
HAL Id: hal-00438714
https://hal.science/hal-00438714

Submitted on 4 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Deep Neural Networks for High Dimensional
Output Problems

Benjamin Labbé, Romain Hérault, Clement Chatelain

To cite this version:
Benjamin Labbé, Romain Hérault, Clement Chatelain. Learning Deep Neural Networks for High
Dimensional Output Problems. ICMLA, Dec 2009, United States. 6p. �hal-00438714�

https://hal.science/hal-00438714
https://hal.archives-ouvertes.fr

Learning Deep Neural Networks for High Dimensional Output Problems

Benjamin Labbé Romain Hérault
Clément Chatelain

LITIS EA 4108, INSA de Rouen, Saint Étienne du Rouvray 76800, France
name.lastname@insa-rouen.fr

Abstract

State-of-the-art pattern recognition methods have diffi-
culty dealing with problems where the dimension of the out-
put space is large. In this article, we propose a new frame-
work based on deep architectures (e.g. Deep Neural Net-
works) in order to deal with this issue. Deep architectures
have proven to be efficient for high dimensional input prob-
lems such as image classification, due to their ability to
embed the input space. The main contribution of this ar-
ticle is the extension of the embedding procedure to both
the input and output spaces in order to easily handle high
dimensional output problems. Using this extension, inter-
output dependencies can be modelled efficiently. This pro-
vides an interesting alternative to probabilistic models such
as HMM and CRF. Preliminary experiments on toy datasets
and USPS character reconstruction show promising results.

1. Introduction

High dimension output tasks is a challenging problem
in both pattern recognition and machine learning commu-
nities. It is concerned with problems where the target y is
a vector in Rn and n � 1 (instead of a scalar in R for
a standard regression problem). For instance, in an image
segmentation problem, y ∈ [1. . .255]n×m, where n×m is
the size of the image. When dealing with multiple outputs,
most of the time, strong relations between these outputs can
be observed. For example, the label of a pixel strongly de-
pends on the labels of its neighbors. In order to exploit these
relations, a global decision overall outputs should be taken
instead of multiple local decisions.

In the literature, numerous approaches have been suc-
cessfully applied on real-world sequence signals, such as
handwriting recognition [6], voice recognition [10], or in-
formation extraction in text [2]. These approaches are
mainly based on probabilistic Hidden Markov Models,
where relations between the outputs are learned. One may
note that in the HMM framework, the observations are sup-

posed to be independent, which is wrong in almost all ap-
plications. More recently, the Conditional Random Fields
(CRF), derived the HMM to a discriminative model. CRF
have been proposed to overcome this problem by modeling
the conditional probability p(x|y) instead of the joint prob-
ability p(x,y).

Although efficient on sequences, only few methods, usu-
ally based on an extension of HMM or CRF, have been ap-
plied on two-dimensional signals. HMM can be adapted
to 2D signals through either pseudo-2D HMM or Markov
Random Field (MRF). [9] provides an example of MRF for
document image segmentation. CRF have also been gener-
alized for 2D-signals with application to diagram interpreta-
tion [11]. To the best of our knowledge, there is no approach
for signal dimension higher than 3 [12]. It is the limitation
of these kind of approach. The reason why few probabilis-
tic methods are applied on 2D-signals is mainly due to their
decoding complexity. Even if some sub-optimal decoding
methods have been proposed such as HCF or ICM, this is
still an open issue. Nowadays, probabilistic methods are
the state-of-the-art learning methods for tasks such as sig-
nal and image segmentation. Let us also mention the kernel
dependency estimation [13] and structured output SVM ap-
proaches [3]. These approaches are based on a kernel joint
projection which evaluate the co-occurrence probability of
an observation x and a complex label y. Although these
approaches handle complex output spaces, they suffer from
the pre-image problem. They can easily give an appropriate
image in a kernelized label space for a given x, but the label
itself is hard to predict explicitly.

In this paper, we assume that other machine learning
methods such as neural network are able to handle high di-
mension problems, whatever the dimension of the signal,
and whatever the topology of the input or the output. Deep
Neural Network (DNN) with pre-training [7, 1] or regular-
ized learning process [14] have achieved good performance
on difficult high dimensional input tasks where Multi Layer
Perceptron (MLP) seems to failed before. These methods
try to find a better representation of the input space in an
unsupervised manner to ease the supervised task.

High dimensional output space may be verbose and is
likely to contain a lot of internal dependencies, especially if
the task is not well understood or badly formulated. Start-
ing from this observation, we propose to retain the DNN
input pre-training (or regularization) idea and adapt it to the
output space. This should provide a better target represen-
tation, leading to an easier learning process.

The remaining of this paper is as follows. In section 2,
we describe the main principles of neural networks and the
existing optimisation procedure for deep architectures. In
section 3, we explain our double embedding proposition.
Preliminary experiments on toy datasets are shown in sec-
tion 4, as well as texture segmentation tasks and handwrit-
ten caracter reconstruction. Finally, the section 5 concludes.

2. Deep Networks

In the past decades, MLP have been studied to approxi-
mate non-linear functions in many decision tasks. The stan-
dard MLP relies on the original perceptron principle and
its optimisation is based on the backpropagation algorithm.
MLP are usually composed of two layers which perform the
following operation:

hl(x) = fl(Wl . hl−1(x)+bl) ∀l ∈ {1, . . ., N} , (1)

where Wl is a linear transformation, bl is a vector of off-
sets, h0(x) = x, hN (x) = ŷ, and N is the number of
layer in the complete network. fl is a non-linear activation
function. Deep architectures with more than two layers, suit
for high dimensional problems, they are called Deep Neural
Networks (DNN).

h1 = f1 (W1.x + b1)

ŷ = f2 (W2.h + b2)

x

h1

ŷ

hl = fl (Wl.hl−1 + bl)

x

hl−1 ∈ Rd

hl ∈ Re

ŷ

Figure 1. (left) a shallow MLP network, (right)
a Deep Neural Network. For the layer l, d is
the number of hidden units in hl−1 and e in hl;
hence, Wl ∈ Rd×e,bl ∈ Re.

Two major propositions rose from the machine learn-
ing community to solve the problem of DNN. The first one
stacks pre-trained auto-encoders, while the second one op-
timizes a regularized criterion. These two network building

procedures learn embedding functions of the inputs in an
unsupervised way in order to regularize the parameters of
the network. An input embedding projects the input data
in a better vector space where the neighborhoods are pre-
served. These unsupervised strategies are expected to be
efficient as soon as an estimation of p(x) is useful to learn
the final supervised task: estimating p(y|x).

2.1. Deep layers pre-training and stacking

As deepest layers are hard to learn with a single back-
propagation algorithm, [7, 1] propose to pre-train the pa-
rameters of these layers on an unsupervised learning with
auto-encoder networks. The first layers of auto-encoder are
stacked iteratively to build the complete DNN. Finally a
supervised fine tuning optimizes all the parameters in the
whole stacked network for the final task.

The auto-encoder architecture links a list of visible units
(v, the data), a list of hidden units h and a list of estimated
visible units (v̂, the data reconstruction), as in Fig. (2). By
doing so, the auto-encoder finds a reduced representation
of the data in the hidden units. The auto-encoders could be
either a RBM [7] or a derived form of the MLP network that
is an Auto-Associator neural network (AA) [1].

Learning an Auto-Associator is similar to any MLP
learning, using backpropagation. When using AA with Cse

criterion and no non-linear function, we obtain a PCA [5].
However, the data compression induced by theCse criterion
might not be appropriate, when learning a binomial distri-
bution. [8] propose to use the Kullback-Leibler divergence,
also known as the cross entropy Cce, as a reconstruction
criterion,

Cce(v, v̂) = −
∑

k

(v log(v̂) + (1− v)log(1− v̂)) . (2)

The unknown and evaluated distributions v and v̂ charac-
terize respectively v and v̂, then the Kullback divergence
KL(v, v̂) will be minimized when v = v̂. This means when
the reconstruction error of v̂ against v is minimum. To
avoid trivial projection such as the identity function when
the number of hidden unit is higher than the number of visi-
ble unit, [8] proposed to constrain the linear transformation
matrices of the two functions f(Ux+c) and g(Vh+d) by
making U = VT . Whatever the auto-encoder is, we have
to split it to keep aside the embedding function f(Ux + c),
and drop the re-projecting function g(Vh + d). The em-
bedding function is used to project all the input data into
the hidden space, hence the hidden units are used as inputs
for a new auto-encoder training in a new layer.

During the training of a new projecting function at
layer l, every parameters of the deeper layers are fixed, only
the weights matrix Ul and cl are modified by the backprop-
agation. We can add more and more layers, like in Fig. (2,

right), depending on the complexity of the input space. Fi-
nally, an output layer is plugged on the top of the last layer.
At that time, a full backpropagation algorithm is used to
fine-tune all the parameters. Now, to maximise the capaci-
ties of the network, all the deep parameters are released so
the backpropagation optimisation can reach them.

h1 = f1 (U1.x + c1)

x̂ = g1 (V1.h1 + d1)

v = x

h = h1

v̂ = x̂

h2 = f2 (U2.h1 + c2)

ĥ1 = g2 (V2.h2 + d2)

x

v = h1

h = h2

v̂ = ĥ1

Figure 2. (left) An Auto-Associator learned
on the input x. (right) an Auto-Associator
learned on the hidden units h1.

2.2. Regularized semi-supervised deep learning

The second proposition made by [14] learns deep neu-
ral networks via a double optimisation formulation. It con-
sists in learning the two probability distributions p(x) and
p(y|x) simultaneously. Their approach optimizes a super-
vised criterion L1 and the relevance of an embedding func-
tion f(.) on unsupervised input data via a criterion L2. The
embedding is evaluated on its ability to reproduce into the
projected space a similarity matrix D between the samples
from the input space.

Let us define two sets of data: L, the Labeled observa-
tions, and U , the Unlabeled observations. Let IL be the
set of indexes of all elements belonging to the set L, re-
spectively IU the set of indeces for the elements of U . The
multi-objective criterion is

J =
∑

i ∈ IL

L1 (f(xi),yi)

+ λ
∑

(i,j) ∈ (IL∪IU)2

L2 (fk(xi), fk(xj),Dk(i, j)) .
(3)

where λ is a balancing parameter to tune, and k is the layer
at which the capacity of the embedding is evaluated.

At each iteration of the batch algorithm, they compute
the stochastic gradient of this multi-objective function, until
they reach a minima. This nice formulation of the embed-
ding optimisation with an hinge loss asL1 and a margin loss
as L2 (see [14]) provides competitive results to the state of
the art methods as Deep Belief Network and DNN, on the
MNIST dataset.

3. Embedding the Output Space

For high dimensional output tasks, we propose here to
apply a similar embedding on the output space too. Some
decision tasks, such as 2D-signal regression, or image seg-
mentation, occurs in an high dimensional output space. This
output space might be verbose and is likely to contain inter-
nal dependencies, especially if the task is badly formulated.
Embedding on the output space might remove these depen-
dencies and provide a better representation of the output.
We propose here to learn embeddings for both the input
data and the output labels. This allows us to optimize the
decision function in a much smaller space which is adapted
to the hidden complexity of the output. That is, an estima-
tion of p(x) and p(y) will provide a good start to estimate
p(y|x). We will describe both the stacked pre-trained en-
coders strategy and the multi-objective optimisation strat-
egy. Nevertheless, described experiments are implemented
through the stacking strategy.

Building the stacked network
We learn two embedding in an self supervised manner,

one out of the input space, and a second one out of the
output space. The input reduction is learned as in section
2.1, the AA are stacked iteratively. The projecting activa-
tion function fl, the weights matrices Ul and the offset bl

are kept aside to initialize the W matrices of the final net-
work (Fig. 2). The output reduction is done symetrically
by an AA. Here, the output AA are identified with negative
notations −l. The re-projecting function g−l, the weights
matrices V−l and the offset d−l are stored, and are stacked
from the output units (Fig. 3). To sum up, the following
inititialization of the complete network is done using :

h−1 = f−1 (U−1.y + c−1)

ŷ = g−1 (V−1.h−1 + d−1)

v = y

h = h−1

v̂ = ŷ

h−2 = f−2 (U−2.h−1 + c−2)

ĥ−1 = g−2 (V−2.h−2 + d−2)

v = h−1

h = h−2

v̂ = ĥ−1

ŷ

Figure 3. (left) An auto-Associator learned
on the output y (right) An auto-Associator
learned on the h−1 units.

Wl ← Ul; bl ← cl; l ∈ [1, T − 1]
WN−l ← V−l; bN−l ← d−l; l ∈ [0, N − T − 1] ,

(4)

where T is the layer where the projected input space is
linked to the projected output space, andN is the total num-
ber of layer. For the final supervised tuning, the WT ma-
trix is randomly initialized, and all the Wl 6=T matrix are re-
leased to permit backpropagation optimisation on the entire
network .

Note that the regularised semi-supervised deep learning
[14] can be extended through the addition of a third objec-
tive loss L3 in equation 3 which evaluates the capacity of
the output embedding.

4. Experiments

To demonstrate the validity of our proposition, we have
run 4 types of experiments on 3 different datasets. We will
first describe each dataset, then each type of experiment
and finally we present the results of our experimentations.
We generated three kinds of toy datasets for three differ-
ent tasks: de-noising, simple phase recognition and texture
recognition. All problems take as input an image and target
the label of each pixel.

Task 1 Each example consists in a noisy image of a rect-
angle as an input, and the clean image of the rectangle as
the target (64× 64).

Task 2 Each example consists in a representation of the
function sin(i/8 + φ) + cos(j/8 + φ), as an input, where
i and j are respectively the line number and the column
number in the image, φ = 0 on all the image except in a
rectangle where φ = π/2; the target is a white over black
image of the rectangle (64× 64).

Task 3 Each example consists in, as image input, a com-
position of two textures taken from the Brodatz texture
archive 1; the background is taken from Texture 64, a rect-
angle is drawn upon it with Texture 65. The target is a white
over black image of the rectangle (128× 128).

In all the datasets, input values are in between 1 and −1
and exactly 1 or −1 for the target. For each task, a train set
of 1000 examples and a validation set of 100 examples have
been generated. The first example of each validation set are
shown on Table (1). A black and white rectangle image
is really verbose and a lot of internal dependency occurs.
Therefore a better representation of the output space should
be available and pre-training on output should improve the
results of the supervised task.

Experimental setup.
All the experiments have been run thanks to the Torch5

library [4]. We have built a DNN with two hidden layers.
Each hidden layer consists in twice as much units as the
size of one dimension of the input (64×2 pixels for the first
dataset). Four experiments have been tested, each differs in
the way the network is pre-trained:

1http://www.ux.uis.no/˜tranden/brodatz.html

Task 1 2 3

Input

Target
Table 1. Image input and image target for the
first validation example of the 3 tasks.

Task Exp. 1 Exp. 2 Exp. 3 Exp. 4
1 0.154 0.153 0.068 0.065
2 0.133 0.132 0.051 0.050
3 0.167 0.167 0.045 0.045

Table 2. MSE at iteration 300 of the final su-
pervised training on the validation set for the
3 tasks, for the 4 experiments.

Exp. 1 No pre-training, supervised learning by back-
propagation is directly done.

Exp. 2 The first hidden layer is pre-trained by using
an auto-associator on the input data. Standard supervised
backpropagation is then used.

Exp. 3 The first and the second hidden layer are pre-
trained by using, respectively, an auto-associator on the in-
put data and an auto-associator on the output data. Standard
supervised backpropagation is then used.

Exp. 4 The first and second hidden layers are pre-trained
by using respectively an auto-associator on the input data
and on the output data. The supervised learning is decom-
posed into two steps: on the first step, the link between the
first and the second hidden layer is learned by backpropa-
gation using the hidden state of the second auto-associator
as target. On the second step, a standard supervised back-
propagation is then performed on the whole DNN.

The pre-training for each auto-associator is done by
batch gradient stopped at 50 iterations. The first step of
the two supervised learning steps is also done by batch gra-
dient with an early stopping at 50 iterations. Batch gradient
with early stopping at 300 iterations is performed for the fi-
nal supervised learning in all case. The learning rate for all
the experiments is the same and has been fixed according to
the first experiment (No pre-training). The four experiments
have been undertaken on the 3 tasks.

Iteration 10 100 200 300

Exp. 1

Exp. 2

Exp. 3

Exp. 4
Table 3. Output image evolution for the first
validation example according to the number
of iterations.

4.1 Results and discussions

Table (2) shows that, the validation error of the DNN is
not improved significantly by input pre-training (Exp. 2),
in comparison to standard learning (Exp. 1). However, it
shows that with output pre-training (Exp. 3 and 4), DNN
achieves better performance. Table (3) clearly shows that
the output is already gathered at iteration 10 in a rectangle
on Exp. 3 and 4, this is due to the fact that the DNN already
knows about internal dependencies on the target thanks to
pre-training. On Exp. 1 and 2, output looks more like a
cloud at iteration 10. We need to wait until iteration 200 to
start to see a rectangle.

According to the MSE at iteration 300, the 2-step super-
vised training in Exp. 4 does not seem to improve signifi-
cantly the results in comparison to 1-step supervised train-
ing in Exp. 3. Nevertheless, the drop of the validation error
is faster. Actually most supervised learning has been done
during the first step. One may argue that pre-training is time
consuming, so we may compare the result for fewer itera-
tions on Exp. 3 and 4 than for Exp. 1 and 2; but even with
less iterations, output pre-training does achieve better per-
formances.

4.2 Comparison to KDE, the image reconstruc-
tion problem

After these experimentations based on toy datasets, we
have compared our proposition to Kernel Dependency Es-
timation [13] on the image reconstruction problem. This
relies on a kernel based loss.

A kernel function, K(., .) : Rd×2 → R, can be used as
a loss function that qualifies the efficiency of a supervised
task. Effectively, a distance in an induced Hilbert space can
be formulated thanks to its associated kernel K(., .),

L(y, ŷ) = K(y,y)− 2 ∗K(y, ŷ) +K(ŷ, ŷ) . (5)

Original Image Input

Target

Figure 4. Decomposition of a USPS character
in input image and target image.

For example, the RBF-loss, LRBF , based on the RBF ker-
nel, is expressed as

LRBF (y, ŷ) = 2− 2 ∗ exp
(
−||y − ŷ||2

2σ2

)
. (6)

Highlighting this properties, [13] proposed to build two
kernels, one for the input space and one for the output space.
The authors then learn the dependency between these two
kernels to achieve a supervised task. This is similar to our
methodology, first of all, learn the unconditional probabil-
ities of inputs and targets, p(x) and p(y) then try to learn
the conditional probability of the target p(y|x). We repro-
duced the same image reconstruction task on USPS dataset
presented in [13]. Each character image of 16×16 pixels
is split into two smaller images, one corresponding to the
top 8 lines and the other one corresponding to the bottom
8 lines. Fig. (4) shows this decomposition. Knowing the
top lines, the inferning algorithm has to reconstruct the bot-
tom lines. The first thousand examples of the database are
taken into account in a 5-fold cross validation scheme. In an
unusual manner, each training set consists in one fold (200
examples) and the corresponding testing set consists in the
remaining 4 folds (800 examples). The RBF-loss, LRBF ,
as defined in equation (6) with σ = 0.35, qualifies all the
applied methods, KDE, k-NN, Hopfield-net and DNN. The
results of the 3 first methods are reported from [13].

The DNN architecture has been fixed to 2 hidden spaces,
h1 and h−1, that is 3 computational layers. Both hidden
spaces belongs to R16. The learning rate and the number of
iterations have been fixed according to the results of back-
progation without pre-training. On pre-trained DNN, the
first computational layer, from x to h1, is initialized thanks
to an Auto-Associator on the input space (top 8 lines); the
last computational layer, from h−1 to y, is initialized thanks
to an Auto-Associator on the output space (bottom 8 lines).
Table (4) displays original and reconstruction characters
produced by a DNN learned with pre-training.

The results presented in table (5) clearly shows the effi-
ciency of Deep Architecture on this particular image recon-
struction tasks. On the one hand, for the original experimen-
tation scheme, DNN outperforms KDE, k-NN and Hop-
field net. On the other hand, the LRBF standard deviation

Character Ex. 1 Ex. 30 Ex. 95 Ex. 101

Original

Reconstruction

Table 4. Characters reconstruction by DNN.

Methods # folds Pre-train LRBF

Hopfield net∗ 5 - 1.2190± 0.0072
k-NN ∗ 5 - 0.8960± 0.0052
KDE ∗ 5 - 0.8384± 0.0077
DNN 5 N 0.8000± 0.0167
DNN 5 Y 0.8070± 0.0154
DNN 10 N 0.9489± 0.0258
DNN 10 Y 0.9338± 0.0225

Table 5. RBF-loss of DNN, with or without pre-
training, compared to KDE, k-NN and Hopfield
Net (∗ results reported from [13]).

is greater when using DNN. Indeed, neural networks are
prone to instability induced by random initialization. Pre-
trained DNN leads to less deviation. Nevertheless their per-
formance are similar to the standard backpropagation with-
out pre-training. This observation can be explained by the
fact that DNN without pre-training already performs well
on this task and may have reached the limit of the given ar-
chitecture. To emphasize the benefit of the pre-training, not
only on the stability of the performance but also on the per-
formance itself, we reproduced the experience but this time
on a 10-fold scheme (100 examples in training and 900 ex-
amples in testing), making the task harder to achieve. Here,
pre-training improves the RBF-loss LRBF and its standard
deviation compared to standard DNN.

5. Conclusion

In this study, a new approach for high dimensional prob-
lems such as image segmentation has been presented. The
main contribution is to embed the inputs and the outputs
of a given problem through a deep architecture in order to
benefit from their internal dependencies.

A standard DNN can achieve good performances but
seems to slowly converge. It may also fall into unwanted
local minima. Input pre-training, by making a better rep-
resentation of the input space, ease the supervised learn-
ing [7, 14]. Extending this idea, our proposition is based

on output pre-training in order to also model output rela-
tions. This method achieves promising results, not only on
toy-data image segmentation, but also on real image recon-
struction task.

When compared with probabilistic methods (2D-HMM,
2D-CRF), the decision process of the proposed approach is
really fast, but is limited to fixed input and output size prob-
lems. For instance, probabilistic models better suit variable-
length signals such as human voice, handwriting, etc. Our
future work will try to overcome this issue without falling
into the pre-image curse.

References

[1] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle.
Greedy layer-wise training of deep networks. In NIPS, 2007.

[2] D. M. Bikel, R. L. Schwartz, and R. Weischedel. An al-
gorithm that learns whats in a name. Machine Learning,
34(1-3):211–231, 1999.

[3] M. B. Blaschko and C. H. Lampert. Learning to localize
objects with structured output regression. ECCV, 2008.

[4] R. Collobert, S. Bengio, L. Bottou, J. Weston, and I. Melvin.
Torch 5, 2008. http://mloss.org/software/
view/128/.

[5] K. Diamantaras and S. Kung. Principal component neural
networks Theory and applications. John Wiley, New York,,
1996. isbn 0-471-05436-4.

[6] A. El-Yacoubi, M. Gilloux, and J.-M. Bertille. A statistical
approach for phrase location and recognition within a text
line: An application to street name recognition. IEEE Trans.
on PAMI, 24(2):172–188, 2002.

[7] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning
algorithm for deep belief nets. Neural Comp., 18(7):1527–
1554, July 2006.

[8] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Ex-
ploring strategies for training deep neural networks. JMLR,
10:1–40, 2009.

[9] S. Nicolas, T. Paquet, and L. Heutte. A markovian approach
for handwritten document segmentation. ICPR, 3:292–295,
2006.

[10] L. R. Rabiner. A tutorial on hidden markov models and
selected apllications in speech recognition. In Readings in
Speech Recognition, pages 267–296. Kaufmann, 1990.

[11] M. Szummer and Y. Qi. Contextual recognition of hand-
drawn diagrams with conditional random fields. IWFHR,
pages 32–37, 2004.

[12] G. Tsechpenakis, J. Wang, B. Mayer, and D. Metaxas. Cou-
pling CRFs and deformable models for 3D medical image
segmentation. ICCV, Issue 14-21:1 – 8, 2007.

[13] J. Weston, O. Chapelle, A. Elisseeff, B. Scholkopf, and
V. Vapnik. Kernel dependency estimation. NIPS, 2002.

[14] J. Weston, F. Ratle, and R. Collobert. Deep learning
via semi-supervised embedding. ICML, pages 1168–1175,
2008.

