior P (G) on the distribution G. Note that the equation (1)
can be broken by introducing the latent variables θi

xi|θi ∼ k(dx|θi) (2)

θi|G ∼ G(dθ)

G ∼ P (G)

Individuals with similar pattern of pesticide co-exposure are the ones with similar values of θi.
Now consider a partition, noted as p, that separates the n vectors xi into n(p) groups of indi-

viduals. The partition of size n(p) ∈ {1, . . . , n}, can be represented as p = {C1, . . . , Cn(p)} where
Cj denotes the jth cluster for j = 1, . . . , n(p). The equation (1) can be expressed conditionnaly on
the partition p, as a classification likelihood

f(x|p) =
n(p)∏
j=1

k(xi, i ∈ Cj)

where k(xi, i ∈ Cj), is the normalization constant of the posterior distribution of θ given the
measurements of the cluster Cj , that is k(xi, i ∈ Cj) =

∫
Θ

∏
i∈Cj

k(xi|θ)G(dθ).

In that classification likelihood context, the partition p is the parameter for which a prior-
posterior analysis is required. The posterior distribution of p is the product between the prior

distribution P (G) ∝
n(p)∏
j=1

g(Cj), where g is a function of the cluster only, e.g. its size, and the joint

distribution k of the subset of x:
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π(p|x) ∝
n(p)∏
j=1

g(Cj)k(xi, i ∈ Cj). (3)

An estimation of the optimal partition is the one that maximizes the posterior distribution (3),
which is approximated in this paper with a Gibbs sampler described in the section 3.3. The number
of clusters in the optimal partition represents the number of sub-populations of individuals with
similar design of pesticide co-exposure.

Dirichlet process

A collection of distribution functions called random probability measures (RPM) can be assigned
to the densityG (Walker et al., 1999; Muller and Quintana, 2004). Ferguson (1973) stated properties
of this class of measures and introduced the Dirichlet Process (DP) as one of the RPM. The DP
is defined by two parameters, a scaling parameter γ and a base probability measure H. The
distribution of probability G is drawn from a DP, noted G ∼ DP (γ,H), if and only if for any
partition (A1, . . . , Ak) of Ω, the vector of random probabilities (G(A1), . . . , G(Ak)) is drawn from
a Dirichlet distribution

(G(A1), . . . , G(Ak)) ∼ Dir(γH(A1), . . . , γH(Ak)). (4)

From the equation (4), it is easy to show that for A ∈ Ω

E[G(A)] = H(A) et V [G(A)] =
H(A)(1−H(A))

1 + γ
.

Stick-breaking representation of the Dirichlet process

Many representation of the DP, as Polya urn scheme closed to the Chinese restaurant process
(Blackwell and MacQueen, 1973; Pitman and Yor, 1996) are relevant for computational purposes.
Sethuraman (1994) introduced the stick-breaking (SB) representation of the DP. In that way,
G ∼ DP (γ,H) can be represented as an infinite mixture of point masses

G =
∞∑
k=1

βkδφk

where φk are random variables sampled from H, δφk refers to a point masss concentrated at atom
φk and βk are the “stick-breaking weights” depending on γ. Drawing θi from G in equation 2 means
that θi is equal to one of φk with the associated probability βk.

As infinite mixture is impossible to construct in practice, Ishwaran and James (2001) have
shown that for a reasonable N (N < ∞) the quality of approximation of the G’s is good. The
random weights βk are built from auxiliary weight β∗k ∼ Beta(1, γ) through the stick-breaking
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procedure given by

β1 = β∗1 , βk = β∗k

k−1∏
l=1

(1− β∗l ) for k = 2, . . . , N − 1, and βN = 1−
N−1∑
k=1

βk.

In our study, clusters of individuals with similar design of co-exposure are identified as the ones
sharing the same atoms φk.

3.2 Specific models

Multivariate normal mixture model

A P dimensional multivariate Normal distribution NP (µ, τ−1) with mean vector µ ∈ RP and
random covariance matrix τ−1 ∈ RP×P is assigned to the kernel density k.

The conjugate Wishart-Normal WN(α,Ψ,m, t) density is used as the prior distribution of the
parameters (µ, τ). Conditionally of the random precision matrix τ, the random vector µ is assigned
a P -dimensional Normal distribution µ|τ ∼ NP

(
m, (tτ)−1

)
. A Wishart distribution is used for

the symmetric and positive finite precision matrix τ as τ ∼W (α,Ψ) , where α is a scalar degree of
freedom and Ψ a P ×P scale matrix. Therefore, the base probability measure H is the combination
of the Wishart and the Normal distributions

H(dµ, dτ) =
{

2−αP/2 |Ψ|α/2 (ΓP (α/2))−1 × |τ |(α−P−1)/2 exp
[
−1

2
Tr (Ψτ)

]}
×
{

(2π)−P/2 |tτ |1/2 exp
[
− t

2
(µ−m)′τ(µ−m)

]}
dµdτ

where ΓP is the multivariate Gamma function ΓP (α/2) = πP (P−1)/4
∏d
r=1 Γ(α+1−r

2 ) and Tr(A) is
the trace of the matrix A.

The marginal density k(xi, i ∈ Cj) is obtained by integrating over the parameters µ and τ the
product of the probability measure H and the product of the kernel density k of the xi, i ∈ Cj ,
that is

k(xi, i ∈ Cj) =
∫ ∫ ∏

i∈Cj

k(xi|µ, τ)H(dµ, dτ).

In respect with our distribution choice, the marginal density is written as

k(xi, i ∈ Cj) =

d∏
r=1

Γ(
α∗j+1−r

2 )

d∏
r=1

Γ(α+1−r
2 )

td/2

πdej/2
(
t∗j

)d/2 |Ψ|α/2∣∣∣Ψ∗j ∣∣∣α∗j/2 =
Γd(α∗j/2)
Γd(α/2)

td/2

πdej/2
(
t∗j

)d/2 |Ψ|α/2∣∣∣Ψ∗j ∣∣∣α∗j/2 ,
where (∗j ) are the updated values of the parameters of the Wishart-Normal notedWN(α∗j ,Ψ

∗
j ,m

∗
j , t
∗
j ),
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and equal to

α∗j = α+ ej , m
∗
j =

tm+ ejxj
t∗j

, t = t+ ej , Ψ∗j = Ψ + Sj +
ejt

t∗j
(m− xj)(m− xj)′,

where ej is the number of observations classified in the cluster Cj , xj = 1
ej

∑
i∈Cj

xi is the mean of

the cluster Cj and Sj =
∑
i∈Cj

(xi − xj) (xi − xj) is the corresponding covariance matrix.

The optimum number of mixture components n(p) and the posterior distribution of the com-
ponent mixture parameters are obtained by maximizing the following criteria corresponding up to
a constant to the posterior empirical log likelihood (i.e. the log of the equation (3))

Q(p) = n(p)× ln(γ) +
n(p)∑
j=1

ln Γ(ej) +
n∑
i=1

ln k(xi|θi). (5)

Hierarchical model to account for the uncertainty of the exposure

An additional Dirichlet process is used to account for the uncertainty of the exposure given by
the set of data xim = {xpim, p = 1, . . . , P} for each individual i = 1, . . . , n and the contamination
value m = 1, . . . ,M

xim|θim ∼ k(.|θim) (6)

θim|Gi ∼ Gi

Gi ∼ DP (αi, G0)

G0 ∼ DP (γ,H).

With such model, the co-exposure to the P pesticides of each individual i is composed of several
sub-distributions identified by the ones sharing the same θim. Therefore, the shape of the individual
exposures to each pesticide given by the M values is considered into the clustering process.

3.3 Algorithm

3.3.1 Stick-breaking algorithm of the base model

The algorithm of the base model described in equation (2) is presented below in three steps.
Considering G ∼ DP (γ,H), we use the stick-breaking representation of the Dirichlet process G =∑N

k=1 βkδφk(.), where φk denotes the hidden parameters of the multivariate gaussian distribution
(µk, τk), β = (β1, . . . , βN ) are the stick-breaking weights, and N is the maximum number of atom
of G. A vector K = (Ki) is introduced to store the affectation of each data xi = (xip, p = 1, . . . , P )
for i = 1, . . . , n to an atom (φk)k=1,...,N so that Ki is an integer from 1 to N . Only N∗ of the N
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available atoms are distinct values which set is denoted by K∗.

1. Sampling (φ|K,β,X) : for those k in K∗, sample φk with respect to the ”updated” base
measure H∗k (a Wishart-Normal with parameters α∗k,Ψ

∗
k,m

∗
k, t
∗
k obtained from the posterior

distribution given by {xi,Ki = k}) and for the remaining (N −N∗) atoms, get φk from the
base measure H (the prior Wishart-Normal(α,Ψ,m, t)).

2. Sampling (K|β, φ,X) for k = 1, . . . , N, and i = 1, . . . , n

Pr(Ki = k) ∝ βk × k(xi|φk). (7)

3. Sampling (β|φ,K,X) based on the β∗k ∼ Beta(1 + ek, γ +
∑N

l=k+1 el) with ek corresponding
to #{xi,Ki = k} ≤ n for k = 1, . . . , N, then

β1 = β∗1 , βk = β∗k

k−1∏
l=1

(1− β∗l ), for k = 2, . . . , N − 1, βN = 1−
N−1∑
l=1

βl

Hierarchical model

The algorithm of the stick-breaking representation of the hierarchical Dirichlet process presented in
equation (6) requires the sampling of additional intermediary weights π = (πik) and the definition
of a matrix K = (Kim) describing the affectation of each data xim = (xpim, p = 1, . . . , P ) to one of
the N atoms, for i = 1, . . . , n and m = 1, . . . ,M . Steps 2 and 3 are replaced with steps 2’ and 3’
below.

2’. Sampling (K|π, β, φ,X) for k = 1, . . . , N , i = 1, . . . , n and m = 1, . . . ,M

Pr(Kim = k) ∝ πik × k(xim|φk)

3’. Sampling (π|β, φ,K,X), independently on the fixed i’s and based on

π∗ik ∼ Beta(α0βi + eik, αi

(
1−

k∑
l=1

βl

)
+

N∑
l=k+1

eil),

with eik corresponding to #{xim,Kim = k} ≤M for i = 1, . . . , n and k = 1, . . . , N , then

πi1 = π∗i1, πik = π∗ik

k−1∏
l=1

(1− π∗il), for k = 2, . . . , N − 1, πiN = 1−
N−1∑
l=1

πil.

Note that π∗iN ∼ Beta(αiβN + eiN , 0) is a properly defined Beta distribution.

Finally sampling (β|π, φ,K,X) exactly as described in the original step 3.
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Learning about the parameter γ

Considering γ as a random parameter leads to an additional last step.

4. Sampling (γ|φ,K, π, β,X) based on an auxiliary variable γ∗ ∼ Beta(γ + 1, n), according to
the following mixture distribution

γ ∼ wγ∗ × Γ(aγ + k, bγ − ln γ∗) + (1− wγ∗)× Γ(aγ + k − 1, bγ − ln γ∗), (8)

with weights wγ∗ defined by wγ∗
1−wγ∗

= aγ+k−1
bγ−ln γ∗ = cγ∗ that is wγ∗ = cγ∗

1−cγ∗
.

Starting values of hyperparameters

Starting values of the hyperparameters were taken equals to α = P, Ψ = 0P×P , m = 0P , t = 1, as it
is proposed in Cabrera et al. (2009) in order to use vague prior distributions. Some tests were done
with the simulated datasets for the starting value related to the parameter γ: no prior distribution
but γ is fixed to 1, a prior Gamma distribution with (aγ , bγ) the shape and the rate parameters equal
to: (aγ , bγ) = (2, 4) for informative prior and equal to (aγ , bγ) = (1, 1) and (aγ , bγ) = (0.01, 0.01)
for more vague prior distributions (Escobar and West, 1995). In the case of the hierarchical model,
the weigths αi were fixed to 1 for each i = 1, . . . , n.

3.3.2 Random-block Gibbs Stick-breaking

Cabrera et al. (2009) introduced a novel procedure called the random block Gibbs weighted Chinese
restaurant process algorithm to reduce the heavy computational time to estimate the optimal
partition, induced by the Gibbs sampler and the high dimensionality of the data. We propose to
apply this method to the SB algorithm. The principle is to randomly reduce the dimension of the
data by selecting a number d(d < P ) of pesticides among the original number P at each gibbs
cycle. Therefore, given the sequence of random integers vd = {l1, . . . , ld}, a subset of observations
xi = (xil1 , . . . , xild) is used instead of the xi = (xi1, . . . , xiP ) for the i = 1, . . . , n individuals. This
procedure will be referred to as RB-SB in the following.

4 Application

4.1 Simulated datasets

To investigate the quality of the clustering estimates under various settings, a simulation study
was conducted for the stick-breaking algorithms applied to two datasets created from the one
proposed by Cabrera et al. (2009). The datasets were built from three component mixture of
P = 5 dimensional multivariate Normal distributions noted NP (µk,Σk)k=1,...,3. The parameters
(µk,Σk) are detailed in Table 1.

10



Table 1: Parameters of the multivariate Normal distributions NP (k, Sk)k=1,...,3 used to generate the simu-
lated datasets

k µk Σk

2 1.0 0.5 0.2 0.1 0.1
2 0.5 2.0 0.5 0.2 0.1

1 4 0.2 0.5 1.0 0.5 0.2
5 0.1 0.2 0.5 1.0 0.5
6 0.1 0.1 0.2 0.5 3.0

-2 1.0 0.5 0.2 0.1 0.1
-2 0.5 2.0 0.5 0.2 0.1

2 -4 0.2 0.5 3.0 0.5 0.2
-5 0.1 0.2 0.5 2.0 0.5
-6 0.1 0.1 0.2 0.5 1.0

-5 3.0 0.5 0.2 0.1 0.1
5 0.5 1.0 0.5 0.2 0.1

3 -7 0.2 0.5 2.0 0.5 0.2
7 0.1 0.2 0.5 2.0 0.5
-9 0.1 0.1 0.2 0.5 3.0

4.1.1 Dataset for the base model

A sample of 1, 000 values (xi) was built from f(x) =
3∑

k=1

βkNP (µk,Σk) with (β1, β2, β3) = (0.3, 0.3, 0.4).

From 30, 000 iterations, and with the parameter γ fixed to 1, the optimal partition was obtained
at the 34th iteration for our Q-criteria, given in equation 5, of Q = −3, 687, cf. Fig. 1(a). The
optimal partition was composed of 3 clusters corresponding to the 3 components of the mixture
dataset, cf. Fig. 1(b). Performing the RB-SB algorithm with dimension reduced to d = 2, the
maximum Q-criteria is reached at the 650th iteration. When using different prior distributions
for the parameter γ, the same maximum value of Q = −3, 687 is reached, as with γ fixed to 1.
This attests to the robustness of the γ value in so far as the issues of predictive density estimation
are concerned. Figure 2 shows the 3 different prior distributions attributed to the parameter γ
and their corresponding posterior distributions. Note that 50% of posterior values of γ is below
0.27 < 1, showing that it is possible, even though maybe not crucial here, to learn about γ.

4.1.2 Dataset for the hierarchical model

To reproduce the co-exposure data structure including uncertainty of exposure, 240 individuals

were generated from the f(x) =
3∑

k=1

βkNP (µk,Σk) with (β1, β2, β3) = (0.33, 0.17, 0.5). For each

individual i, M = 100 values were sampled resulting of a total sample of 4, 800 observations. The
convergence of the SB and the RB-SB algorithms to the optimal partition is very slow. After
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Figure 1: The Stick-Breaking (SB) and the Random-Block Stick-Breaking (RB-SB) algorithms for the base
model applied to simulated dataset (N = 30 atoms and 30, 000 iterations).
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Figure 2: Densities of the Gamma(aγ , bγ) prior (solid) and the posterior (dashed) ditributions of the param-
eter γ. Red line : (aγ , bγ) = (2, 4), blue line : (aγ , bγ) = (1, 1), green line : (aγ , bγ) = (0.01, 0.01),
ln(γ) for the prior.
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200, 000 iterations, the number of cluster which maximized the Q-criteria was 11. The size of the
clusters ranged from 269 to 16, 089 observations. However, some clusters had similar values of
parameters to the distributions used to generate the dataset. This confirms that the algorithm
will eventually converge to an optimal partition corresponding to the 3 components of the mixture
dataset.

4.2 Real datasets on co-exposure to pesticides

4.2.1 Base model for the 95th percentile of co-exposure

Different values of d (d = {15, 25, 41, 79}) have been tested running 100, 000 iterations of the
algorithm and using a prior distribution Gamma(0.01, 0.01) for γ as a flat prior. The presented
results are for the value of d which maximizes the Q-criteria: d = 41. To test the convergence of
the algorithm to the optimal partition an extra of 200, 000 iterations had been performed with this
value of d.

For the adults sample, the optimal partition was obtained after 196, 445 iterations and is com-
posed of 17 clusters. The adult population was clustered into 3 main sub-populations composed
of 582, 412 and 870 individuals. The other 14 clusters were discarded as they jointly only count
34 individuals. For each main cluster, the boxplots of the 79 pesticide exposures are shown in Fig.
3. The sub-populations of the clusters 2 and 3 are the most highly exposed to a large number of
pesticides. For these 2 populations, the correlation matrix of the pesticide exposure are drawn from
the posterior distribution of the parameter τ and shown in cf. Fig. 4(a) and Fig. 4(c). To define
cocktails, we focus on pesticides with at least one correlation with another, greater than 0.95 (cf.
Fig. 4(b) and Fig. 4(d)). With this criteria, from the 79 pesticides and the two sub-populations,
34 pesticides have been selected and combined into 20 cocktails.

For the children sample, the optimal partition was obtained after 98, 362 iterations and is
composed of 16 clusters. As for the adults, 14 clusters totalizing only 45 individuals were discarded
to focus on the 2 main ones. The first cluster is composed of 743 children which are highly exposed
to a large number of pesticides and the second one is made of 651 children. As for the adult sample,
the correlation matrix of the most exposed sub-population was analysed to determine cocktails of
pesticides. There are 39 pesticides with correlations over 0.95, divided into 13 different cocktails.
From this 39 pesticides, 28 are similar to the ones obtained with the adult population.

The base model have been compared with a classical principal component analysis (PCA) for
the adult population. The axis 1, which represents 68% of the total variance is mainly determined
by the 34 pesticides selected with our base model. Indeed, among the 24 pesticides which mostly
contribute to axis 1, 23 have also been selected with our model, and the 34 pesticides selected with
our base model are among the 50 first which build the axis 1. The second axis only represents
6% of the total variance. Note that the coordinates of the 79 pesticides are positive on the axis 1,
while the individuals are present on the both sides of the axis. This leads to the conclusion that
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Figure 3: Boxplots of the 79 pesticide exposures for the cluster 1 (a), cluster 2 (b) and cluster 3 (c).
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Figure 4: Heatmap of the correlation matrix of the cluster 2 (a,b) and the cluster 3 (c,d). Right maps are
focus on pesticides with correlation upper than 0.95
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the individuals are either highly exposed to all pesticides or have a low exposure for all pesticides,
and hence that it is their consumption behavior that matters.

4.2.2 Hierarchical model to integrate exposure uncertainty

Because of the heavy computational time of the algorithm, the hierarchical model was only applied
to the 34 pesticides selected with the base model for the adult population. From 30, 000 iterations,
the optimal partition was found after 25, 853 iterations and was composed of 6 clusters. From these
clusters, three were composed of large sets of observations according to the clustering obtained
with the base model (cf. previous subsection). Moreover, two of these clusters were composed of
individuals highly exposed to a large part of the 34 pesticides. The distribution of co-exposure of
each individual, was mostly found composed of 2 or 3 component mixtures. The correlation matrix
of the two main clusters shows that the correlations between pesticides were very low, ranged
between 0.2 and 0.45, compared to the ones found with the base model. These low correlations
could be due to the high uncertainty around the exposure to each pesticide. Indeed, for a one
random set of contamination selected for the P pesticides, an individual can be exposed to a low
level for one pesticide and to a high level for another pesticide, leading to low correlations. The
integration of the exposure uncertainty is more realistic in terms of exposure assessment but imply
difficulty to define cocktails of pesticides.

5 Conclusion

This paper presents a nonparametric bayesian model based on Dirichlet process mixtures, applied
to cluster the co-exposure of the French population to various pesticides in order to define cocktails
of pesticides which are relevant to study for toxicological effects. Such nonparametric bayesian
model has several advantages i.e. the number of clusters is automatically determined through
the estimation process, no parametric assumption on the shape of the co-exposure distribution
is required and the structure of the data set may be introduced through a specific hierarchy to
account for exposure uncertainty. However, the required hypothesis done to construct the co-
exposure dataset in order to deal with low residues levels, lead with homogeneous population:
individuals highly exposed to a large part of pesticides and individuals lowly exposed to a large
part of pesticides. In that way, defining sub-populations and cocktails of pesticides is a difficult
task and the results obtained are preliminary. Therefore, several extensions or changes in the
framework can be considered to improve the clustering. For example, to obtain more clusters of
individuals with similar co-exposure patterns, the Poisson Dirichlet process could be used as a prior
distribution, see Pitman and Yor (1997). Another extension can be to cluster both the individuals
and the pesticides. In that way, the Mondrian processes which are multidimensional generalizations
of Poisson processes and which have been introduced by Roy and Teh (2009) to model relational
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data, could be considered.
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