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ABSTRACT

Monsoon rainfall is central to the climate of West Africa, and understanding its variability is a challenge for

which satellite rainfall products could be well suited to contribute to. Their quality in this region has received less

attention than elsewhere. The focus is set on the scales associated with atmospheric variability, and a meteo-

rological benchmark is set up with ground-based observations from the African Monsoon Multidisciplinary

Analysis (AMMA) program. The investigation is performed at various scales of accumulation using four gauge

networks. The seasonal cycle is analyzed using 10-day-averaged products, the synoptic-scale variability is

analyzed using daily means, and the diurnal cycle of rainfall is analyzed at the seasonal scale using a composite

and at the diurnal scale using 3-hourly accumulations. A novel methodology is introduced that accounts for the

errors associated with the areal–time rainfall averages. The errors from both satellite and ground rainfall data

are computed using dedicated techniques that come down to an estimation of the sampling errors associated to

these measurements. The results show that the new generation of combined infrared–microwave (IR–MW)

satellite products is describing the rain variability similarly to ground measurements. At the 10-day scale, all

products reveal high regional and seasonal skills. The day-to-day comparison indicates that some products

perform better than others, whereas all of them exhibit high skills when the spectral band of African easterly

waves is considered. The seasonal variability of the diurnal scale as well as its relative daily importance is only

captured by some products. Plans for future extensive intercomparison exercises are briefly discussed.

1. Introduction

The West African monsoon (WAM) brings the main

part of the yearly rainfall over West Africa, including

Sahel (Hastenrath 1991), and is at the heart of the water

resources of this part of the continent (Conway et al.

2009). The functioning of the monsoon and of the rain-

fall variability has hence received a lot of attention, es-

pecially since the advent of a long-term drought over the

Sahel in the 1970s to the 1990s (Le Barbé et al. 2002; Ali

and Lebel 2008; Giannini et al. 2008a). Its future evo-

lution is also of concern in the context of the global

climate change (e.g., Giannini et al. 2008b). The need for
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a deeper understanding and forecasting capability of the

WAM prompted the community to devote a vast obser-

vational program over the region, the African Monsoon

Multidisciplinary Analysis (AMMA; Redelsperger et al.

2006); the data from the AMMA campaign are used in

this study.

The main feature of the seasonal march of the mon-

soon is the rapid onset occurring in late June and char-

acterized by a northward jump of the ITCZ (Sultan and

Janicot 2003) showing a strong modification of the rain

regimes and synoptic-scale variability (Gu and Adler

2004). The day-to-day variability of rainfall alternates

between active and inactive phases at the intraseasonal

scale with modes at 10–25 days and around 40–50 days,

respectively (Sultan et al. 2003). At shorter synoptic time

scales, variability of the rainfall is also observed and

linked to tropical wave dynamics (e.g., Gu et al. 2003;

Mounier et al. 2007) and extratropical intrusions of dry

air (Roca et al. 2005). The most documented mode of

synoptic variability is associated with the African east-

erly waves (AEW) and was recently fully redocumented

(Kiladis et al. 2006). These 3–5-day waves are modulating

strongly the rainfall during the monsoon through their

relationship to organized convective systems (Machado

et al. 1993). Finally, as observed on most tropical conti-

nents, the diurnal cycle of insolation drives a significant

portion of the overall meteorological variability over the

WAM (e.g., Desbois et al. 1988). Redelsperger et al.

(2002) systematically investigated the 1992 wet season

in West Africa and detailed the previously mentioned

various scales for that very year. They underscored that

such a multiscale approach was an encouraging method

to deepen our understanding of the interaction of the

various processes occurring in the WAM. Hence, further

understanding of the WAM requires in-depth analysis of

this multiscale variability of rainfall.

Satellite observations are a powerful tool to cover these

scales and to be used for these much needed meteo-

rological investigations over the WAM where the plu-

viograph network is scarce. The recent generation of

combined infrared (IR) and microwave (MW) products

(Hsu et al. 1997; Herman et al. 1997; Huffman et al.

2001; Joyce et al. 2004; Ushio et al. 2009; Huffman et al.

2007; Levizzani et al. 2007; Bergès et al. 2010) espe-

cially fits very well to such endeavor, but their hard-

to-tell ability to provide useful information is often

underscored. Although a number of studies investigated

the quality of these satellite estimates in various regions

of the world [e.g., Negri et al. 1995; Ebert et al. 1996;

Ebert and Manton 1998; Joyce et al. 2004; Huffman et al.

2007; Xie et al. 2007; Ebert et al. 2007; Zeweldi and

Gebremichael 2009; Sapiano and Arkin 2009; see also

the International Precipitation Working Group (IPWG)

Web site, which is available online at http://www.isac.cnr.

it/;ipwg/IPWG.html], few addressed the West African

climate. These rare studies focused on accumulated time

scales such as 10-day and monthly scales (Laurent et al.

1998; Nicholson et al. 2003a,b; Ali et al. 2005b; Lamptey

2008). Jobard et al. (2010) recently provided 10-day scale

intercomparisons of 10 products using 3 yr of data over

the Sahel. Their results indicate good enough agreements

at this scale to conduct further investigation at shorter

time scales in link with the meteorology of the region.

Here, we provide a comparison of a representative

subset of IR–MW satellite and surface rainfall products

over West Africa, at meteorologically relevant scales,

during the AMMA campaign (2006 rainy season). Our

aim is to validate (or not) the use of the satellite rainfall

estimates for physical investigation of the monsoon. The

10-day scale before and after the onset, the daily scale

over the full course of the monsoon, the 3–5-day spectral

band before and after the onset, and the diurnal scale

before and after the onset are documented as a meteo-

rological benchmark to establish the usefulness of the

satellite rain products. A dedicated statistical approach is

proposed that relies on the use in the comparisons of the

errors associated to the areal mean rainfall estimates for

both gauges and satellite products. This novel method-

ology is applied at the previously mentioned scales over

the WAM region and over three dedicated sites that were

adequately instrumented during the AMMA campaign

(Lebel et al. 2009, 2010).

The paper is organized as follows: First, ground-based

and satellite data are both introduced along with their

respective error budget in section 2. Section 3 quickly

presents the statistical procedure, taking the errors into

account, used for the comparison. Section 4 details the

results of the confrontation for each scale of our mete-

orological benchmark. A summary and discussion are

reported in section 5.

2. Data

a. Rationale

Over the mentioned range of scales, classical (without

errors) evaluation techniques (for an insightful review,

see Ebert 2007) fall short as the errors in both the gauges,

and the satellite products can become significant and

can corrupt the evaluation. For instance, the measure-

ment errors significantly attenuate the observed correla-

tion, making the observed correlation between two series

weaker than if one does not account for the measurement

errors. Kelly (2007) shows that, when the measurements

errors make up to 50% of the variance on each series, the

coefficient of correlation is reduced by roughly 50%. Such
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an example calls for a careful handling of the errors in

running the comparisons. The estimation of the errors in

both the gauges and the satellite rainfall estimates is a

complex task. It is therefore usually left aside by the in-

vestigators in intercomparison exercises (Ebert 2007).

Such efforts have nevertheless been undertaken at dif-

ferent time and space scales for both satellite measure-

ments over different parts of the world (e.g., Huffman

1997; Ali et al. 2005b) and gauge measurements (e.g.,

Lebel et al. 1987; Morrissey et al. 1995; Ali et al. 2005a;

Grimes et al. 1999; Pardo-Igúzquiza et al. 2006; Teo and

Grimes 2007). In short, the error budget of the satellite

and gauges products can be written as

S2 5 S2
calibration 1 S2

algorithm 1 S2
sampling, (1)

where the calibration term is associated with systematic

errors and relevant to the accuracy of the products. The

algorithm term is associated with the intrinsic errors of

the retrieval, and the sampling term refers purely to the

error resulting from the discrete nature (in space or time)

of observations; both terms are relevant to the accuracy

and the precision of the products. It is difficult to separate

both latter terms, because the precision and accuracy of

retrievals depends on the scale of interest and hence the

sampling term is sometimes considered as a mixture of

the two (Huffman 1997).

Rainfall estimation by gauges is subject to a very low

measurement error (e.g., Ciach and Krajewski 1999)

because of the direct nature of this measurement. On the

other hand, because of the punctual nature of gauge

measurement, the sampling error when computing areal

mean rainfall cannot be neglected. The algorithm-based

errors can be assumed to be small compared to the

sampling errors of the gauges (Habib et al. 2001), even if

uncertainty can be significant at small rain rates and

accumulation scales (Ciach 2003). Satellite products are

not affected by a calibration uncertainty of a few Kelvin’s

for the geostationary IR and low earth orbit satellite

(LEO) microwave brightness temperatures (Jobard and

Desbois 1994; Viltard et al. 2006), and we hence neglect

it in the error budget. The algorithm term is difficult to

estimate and is usually considered to be small com-

pared to the sampling uncertainty. Gebremichael and

Krajewski (2005), based on previous studies, assumed that

sampling errors indeed dominate the error budget of

satellite products and proposed a parametric model of the

sampling error distribution of rainfall depending on the

mean rainfall from radar measurements from monthly

down to daily scale over a variety of space scales. The

error budget for both ground-based and satellite-based

rain products hence finally reduces to

S2 ; S2
sampling. (2)

The sampling term error computations are performed

using two different approaches for the gauges and sat-

ellite rain estimates, even if the techniques are closely

related to each other. Errors are evaluated for each areal-

averaged estimate at various scales.

b. The ground-based rain products

1) RAIN GAUGE NETWORKS

Four rain gauge networks are used for this study. The

characteristics of the areas and localization of the net-

works sites are presented in Table 1, and their gauge

distributions are shown in Figs. 1 and 2. The Commité

Permanent Inter-Etats de Lutte contre la Sécheresse dans

le Sahel (CILSS) rain gauge network, spread over the

Sahelian band (Fig. 1), included during the 2006 rainy

season about 570 rain gauge stations and 75 synoptic

stations of the Global Telecommunication System

(GTS). The GTS stations are not used for this study

because they are used in some of the satellite products.

The daily rain data are aggregated at a 10-day time res-

olution for regional comparison with satellite estimations.

The three other networks cover smaller areas located

in Niger, Benin and Senegal. The Benin and Niger net-

works are part of the AMMA Coupling the Tropical At-

mosphere and the Hydrological Cycle (AMMA-CATCH)

observing system (Lebel et al. 2009). The distribution of

gauges of the network around Niamey was optimized

(Lebel and Amani 1999) to obtain a good accuracy for

rainfall estimation over the area at the rain event scale

(typically a few hours); the number of tipping-bucket

gauges was increased up to 54 for the AMMA enhanced

observing period (EOP) in 2006. The upper Ouémé

catchment in Benin was instrumented with 52 tipping-

bucket gauges at stations that are evenly distributed on

a surface of about 15 000 km2. This configuration is suit-

able for the mesoscale analysis of the rainfall associated

with tropical convective systems. Both the Ouemé and

Niamey networks have a density of about 1 gauge per

200 km2 over a 18 3 18 area. The Dakar network con-

sisted of about 35 stations unevenly distributed over a

18 3 18 area (Jenkins et al. 2010, unpublished manuscript;

Jenkins and Gaye 2010); only a subsample of the network

TABLE 1. Characteristics of the rain gauge networks.

Name Localization Area Gauges

CILSS 10.08–17.58N, 17.58W–22.58E 4 000 000 km2 570

Niamey 13.08–14.28N , 1.48–3.08E 25 000 km2 54

Ouémé 9.08–10.08N, 1.58–2.88E 15 400 km2 52

Dakar 14.48–14.78N, 16.98–16.68W 1200 km2 21
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on a small, denser area (0.38 3 0.38) that includes 21

gauges (see Fig. 2c) available for two months (August–

September 2006), a density of about 1 gauge per 50 km2.

The gauge data from these three networks are computed

at 3-h and daily time steps and also aggregated into mean

seasonal diurnal cycle.

2) PRODUCTS AND ASSOCIATED ERROR

COMPUTATION

Various techniques of rain gauge point value inter-

polation have been developed to estimate not only area-

averaged ground rainfall accumulation but also the

sampling errors associated to the interpolation of the

point values over their surrounding spatial domain.

Among those techniques, linear estimators are widespread

used interpolators, and their general expression for

Rref(A, T) area rainfall estimate over a spatial domain A

and a period of accumulation T is

R
ref

(A, T) 5 �
N

g

i51
l

i
R

g
(x

i
, T), (3)

where li represents weights on the accumulations of the

ith rain gauges Rg(xi, T) and Ng represents the total

number of rain gauges available. Morrissey et al. (1995)

detail the computation of an unweighted linear inter-

polation of rain gauge accumulations and compare sam-

pling errors associated to various geometries of networks.

Here, the ordinary block-kriging technique (Journel

and Huijbregts 1978) is used to estimate areal rainfall

FIG. 1. CILSS area rain gauge network distribution (Ali et al. 2005a).

FIG. 2. Rain gauge distributions of the three dense networks of (a) Niamey, (b) Ouémé, and (c) Dakar. The squares represent the area

selected for the kriging interpolation. Black lines are the borders of Niger, Benin and Senegal.
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estimates and their respective sampling errors, first for

10-day accumulations over 18 grid boxes in the Sahel

(Ali et al. 2005a) and then for daily and 3-hourly accu-

mulations and for a 3-hourly seasonally cumulated di-

urnal cycle over the three sites of Niamey, Ouémé, and

Dakar. By weighting the rain gauges individually, the

characteristic of the kriging estimator is unbiased and

the estimation variance is minimized (Lebel and Amani

1999). The kriging technique relies on a structure func-

tion of the rain field g called the variogram. We take into

account information from all the realizations to infer a

single and robust climatological variogram (Lebel et al.

1987). The estimation variance, corresponding to the

sampling error, allows assessment of the estimation quality

as function of the spatial structure of the rain field and the

relative position of the rain gauge network versus the

geographical support of interest A. The estimation var-

iance requires the numerical evaluation of two integrals

of the variogram function over the domain A (Journel

and Huijbregts 1978). Its expression is

Var[R
ref

(T , A)�R(T , A)] 5� 1

a2

ð
A

ð
A

g(x, x9) dx dx9

1 2 �
Ng

j51
l j 1

a

ð
A

g(x, x
j
) dx

� �

��
N

g

i51
�
N

g

j51
lil jg

ij
, (4)

where R(T, A) is the true area-averaged rainfall accu-

mulation for the period T and area A, x is the location

vector and xj denotes the location of the gauge j, a is

the area of the domain A, and g(x, x9) is the variogram

function computed on the Euclidean interdistance be-

tween the two locations x and x9. The first term denotes

the block-to-block computation of the variogram func-

tion over the domain A, with x and x9 belonging to A; the

second term corresponds to the computation of the var-

iogram function between each gauge and the domain A;

and the last term is the in-between gauge variogram

computation. The estimation variance depends on the

variogram characteristics, which are related to the rain

field variance. The spatial structures and the variances of

rain fields are linked to the integration time period con-

sidered (Lebel et al. 1987; Berne et al. 2004; Ali et al.

2005a).

c. The satellite-based rain products

1) THE SATELLITE RAIN ESTIMATES

(i) EPSAT-SG

The Estimation of Precipitation by Satellites-Second

Generation (EPSAT-SG) method has been developed at

Laboratoire de Météorologie Dynamique in the frame-

work of the AMMA research program (Bergès et al.

2010). It consists in downscaling the Global Precipitation

Climatology Project one-degree daily (GPCP-1DD) prod-

uct to the Meteosat Second Generation (MSG) spatial and

temporal resolutions (3 km and 15 min). It combines

a rainfall potential intensity and a rainfall probability

derived, because of a feed forward neural network, from

the MSG multispectral channels and Tropical Rainfall

Measuring Mission (TRMM) Precipitation Radar (PR)

information. The product coverage extends from 58S to

208N and from 258W to 258E, and it is referred to as

EPSAT.

(ii) GSMAP

The Global Satellite Mapping of Precipitation (GSMAP)

algorithm is inspired by a morphing technique (Joyce

et al. 2004) combining passive microwave data from the

current fleet of LEO satellite microwave radiometers

with cloud motion vectors and brightness temperature

from geostationary infrared images. GSMAP covers the

globe from 608N to 608S at the baseline resolution of

0.18 3 0.18 and 1 h. A description of the methodology

can be found in Ushio et al. (2009) and Aonashi and Liu

(2000).

(iii) TMPA

The TRMM multiplatform algorithm (TMPA) precipi-

tation dataset is an operational product of the TRMM

mission (Huffman et al. 2007). It spans the latitudes

from 508N to 508S at the resolution of 0.258 3 0.258 and

3 h. It combines precipitation estimates from multi-

ple satellite passive microwave imagers [Special Sensor

Microwave Imager (SSM/I), TRMM Microwave Imager

(TMI), Advanced Microwave Scanning Radiometer for

Earth Observing System (AMSR-E), and Advanced Mi-

crowave Sounding Unit-B (AMSU-B)] converted to pre-

cipitation estimates using the Goddard profiling algorithm

(GPROF; Kummerow et al. 2001), as well as microwave-

calibrated infrared precipitation estimate data from the

operational fleet of geostationary meteorological satellites.

The Global Precipitation Climatology Project monthly

rain gauge analysis produced by the Global Precipitation

Climatological Center is used for a monthly rescaling

(Huffman et al. 1997).

2) THE ERROR MODEL

The evaluation of the satellite products sampling er-

rors when averaged at some scales from instantaneous

estimates is a difficult task. Several approaches have

been explored, all involving the modeling of the spatial

covariance functions of the rain field or its autocorre-

lation function. Direct estimation using the integrated

APRIL 2010 R O C A E T A L . 719

D
ow

nloaded from
 http://journals.am

etsoc.org/jam
c/article-pdf/49/4/715/3553056/2009jam

c2318_1.pdf by guest on 22 N
ovem

ber 2020



estimates of the satellite rain retrievals and the ‘‘true’’

rain fields (Bell et al. 1990; North and Nakamoto 1989)

or derivation from the discrepancy between the gauges

data and the true rain field (Ali et al. 2005b) are among

those. North and Nakamoto (1989) developed a spectral

formalism to derive a general expression of the sampling

errors, which can be interpreted in the Fourier space–

time domain as the covariance rain field filtered by a

function depending on the rain field sampling scheme.

This expression reduces to the well-known expression of

the uncertainty on the estimation of the mean of in-

dependent data in cases of simple sampling scheme,

s 5
Sffiffiffiffiffiffiffiffiffi
N

ind

p , (5)

where S is the standard deviation of the samples and Nind

is the number of independent data (e.g., Larsen and Marx

2001). Bell et al. (1990) used a stochastic and parametric

model of the covariance field with Global Atmospheric

Program Atlantic Tropical Experiment (GATE) data to

estimate the uncertainties expected at monthly scale and

various spatial scales. Bell and Kundu (2003) further used

this model to compare different sampling schemes of

satellite and rain gauge measurements to optimize net-

work design. The error model developed in Morrissey

et al. (1995) is close to a kriging technique and uses a

variance reduction factor similar to Eq. (4) but without

weights, which collapses to the Eq. (5) if the correlation

among the samples is zero. The modeling of sampling

errors in the case of combined satellite rainfall estima-

tion products become even more complicated because

the sampling scheme depends on which data sources are

combined but also on the way the algorithm itself com-

bines the data. Huffman (1997) developed an error func-

tion at the monthly scale, following North and Nakamoto

(1989), based on the computation of a variance of the

observations and the evaluation of a number of indepen-

dent samples. Recently, ensemble methods have been

used to estimate satellite rainfall uncertainty (Bellerby and

Sun 2005; Teo and Grimes 2007).

Here, a simple error model is developed with a similar

approach: it is assumed that the variance of the true

precipitation field could be computed as the variance S2

of the product data for a given area A and during an in-

tegration period T. The number of degrees of freedom is

estimated independently of the native resolution of the

products and depends on the level of autocorrelation of

the product data. Over an area A and during a period T,

it is defined as

N
ind

5
A

d2

T

t
, (6)

where d and t are the e-folding space and time dis-

tances, respectively, of a structural function computed

using the same variogram function as the one used

in section 2b(2) assuming isotropy. The variogram

functions of the satellite products is calculated over

a 58 3 58 region (98–148N, 08–58E) including both the

Niamey and Ouémé sites and instantaneous estima-

tions over the whole season are used. Sensitivity tests

have shown very little dependence of the calculations

to the selected window. An exponential model is fit-

ted to the average variogram to derive the space and

time e-folding distances shown in Fig. 3. The e-folding

distance is 37 km for TMPA, 41 km for GSMAP,

and 85 km for EPSAT (Figs. 3a,c,e). The temporal

variograms are computed for GSMAP and EPSAT

only and yield e-folding times of 1 and 1.5 h, respec-

tively (Figs. 3b,d). It is not computed for TMPA

because its 3-hourly estimates are considered to be

independent.

d. Error computation results

The error models provide an estimation of errors at

each time step of space–time-averaged satellite rainfall

estimates. The time-averaged relative errors of the three

satellite products along with the rain gauge are reported

in Table 2 for each of the considered scales. The present

error estimates are consistent with the sampling errors

reported by Gebremichael and Krajewski (2004, 2005)

at daily scale over areas of various sizes and using vari-

ous sampling frequencies. They estimated the sampling

errors of 3-hourly sampled rain fields for daily mean

values around 140% for 32 3 32 km2 area and 30% for

256 3 256 km2 area. For daily average from the TMPA

product (3-hourly sampling), the present results give

30% over the site of Niamey (140 3 180 km2), 34% over

Ouémé (110 3 140 km2), and 94% over the Dakar site

(30 3 40 km2). Figure 4 shows the distribution of the

errors. The dispersion of errors of the satellite products

is comparable to the one of the rain gauge estimates but

is larger for TMPA. The errors are not normally dis-

tributed. The relative errors decrease with increasing

space–time-averaged rainfall estimate, following a power

law similar to that reported in Huffman (1997). Because

of its small extension and high density, the subset site

of Dakar stands out with the smallest sampling errors

for the rain gauges and the largest for the satellite es-

timates. The ratio of the mean error to the variance

of the time series is shown in Table 3. It varies from

0% to 50% depending on the considered scale and

product, and it further confirms the need to account for

the errors in running the comparison as discussed in

section 2a.
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3. Methodology of comparisons using error
estimates

a. Approach

The comparison between the satellite products and

the ground rainfall estimates are performed taking into

account their respective estimated errors. The rain gauges

data are considered as the reference, and the satellite es-

timates are expected to resemble this reference. Statistics

are hence computed to characterize the expected linear

relationship between them and the departures from this

one-to-one relationship. First, a linear regression ap-

proach has been selected, and the results of this re-

gression are compared to the perfect agreement y 5 x

line. Although linear regression between two samples of

data assuming some errors on one of them is readily

accessible, the problem is less trivial when assuming

errors on both samples. Leng et al. (2007) reviewed the

most useful classical techniques to overcome this issue

(ordinary least squared, orthogonal regression, etc.) and

their respective underlying validity assumptions. These

are difficult to meet (e.g., Carroll and Ruppert 1996). As

FIG. 3. (left) Spatial and (right) temporal variograms

calculated over the 58 3 58 window (98–148N, 08–58E)

for (a),(b) EPSAT-SG; (c),(d) GSMAP; and (e)

TMPA. The 3’s correspond to the calculated values of

the variogram functions, and the lines correspond to

the fitted exponential model.

TABLE 2. Mean percentages of errors for the seasonal diurnal, 10-day, 1-day, and 3-hourly time scales for the gauge and satellite product

estimates.

Scale Site Gauge EPSAT GSMAP TMPA

Diurnal composite (postonset) Niamey 4 23 21 31

Ouémé 3 22 20 31

Dakar 9 46 74 139

10 days (1–10 Aug 2006) CILSS 27 17 13 20

10 days (10–21 Jun 2006) CILSS 86 32 27 32

1 day (.0.1 mm h21) Niamey 21 28 18 30

Ouémé 17 34 20 34

Dakar 8 50 61 94

3 hourly (.0.1 mm h21) Niamey 13 54 26 38

Ouémé 19 88 35 50

Dakar 15 115 76 69
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shown in the previous section, here the errors from the

satellite estimates are not Gaussian and are not directly

comparable to the ground reference ones. The approach

of Kelly (2007) has been chosen instead. It requires no

assumption on the distribution of errors and is based on

a maximum likelihood estimate technique, and a struc-

tural linear model (or equation) is used. Noting h as the

dependent variable, it is related to j following

h
i
5 b 1 aj

i
1 E

i
, (7)

where Ei is a random variable representing the intrinsic

scatter of the regression relationship and a and b are the

linear regression coefficients. The mean of Ei is assumed

to be zero, and the variance of Ei is assumed to be

constant. The measurements data are usually accom-

panied by error estimates. Noting that x and y are the

measurement data and that Ex,i and Ey,i are the associ-

ated errors on xi and yi, respectively, their relationship to

j and h reads as follows:

x
i
5 j

i
1 E

x,i
and

y
i
5 h

i
1 E

y,i
.

(8)

A Bayesian method is used to solve the regression using

an elaborated implementation, which is described at

length in Kelly (2007). In the present case, Ex,i and Ey,i

are the errors presented in the previous section for the

gauges and satellites, respectively.

b. Score indices

Among the various ‘‘scoring’’ indices available to

quantify the degree of agreement between the satellite

and rain gauge estimates (Ebert 2007), a subset is se-

lected that relies on the direct—or indirect through the

fitting technique—use of the individual errors (for an-

other selection, see Kelly 2007). Hence, the following

indices are kept for the analysis:

d the mean coefficient of correlation R and
d the mean slope and mean intercept of the regression

line a and b.

The distributions of the coefficients a, b, and R, which

are available from Kelly’s technique, were analyzed and

the significance of the mean values of the three coefficients

were confirmed; they are thus used in the following. From

these coefficients, two more indices are computed, the

bias and the root-mean-square error (RMSE) of the

regression:

FIG. 4. (a) Box plots of the error of estimation on the gauge and satellite daily estimates over

Niamey. Each box shows the 25th and 75th percentiles of the uncertainty distributions. The

horizontal line shows the median of the distributions, and the whiskers extend out to largest and

smallest values within 1.5 times the interquartile range. (b) Relative errors as a function of rain

rate for the gauges (dashed line), EPSAT (solid line), GSMAP (dashed–dotted line), and

TMPA (dotted line).

TABLE 3. Ratio (%) of the mean error to the variance of the

precipitation estimates. For Dakar, the median of the error dis-

tributions of the daily estimates is computed rather than the mean

error because the latter does not represent the distribution of er-

rors well as a result of the small sample size.

Scale Site Gauge EPSAT GSMAP TMPA

10 day (1–10 Aug

2006)

CILSS 34 11 5 12

10 day (10–21 Jun

2006)

CILSS 26 10 5 17

1 day Niamey 4 18 4 13

Ouémé 3 19 4 16

Dakar 0.2 45 14 14

3 hourly Niamey 0.6 25 4 12

Ouémé 1 42 7 12

Dakar 0.3 72 32 84
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d the bias of the regression is BIAS-reg 5 b 1 (a 2 1)

RainG, where RainG is the average value of the gauge

estimates, and
d the root-mean-square of the regression is RMS-reg 5

(1 – R2)0.5Sy
0.5, where Sy is the variance of the satellite

product.

Because the bias and the root-mean-square of the re-

gression are functions of the coefficients a, b, and R, they

indirectly account for the individual errors.

Similarly, the well-used probability of detection of rain

(POD) and false-alarm rate (FAR) indices have been

adapted to this error context for the analysis of the daily

scale. Finally, a new index is computed. It consists in the

frequency of error bars overlap (FEBO). The error bars

are interpreted as a confidence interval, and FEBO rep-

resents the frequency of cases for which the satellite and

the ground estimate error bars overlap. FEBO equals 1

if the two series are close enough given their errors and 0

if none of the values are close. FEBO is computed on

the raw series as well as on the unbiased series. Both the

regression and the FEBO computations are run sys-

tematically for the time-accumulated comparison over

the whole Sahel as well as for the daily average com-

parisons over the three dense rain gauge network sites.

All the regressions are computed only for the conditional

rainfall estimates.

4. Results

The results in this section described the ability of the

satellite products to mimic the rainfall variability de-

rived from the gauges. The variability is investigated at

various scales of accumulation. First, the seasonal cycle

is analyzed using 10-day-averaged products, then the

synoptic-scale variability is analyzed using daily means,

and finally the diurnal cycle of rainfall is analyzed at

both the seasonal scale using a composite and at the

diurnal scale using 3-hourly accumulations.

a. Monsoon preonset and postonset and seasonal
scales

In 2006, the monsoon onset occurred between 4 and

10 July (Janicot et al. 2008). Therefore two 10-day pe-

riods were arbitrarily selected as representative of the

conditions of the preonset (11–20 June) and postonset

(1–10 August) to analyze the 10-day accumulation sea-

sonal variability. The results of the comparison are pre-

sented in Table 4. For the second period, high correlation

coefficients are found for the three satellite products

with similar values for EPSAT and TMPA (R ; 0.95).

By contrast, correlations calculated without errors (not

shown) were significantly lower but similar for GSMAP

and TMPA. The biases are all negatives, with a bias

of 20.12 mm h21 for GSMAP and equivalent lower

values for EPSAT (20.04 mm h21) and TMPA

(20.03 mm h21). Figure 5 shows the scatter diagram of

the satellite versus gauge products for the second period.

The error bars and the regression line are also plotted.

A no-error regression line is also reported (dashed line).

It shows that EPSAT and TMPA suffer from over-

estimation of the large precipitation intensities. If the

error bars had not been taken into account into the re-

gression process, the result would have been the oppo-

site. The RMS-reg is 0.02 mm h21 for EPSAT but

0.05 mm h21 for GSMAP and TMPA, meaning a higher

precision in the fitted linear model for EPSAT. The

FEBO index shows an agreement greater than 80% in

both biased and unbiased cases for EPSAT. If GSMAP

has the lowest linear performance scores, and similar

unbiased agreements larger than 60% are found for

TMPA and GSMAP. Statistics for the first period (pre-

onset) yield similar conclusions but with smaller biases

and RMS-reg values. At this 10-day scale, the satellite

products capture the regional and seasonal variability of

the gauges.

b. Synoptic scales

1) DAILY TIME SERIES

Both the satellite and gauge daily time series are char-

acterized by a succession of days with and without rain.

The POD and FAR allow the agreement between the two

time series to be quantified, but the two indices have to be

TABLE 4. Statistics of the regressions between the three satellite

products and the gauge estimates (i) for the 10-day period (11–

20 Jun 2006) and (ii) for the 10-day period (1–10 Aug 2006). Sample

size 5 137.

(i) 11–20 Jun 2006 EPSAT GSMAP TMPA

Correlation 0.97 0.81 0.96

Slope 0.95 0.81 0.83

Intercept (mm h21) 20.02 20.01 20.00

BIAS-reg (mm h21) 20.02 20.02 20.01

RMS-reg (mm h21) 0.01 0.03 0.02

FEBO 0.77 0.58 0.75

FEBO unbiased 0.77 0.65 0.75

(ii) 1–10 Aug 2006 EPSAT GSMAP TMPA

Correlation 0.98 0.82 0.93

Slope 1.15 0.80 1.29

Intercept (mm h21) 20.08 20.06 20.11

BIAS-reg (mm h21) 20.04 20.12 20.03

RMS-reg (mm h21) 0.02 0.05 0.05

FEBO 0.82 0.35 0.69

FEBO unbiased 0.84 0.64 0.69
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adapted to account for the errors. In fact, as seen in sec-

tion 2d, the error can be larger than the rain estimate itself

for the small values. In such a case, the rainy day, because

of the error, could also be considered as a non rainy day.

Hence, POD and FAR must be computed using a variety

of time series accounting for various numbers of non rainy

days. Thus, a probability distribution function of POD

and FAR values is considered; in the following results, we

give only the respective worst values: that is, the smallest

POD and the largest FAR values.

The regression computation accounting for errors, de-

scribed in section 3a, is applied to the time series limited

to the rainy days in both series (satellite and gauges). The

scatterplots are shown in Fig. 6 for the three products and

the three sites. The results of the statistical parameters

described in section 3b along with FAR, POD, and

FEBO indices are given in Table 5.

Figures 6a–f, over Niamey and Ouémé, indicate a

general underestimation of the large precipitation in-

tensities. In Figs. 6g–i, it is noticeable that, for the site of

Dakar, the errors are small for the rain gauges because

of the high density of the network, whereas the satellite

products errors are large because of the small size of the

Dakar site area. These large errors have an important

impact on the characteristics of the regression accounting

for the errors, which can be seen by the strong difference

between the regression line (full line) with errors and the

regression line (dashed line) without errors.

Considering the correlation coefficients, they are of the

same order for EPSAT and TMPA and almost as high as

for the 10-day accumulations. The correlation coefficients

are lower for GSMAP, at least for Niamey and Ouémé.

Similarly, considering the biases (BIAS-reg), EPSAT and

TMPA provide the same order of negative bias (ranging

from 20.04 to 20.08 mm h21), much smaller than the

biases for GSMAP (20.14 and 20.21 mm h21). The

RMS-reg values obtained for EPSAT range between

0.09 and 0.12 mm h21, the ones for GSMAP range be-

tween 0.10 and 0.18 mm h21, and the ones for TMPA

range between 0.21 and 0.25 mm h21. EPSAT present

the worst values of FAR (ranging from 34% to 56%) over

the three sites but also the largest POD values, over 92%

for Niamey and Ouémé. The POD values are slightly

lower for the two other products. Finally, the FEBO

values show lower skills than for the 10-day scale, ranging

from 24% to 64% over Niamey and Ouémé. The FEBO

unbiased values are always lower than their correspond-

ing FEBO but have a similar range.

To summarize, the statistics are consistent over Niamey

and Ouémé but lead to different conclusions over the site

of Dakar. In addition, its smaller extension, the period

considered for Dakar, is also shorter, which results in

smaller sample sizes giving less strength to the statistics.

In general, these results show that EPSAT and TMPA

have similar skills at the daily scale, whereas regression

characteristics of GSMAP are lower over Niamey and

Ouémé.

2) 3–5-DAY FILTERED TIME SERIES

The ability of the satellite products to reproduce the

well-recognized mode of synoptic variability of rainfall

associated with the passing of AEW compared to the

gauges is quantified by using simple spectral filtering of

the 3–5-day band for each estimate. Figure 7 exemplifies

the results for Ouémé and shows that indeed very good

agreement is found at this scale. Both EPSAT and

GSMAP tend to underestimate the high rain rates,

whereas TMPA tends to overestimate them. The overall

good agreement is confirmed by the statistics reported in

Table 5 where high correlation, low bias, and RMS are

FIG. 5. Scatterograms of the 10-day rainfall (a) EPSAT, (b) GSMAP, and (c) TMPA estimates vs CILSS rain gauge estimates (mm h21)

for the 1–10 Aug 2006 period. One-sigma error bars are over plotted. The thin solid line is the regression line taking the error bars into

account, and the dashed line is without the errors. The thick solid line is the 1:1 line.
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reported. Over the Ouémé and Niamey sites, EPSAT and

TMPA outperform GSMAP, which reveals a slightly

worse overall fit to the gauges. At Dakar, the scores

are still high, although less than for the previous sites,

as expected from the smaller network under consid-

eration (see section 2d). Again, GSMAP exhibits less

skill than the other products. Generally, the satellite

estimates reproduce well the rainfall variability resulting

from AEW, better than the unfiltered synoptic data.

c. Diurnal scale

An index is computed to quantify the influence of

diurnal cycle of the insolation on rainfall. A simple

Fourier analysis is performed on the 3-hourly time

FIG. 6. Scatterograms of the daily rainfall (mm h21) of (left) EPSAT, (middle) GSMAP, and (right) TMPA estimates over the sites of

(a)–(c) Niamey, (d)–(f) Ouémé, and (g)–(i) Dakar. One-sigma error bars are overplotted. The thin solid line is the regression line taking

the error bars into account, and the dashed line is without the errors. The thick solid line is the 1:1 line.
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series, and all the scales less than or equal to one day are

low-pass filtered. The filtered time series is then corre-

lated with the raw series using the same method as earlier.

The original errors at 3 h are used for both the original

and the filtered series. The coefficient of determination

R2 provides the fraction of the common variance between

the two series; subtracted from 1, it gives the fraction of

variance associated with the diurnal scale. Results are

summarized in Table 6. As expected, the gauges confirm

the important role of the diurnal scale in the total vari-

ance of the rainfall field with value around 64% for

Niamey after the onset. The satellite products also show

such strong contributions of the diurnal scale. At Niamey,

the satellite products all show a stronger contribution

of the diurnal cycle after the onset (Mathon et al. 2002).

At Ouémé, ground measurements reveal a stronger con-

tribution before the onset than after, and the satellite es-

timates do not reveal a consistent behavior. This is

consistent with the findings of Depraetere et al. (2009)

based on systems tracking at ground using gauges and

radar. At Dakar, the gauge network indicates a 43%

fraction, which TMPA reproduces well and is over-

estimated in both EPSAT and GSMAP.

The composite or mean diurnal cycle is further com-

puted and presented in Fig. 8. Before the onset, the

mean cycle is very flat over both Sahelian regions; when

the monsoon has come, Niamey exhibits a marked late

night–early morning maximum and Ouémé shows a max-

imum, although smoother, occurring between 15 and 18 h.

Over Dakar, the rain peaks between 15 and 21 h are

presumably associated with local convection rather than

traveling systems (e.g., Jenkins et al. 2010, unpublished

manuscript). The satellite products rather exhibit a smooth

maximum during the night, but TMPA also reproduces the

late afternoon maximum. Note that, because of the small

size of the analyzed region, the satellite estimates here are

prone to large errors that make the comparison less direct.

These well-documented features of the WAM diurnal

TABLE 5. Statistics of the regressions between the three satellite products and the gauge daily rain estimates and between the three

satellite products and the gauge filtered (3–5 days) daily rain estimates over Niamey, Ouémé, and Dakar.

Daily estimates Filtered (3–5 days) daily estimates

EPSAT GSMAP TMPA EPSAT GSMAP TMPA

Niamey

Correlation 0.83 0.61 0.72 0.91 0.81 0.86

Slope 0.43 0.39 0.61 0.50 0.51 0.82

Intercept (mm h21) 0.10 0.05 0.09 0.07 0.02 0.03

BIAS-reg (mm h21) 20.07 20.14 20.04 20.04 20.09 20.02

RMS-reg (mm h21) 0.10 0.18 0.25 0.03 0.06 0.07

FAR 0.56 0.40 0.40 — — —

POD 0.92 0.83 0.79 — — —

FEBO 0.55 0.43 0.53 0.75 0.48 0.77

FEBO unbiased 0.40 0.24 0.53 0.78 0.64 0.77

Sample size 67 63 57 67 63 57

Ouémé

Correlation 0.92 0.64 0.90 0.92 0.71 0.95

Slope 0.66 0.38 0.75 0.68 0.44 1.24

Intercept (mm h21) 0.07 0.01 0.01 0.06 0.01 20.03

BIAS-reg (mm h21) 20.05 20.21 20.08 20.07 20.12 20.02

RMS-reg (mm h21) 0.09 0.18 0.21 0.05 0.08 0.14

FAR 0.34 0.26 0.29 — — —

POD 0.93 0.81 0.90 — — —

FEBO 0.64 0.25 0.56 0.80 0.25 0.78

FEBO unbiased 0.56 0.30 0.48 0.79 0.63 0.80

Sample size 89 81 81 89 81 81

Dakar

Correlation 0.89 0.97 0.96 0.85 0.65 0.71

Slope 0.53 0.52 0.51 0.68 0.63 0.95

Intercept 0.15 0.04 0.06 0.13 0.13 0.11

BIAS-reg (mm h21) 0.03 20.12 20.12 0.07 0.05 0.10

RMS-reg (mm h21) 0.12 0.10 0.23 0.07 0.11 0.26

FAR 0.56 0.32 0.15 — — —

POD 0.76 0.59 0.32 — — —

FEBO 0.55 0.56 0.88 0.70 0.815 0.84

FEBO unbiased 0.58 0.56 0.48 0.80 0.85 0.68

Sample size 40 27 25 40 27 25
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cycle are thought to be associated with a shift in the nature

of the convective events with well-organized squall lines,

initiated eastward and earlier in the day, contributing to

this night time maximum for Niamey after the onset (Fink

and Reiner 2003). Generally, the satellite products capture

well this seasonal variability in the composite diurnal cycle

(Fig. 8). For Niamey, the three products roughly behave

similarly as indicated by the computation of the FEBO

reported in Table 7. For Ouémé and Dakar, only TMPA

captures the gauges features. Overall, TMPA has the

higher FEBO statistics followed by EPSAT and GSMAP,

which resemble each other.

The fraction of common variance between the original

time series and the time series from which the mean

cycle is repeatedly subtracted highlight the significance

of the composite diurnal cycle (Nesbitt and Zipser 2003).

The stronger contribution of the composite cycle is found

in the gauges for Dakar with a value of 34% (Table 8).

The satellite estimates reproduce this, but for the EPSAT

product the composite cycle hardly contributes to the

variance. For Niamey, gauges indicate a 13% contribu-

tion of the mean cycle that is not seen in the EPSAT

results. GSMAP and TMPA overestimate (;37%) their

composite cycle influence. For Ouémé, the mean cycle

only weakly contributes to the variance, a fact that sat-

ellite products agree upon only after the onset. Over the

preceding period, both GSMAP and TMPA show a sig-

nificant contribution of their respective composite cy-

cles, which are very flat (Fig. 8c). The detailed analysis

nevertheless reveals that the TMPA products best behave

with respect to the gauges than other satellite products.

Such good behavior of this product was previously noted

over the Gulf of Mexico and was attributed to the final

adjustment step that relies on the monthly gauges analysis

(Sapiano and Arkin 2009).

5. Summary and discussion

Ground data and satellite products of surface rainfall

have been compared using a novel approach that ac-

counts for the errors in the areal mean rainfall estimates

during the AMMA 2006 campaign. The analysis focused

on three well-instrumented sites covering a wide range

of rain regimes. Simple sampling error models based on

the spatial and temporal correlations of the rain field

have been used both for the gauges (block kriging) and

for the satellite estimates (variograms). This study com-

pletes previous efforts with climatic (e.g., Nesbitt et al.

2004) and hydrologic (Hossain and Huffman 2008) per-

spectives by focusing on the meteorological scales rele-

vant to the WAM. The findings of this study are as follows:

d at a 18 3 18 scale, the block-kriging errors varies from

4% to 86% depending on the accumulation time and

less than 15% over the denser network at Dakar;

FIG. 7. Scatterograms of the 3–5-day filtered daily rainfall (mm h21) of (a) EPSAT, (b) GSMAP, and (c) TMPA estimates vs the 3–5-day

filtered daily rainfall gauge estimates over the Ouémé site. One-sigma error bars are over plotted. The thin solid line is the regression line

taking the error bars into account, and the dashed line is without the errors. The thick solid line is the 1:1 line.

TABLE 6. Percentage of variance explained by the subdaily

variability of the gauge rain rate and of the three rainfall satellite

products during the postonset and preonset periods for the sites of

Niamey, Ouémé, and Dakar. The variance explained is calculated

as 1 2 R2, where R is the correlation between the 1-day low-pass

filtered 3-hourly time series and the 3-hourly time series. Low

values (,0.1 mm h21) are filtered out, yielding to a varying pop-

ulation to perform the computations.

Site Period Gauge EPSAT GSMAP TMPA

Niamey Postonset 64 32 48 54

Preonset 26* 31 27 44

Ouémé Postonset 36 32 16 67

Preonset 61 30 56* 25

Dakar 1 Aug–30 Sep 43 37 80* 43

* Not significant at the 99.9% level.
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d the satellite errors are of the same order as the gauges

errors, except for the smallest network, over which the

satellite errors are greater;
d at a 10-day scale, all the tested products show high skill

in reproducing the ground network results, including

the preonset–postonset variability;
d at a daily scale, satellite products skill range from high

to moderate;
d at the AEW scale, all the tested products show high

skill in reproducing the ground network variability; and
d the mean diurnal cycle and its variability in space and

during the season are relatively well captured by some

products, and others revealed difficulty to account for

such scale.

Over the range of scales and rain regimes and types

discussed here, the combined IR–MW satellite products

are describing the rain variability similar to that of the

ground measurements, with some being better than others

at different scales. These products can then be used to

investigate the physical functioning of the monsoon. For

instance, Peyrillé et al. (2007) and Peyrillé and Lafore

(2007) established an idealized conceptual model of

the WAM to analyze the seasonal and diurnal cycle of

the monsoonal rainfall that can be confronted to these

satellite products. Using the National Centers for Envi-

ronmental Prediction (NCEP) operational analysis, Bielli

and Roca (2009) reported during the summer 2006 a

lead–lag relationship between surface evaporation and

rainfall in the WAM characterized by regional and tem-

poral scale dependence (AEW). The use of the satellite

products in such a water budget analysis would greatly

enhance the findings of this model-based analysis. Yang

and Smith (2006) provide an extensive, perhaps exhaus-

tive, review on the physical processes associated to the

diurnal variability of rainfall over the whole tropics. Elu-

cidating the relative role of the various diurnal mecha-

nisms for the whole West African monsoon region can

now be attempted using the strength (coverage and sam-

pling) of the validated new generation of combined sat-

ellite level 2 products.

The present methodology could easily be applied

again if a better estimation of the error budget becomes

available. The elaboration of our simple error sampling

FIG. 8. Composite diurnal cycles of rain rates obtained from Gauges (orange line), EPSAT (black line), GSMAP (red line), and TMPA

(blue line) for the (left) preonset and (right) postonset periods for (a),(b) Niamey; (c),(d) Ouémé, and (e) Dakar. Two-sigma error bars are

plotted over the lines.
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model toward a more complete error model (including

the algorithm error term) is one venue for future re-

search. An extension of the present effort to a larger

number of years and satellite products making use of the

ground data of the EOP of the AMMA program could

strengthen the present results, especially for diurnal

cycle prone to large interannual fluctuations (Mohr 2004).

Finally, the documentation of the individual convective

system scale (Dt , 1 h; Dx ; 10 km) at which rain radar,

gauges, and satellites provide different perspectives, which

are difficult to compare (e.g., Roca et al. 2010), should be

undertaken. The present error-based approach might be

one way to improve on the situation, but such downscaling

would require the challenging estimation of an error

budget at finer scale.
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C. Dieulin, and G. Mahé, 2009: Rainfall and water resources

variability in sub-Saharan Africa during the twentieth century.

J. Hydrometeor., 10, 41–59.

Depraetere, C., M. Gosset, S. Ploix, and H. Laurent, 2009: The

organization and kinematics of tropical rainfall systems ground

tracked at mesoscale with gages: First results from the cam-

paigns 1999–2006 on the Upper Ouémé Valley (Benin).
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Peyrillé, P., and J. P. Lafore, 2007: An idealized two-dimensional

framework to study the West African monsoon. Part II: Large-

scale advection and the diurnal cycle. J. Atmos. Sci., 64, 2783–

2803.

——, ——, and J.-L. Redelsperger, 2007: An idealized two-

dimensional framework to study the West African monsoon.

Part I: Validation and key controlling factors. J. Atmos. Sci.,

64, 2765–2782.

Redelsperger, J.-L., A. Diongue, A. Diedhiou, J. P. Ceron,

M. Diop, J.-F. Gueremy, and J.-P. Lafore, 2002: Multi-scale

description of a Sahelian synoptic weather system represen-

tative of the West African monsoon. Quart. J. Roy. Meteor.

Soc., 128, 1229–1258.

——, C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and

J. Polcher, 2006: African Monsoon Multidisciplinary Analysis:

An international research project and field campaign. Bull.

Amer. Meteor. Soc., 87, 1739–1746.

Roca, R., J.-P. Lafore, C. Piriou, and J.-L. Redelsperger, 2005:

Extratropical dry-air intrusions into the West African mon-

soon midtroposphere: An important factor for the convective

activity over Sahel. J. Atmos. Sci., 62, 390–407.

——, and Coauthors, 2010: On the water and energy cycles in the

tropics. C. R. Geosci., in press.

Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and

validation of high-resolution satellite precipitation estimates

with 3-hourly gauge data. J. Hydrometeor., 10, 149–166.

Sultan, B., and S. Janicot, 2003: The West African monsoon dy-

namics. Part II: The ‘‘preonset’’ and ‘‘onset’’ of the summer

monsoon. J. Climate, 16, 3407–3427.

——, ——, and A. Diedhiou, 2003: The west african monsoon

dynamics. Part I: Documentation of intraseasonal variability.

J. Climate, 16, 3389–3406.

Teo, C.-K., and D. I. F. Grimes, 2007: Stochastic modelling of

rainfall from satellite data. J. Hydrol, 346, 33–50.

Ushio, T., and Coauthors, 2009: A Kalman filter approach to the

Global Satellite Mapping of Precipitation (GSMaP) from

combined passive microwave and infrared radiometric data.

J. Meteor. Soc. Japan, 87A, 137–151.

Viltard, N., C. Burlaud, and C. D. Kummerow, 2006: Rain retrieval

from TMI brightness temperature measurements using a TRMM

PR–based database. J. Appl. Meteor. Climatol., 45, 455–466.

Xie, P., A. Yatagai, M. Chen, T. Hayasaka, Y. Fukushima, C. Liu,

and S. Yang, 2007: A gauge-based analysis of daily pre-

cipitation over East Asia. J. Hydrometeor., 8, 607–626.

Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability

of global tropical rainfall observed from TRMM. J. Climate,

19, 5190–5226.

Zeweldi, D. A., and M. Gebremichael, 2009: Sub-daily scale vali-

dation of satellite-based high-resolution rainfall products.

Atmos. Res., 92, 427–433, doi:10.1016/j.atmosres.2009.01.001.

APRIL 2010 R O C A E T A L . 731

D
ow

nloaded from
 http://journals.am

etsoc.org/jam
c/article-pdf/49/4/715/3553056/2009jam

c2318_1.pdf by guest on 22 N
ovem

ber 2020


