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Université de Lyon,
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Abstract

This paper focuses on the design of an effective method that computes the measure

of circularity of a part of a digital boundary. In spite of the specificity of the digital

boundaries, an algorithm that only uses classical tools of computational geometry

is derived. Even if a sophisticated machinery coming from linear programming can

provide a linear time algorithm, its O(n log n) time complexity is better than many

quadratic methods based on Voronoi diagrams. Moreover, this bound can be improve

in the case of convex digital boundaries to reach linear time.
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1 Introduction1

Accurately locate circles and accurately measure deviation with a circular2

template are common problems in many fields of science and engineering. The3

fields of application are as diverse as geology [1], archeology [2], computer4

vision such as raster-to-vector conversion [4] or video processing [5], compu-5

tational metrology to test the quality of manufactured parts [6–13], image6

processing and discrete geometry to recognize digital circles [14–21].7

This paper focuses on the design of an effective method that computes the8

measure of circularity of a part of a digital boundary previously extracted9

from a digital image. The circularity measure of a given part of a digital10

boundary is a quantity that increases with deviation from a piece of digital11

circle, called a digital arc. The reader may find in the literature terms as diverse12

as compactness [22,14], roundness [23,7,9–12], out-of-roundness [6,7,24], but13

we prefer “circularity” [25,8] because it recalls the template with which the14

data are compared to, that is the circle.15

Although plenty of papers present methods for assessing the circularity of a set16

of points, as far as we know, only one paper dealt with the circularity of digital17

boundaries, more than twenty years ago. In [14], a digital disk recognition18
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algorithm in O(n2) is presented in the first part, and a digital compactness19

evaluation algorithm for digital convex objects in O(n3
√
n) is presented in20

the second part (where n is the number of pixels of the digital boundary).21

The digital compactness measure is defined as the ratio between area A of the22

shape and area A′ of the smallest enclosing digital disk (where “the smallest”23

is expressed in area unit, that is in number of pixels). As a smallest enclosing24

digital disk may not be unique and as the smallest enclosing euclidean disk25

may not be a smallest enclosing digital disk, areas of many digital disks have26

to be compared. This is why the computational cost is rather high. This first27

attempt shows that the problem is not trivial.28

Moreover, naive methods that consist to find an easy-to-compute point that29

is expected to be the centre of a circle separating the foreground from the30

background are only approximative. For instance, in [26], the barycentre of31

a set of pixels is assumed to be the centre of a separating circle, but Fig. 132

shows that if the barycentre of a set of pixels is computed, pixels that do not33

belong to the set may be closer to the barycentre than pixels that belong to34

the set, even if it turns out that the set of pixels is a digital disk.35

A well-known circularity measure in the Euclidean plane is 4πA/P 2 where A36

is the area and P the perimeter. The digital equivalent of this circularity mea-37

sure was introduced by [22], but even with a convergent perimeter estimation38

based on digital straight segment recognition (see [27] and [28]) the measure is39

theoretically unsatisfactory: digital circles may have different values that are40

always strictly less than 1. Moreover, this kind of measure has several other41

drawbacks in practice: (i) it is not perfectly scale invariant, (ii) it is not easy42

to interpret (iii) it is not computable on parts of a digital boundary and (iv) it43

is not able to provide the parameters of a circle that is close to the data. This44
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Fig. 1. A digital disk is depicted with pixels. In each pixel, the distance of its centre

to the barycentre of the digital disk (located with a cross) is written. Some pixels

that do not belong to the disk are closer (3.2) to the barycentre than some pixels

that belong to the disk (3.24)

measure may be used for a coarse and quick approximation of the circularity45

of a digital boundary, but in the general case, another measure is needed.46

Three kinds of methods may be found is the literature:47

(1) Methods based on the circular Hough transform [29–31] allow extraction,48

detection and recognition of digital arcs. Even if these methods are ro-49

bust against shape distortions, noise and occlusions, they require massive50

computations and memory, and thresholds tuning. As the digital bound-51

ary is assumed to be extracted from the digital image in this paper, the52

following methods are more appropriate.53

(2) Methods based on the separating circle problem in discrete and com-54

putational geometry [15–21] allow the recognition of digital arcs. These55

algorithms are not robust since one point can forbid the recognition of a56

digital arc. They need to be extend to measure the extent of the deviation57

with a digital arc.58
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(3) Methods based on circle fitting are widely used. In computer vision [32–59

34,11,4,5], a circle is fitted to a set of pixels with the least square norm.60

In computational metrology [6,23,7,8,24,13], a circle is fitted to a set of61

points sampled on the boundary of a manufactured part by a Coordinate62

Measurement Machine (CMM) generally with the least L∞ norm (or63

Chebyshev or MinMax norm) because it is recommended by the American64

National Standards Institute (ANSI standard, B89.3.1-1972, R2002), but65

sometimes with the least square norm, like in [35].66

In this paper, a preliminary work presented in [36] is extended. Given a part67

of a digital boundary, the objective is to compute a circularity measure ful-68

filling some properties that will be enumerated in Section ??, as well as the69

parameters of one separating circle if it is a digital arc or the parameters of the70

closest circle otherwise. The proposed method is original because it is applied71

on digital boundaries like the one of [14] and it links both methods based on72

the separating circle problem and methods based on circle fitting.73

We formally define a circularity measure for one set of points and a pair of sets74

of points in Section 2. Then, we formally define a circularity measure for parts75

of digital boundaries in Section 3. Here is the point: from one digital boundary,76

two sets of points are extracted so that the circularity measure computed from77

these sets is representative of the circularity of the digital boundary. Thanks78

to this trick, in spite of the specificity of the digital boundaries, an algorithm79

that only uses classical tools of computational geometry is derived in Section 4.80

Some experiments are done on synthetic ideal, noisy digital boundaries and on81

real-word digital images in Section 5. The paper ends with some concluding82

words and future works in Section 6.83
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2 Circularity measure for sets of points84

2.1 Cost of fitting a circle to a set of points85

In metrology, the circularity of an arbitrary set of points S in the plane is86

defined from the minimum cost of fitting a circle to S given a certain norm.87

The most often used norm is either L2 (least square norm) or L∞ (MinMax or88

Chebyshev norm). Moreover, for both norms, the quantity that is minimized89

is either the sum of the radial distances or the sum of the areal distances.90

As presented in [8], given a norm l and metric m, the cost of fitting a circle to91

a set of points S ∈ S that characterizes the spread of the set of points around92

the circle C of centre O and radius r is given by:93

costm,l(C,S) =
∑
S∈S

∥∥∥ ∣∣∣(‖ ~OS‖2)m − rm
∣∣∣ ∥∥∥

l
(1)

The four instances of the problem of fitting a circle to a set of points (l equals94

either 2 or ∞ and m equals either 1 or 2) have been thoroughly studied for a95

long time as it is shown in Tab. 1.96

Notice first that the case (l = ∞, m = 1) (also known as the measurement97

of Out-Of-Roundness) is recommended by the American National Standards98

Institute in metrology applications. Although the norm depends on the statis-99

tical error model, in such applications, experiments have shown that L∞ fits100

provide good results ([8], for example). Moreover, the connectivity of the dig-101

ital boundaries, even affected by noise, guarantees that there is no outlier and102

that L∞ fits may be an interesting approach in the case of digital data. Notice103
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m,l 2 ∞

1 mean square error minimum width annulus

[32,34,35] [6,23,7,8,10,11,13]

ANSI standard, B89.3.1-1972 (R2002)

2 modified mean square error minimum area annulus

[33] [6,24]

Table 1

Some references for the four most used instances of the problem of fitting a circle

to a set of points

then that for either l = 2 or l = ∞, setting m to 2 is a trick that makes the104

computation easier because the objective function may be transformed into105

a problem that can be explicitly solved. As a consequence, the case (l = ∞,106

m = 2) is a trade-off between accuracy (l =∞) and efficiency (m = 2).107

2.2 Circularity measure of a set of points108

Given the norm l =∞ and the metric m = 2, the circularity measure of a set109

of points S is defined from the squared radius r∗ of the circle C∗ having the110

minimum cost:111

circ(S) =
r∗2 − (Min

C
cost2,∞(C,S))

r∗2 + (Min
C

cost2,∞(C,S))
(2)

Geometrically, a circle C of centre O and radius r having a cost given by112

cost2,∞(C,S) maps into an annulus A of centre O, inner radius r1, outer113
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Fig. 2. Given the minimum area annulus enclosing a set of points, the circularity

measure of the set of points is defined as the squared ratio between its radii.

radius r2 and area π(r2
2−r1

2) = π(2.cost2,∞(C,S)). Therefore, circ(S) is also114

the squared ratio between the radii of the minimum area annulus enclosing S115

(Fig. 2).116

It is clear that the measure defined by Eq. 2 is invariant to rigid transforma-117

tions, equals 1 if and only if the points S of S are located on one circle and is118

strictly less than 1 otherwise.119

2.3 Circularity measure of two sets of points120

The goal of this subsection is to extend the previous definition of the circularity121

measure of a set of points to a pair of sets of points. The interest of such an122

extension will be clear in the next section.123

Given the norm l = ∞ and the metric m = 2, the cost of fitting a circle C124

of centre O and radius r to an inner set of points S and to an outer set of125

points T is given by:126
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(a) (b)

Fig. 3. Given the minimum signed area annulus enclosing a set of black disks but

not the set of white disks, the circularity measure is defined as the squared ratio

between its radii. The measure is greater than 1 in (a) but less than 1 in (b) because

the set of black disks and the set of white disks are separable by a circle.

cost2,∞(C,S, T ) =
∑
S∈S

∥∥∥(‖ ~OS‖2)2 − r2
∥∥∥
∞

+
∑
T∈T

∥∥∥r2 − (‖ ~OT‖2)2
∥∥∥
∞

(3)

The circularity measure of S and T is then defined as follow:127

circ(S, T ) =
r∗2 − (Min

C
cost2,∞(C,S, T ))

r∗2 + (Min
C

cost2,∞(C,S, T ))
(4)

Geometrically, circ(S, T ) is also the squared ratio between the radii of the128

minimum signed area annulus enclosing S but not T (Fig. 3).129

Property 1 circ(S,S) = circ(S)130

The problem of finding a minimum signed area annulus enclosing a first set131

of points but not a second set of points is more general than, but may be132

reduced to the usual problem of finding a minimum area annulus enclosing a133
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set of points.134

Property 2 cost2,∞(C,S, T ) 6= cost2,∞(C, (S ∪ T )).135

cost2,∞(C,S, T ) does not characterize the spread of the two sets of points136

around the circle C as cost2,∞(C, (S ∪ T )) do, but characterizes the spread137

of the penetration of the two sets of points around the circle C. Notice that138

cost2,∞(C,S, T ) < 0, if and only if the two sets are seperable by a circle139

(Fig. 3.b).140

It is clear that the measure defined by Eq. 4 is invariant to rigid transforma-141

tions, is strictly greater than 1 if and only if S and T are separable by a circle142

and is less than 1 otherwise (Fig. 3).143

As methods that allow the recognition of digital circles are based on the sep-144

arating circle problem [15–21], we have chosen to adapt the measure defined145

by Eq. 4 to the case of digital boundaries in the following section.146

3 Circularity measure for parts of digital boundary147

3.1 Data148

A binary image I is viewed as a subset of points of Z2 that are located inside149

a rectangle of size M×N . A digital object O ∈ I is a 4-connected subset of Z2
150

(Fig. 4.a). Note that a digital object may be defined as a 8-connected subset of151

Z2 as well. Its complementary set Ō = I\O is the so-called background. The152

digital boundary C of O is defined as the 8-connected circular list of digital153

points having at least one 4-neighbour in Ō, (Fig. 4.b). A part Cij of C is the154
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list of digital points from the i-th point to the j-th point of C (Fig. 4.c).155

A digital disk is defined as a digital object whose points are separable from156

the background by an Euclidean circle (Fig. 4.d). A digital circle is defined as157

the boundary of a digital disk (Fig. 4.e) and a part of it is defined as a digital158

arc (Fig. 4.f).159

(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) A digital object is depicted with black disks. The set of squares depicts

the whole (b) or a part of the (c) digital boundary. (d) A digital object that is a

digital disk. (e) A digital boundary that is a digital circle. (f) A part of a digital

boundary that is a digital arc.

The goal of the two following subsections is to define a measure of how much160

a given part of digital boundary is far from a digital arc.161
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3.2 Circularity measure of a part of a digital boundary162

A circularity measure for parts of digital boundaries is naturally expected to163

fulfil the following properties:164

(1) be robust to translation, rotation, scaling.165

(2) range from 0 to 1, equal 1 for a digital arc.166

(3) be intuitive. For instance, it is naturally expected to increase as the num-167

ber of sides of regular polygons increases or as the eccentricity of ellipses168

decreases or as the amount of noise decreases. It is also expected that the169

measure is robust: for example, the measure of a noisy digital circle has170

to be higher than the measure of a digital triangle, or a digital square.171

Fitting a circle to the points of a digital boundary does not lead to a satis-172

factory measure because the property 2 does not hold. However, instead of173

computing an annulus that encloses a set of points, we compute an annulus174

such that the outer disk contains all the points of the digital boundary and the175

inner disk does not contain any background point (Fig. 5). This is the key point176

of our strategy. From one digital boundary, two sets of points are extracted so177

that the circularity measure computed from these sets is representative of the178

circularity of the digital boundary.179

Let S be the set of some points of C and let T be the set of some points of180

Ō. The definitions of S and T will be detailed in the next subsection.181

Now, we define the circularity measure of C as the circularity measure of S182

and T :183
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(a) (b)

Fig. 5. Two parts of two digital boundaries are depicted with gray squares. S (resp.

T ) is the set of black disks (resp. white disks). In (a), the minimum area annulus

has an area of 4 and the circularity measure equals 8.5/12.5 = 0.68. However in (b),

it has a null area and the circularity measure equals 1, because the part of digital

boundary is a digital arc.


circ(C) = circ(S, T ) if (circ(S, T ) < 1)

circ(C) = 1 otherwise

(5)

3.3 Extraction of S and T from Cij184

Let C be a digital boundary of n digital points that is counter-clockwise ori-185

ented.186

Since all circles are convex, no circle can enclose the vertices of the convex hull187

of Cij without enclosing all its points. So S may be set to the vertices of the188

convex hull of Cij, denoted by CH(Cij). If Cij 6= C, the first and last points189

of Cij are put to S even if they are not necessary in order to make easier the190

extraction of the points of T .191
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Indeed, the extraction of the points of T is independently performed for each192

part Ckl ∈ Cij that is lying between two consecutive vertices of CH(Cij), the193

indices of which being respectively denoted by k and l.194

As the extraction algorithm depends on the convexity of Ckl, the following195

definition of convexity is needed:196

Definition 1 Cij is convex (resp. concave) if there is no digital point between197

the polygonal line linking the digital points of Cij and the right (resp. left) part198

of CH(Cij).199

If Ckl is not convex, all the background points that are located between the200

polygonal line linking the digital points of Ckl and the segment linking the201

first and last point of Ckl and that are 4-neighbours of a point of Ckl are put202

to T .203

Now we will see which background points are sufficient to add to T when Ckl204

is convex.205

3.3.1 Case of circles whose radius is infinite206

Let us consider the two end points of a convex part Ckl that are denoted by207

sk and sl. Without loss of generality, let us consider the segment [sksl] in the208

forth octant, so that the background points are located above [sksl]. Let us209

consider the arithmetic description of [sksl] with a vector ~u = (a, b)T with210

a, b ∈ Z and gcd(a, b) = 1, such that (sl − sk) = g.~u with g ∈ Z (g and ~u may211

be computed by applying Euclid’s algorithm to the slope of [sksl]).212

Definition 2 A Bezout point bq of a segment [sksl] is defined as a point above213

[sksl] such that ~skbq = ~v + q~u with q ∈ Z, ~v = (c, d)T and det(~u,~v) = 1 (~v214
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is given by the Bezout’s identity that may be found thanks to the extended215

Euclid’s algorithm).216

The number of Bezout points that are associated to the segment [sksl] is equal217

to g.218

Lemma 1 A circle of infinite radius that encloses [sksl] but does not enclose219

any Bezout point bq, does not enclose any other point above [sksl].220

This lemma and its proof may be found in other papers such as [21]. They221

are the basement of the digital straight line recognition algorithm [28] because222

any lower leaning point of an 8-connected digital straight segment in the first223

octant that is vertically translated up by 1 is a Bezout point associated to this224

segment.225

However, it seems that only a small part of them, located near the bisector226

of [sksl], are sufficient. In [21] (Definition 1), the closest point to the middle227

of [sksl] is arbitrarily chosen. Fig. 6 shows that only taking into account the228

closest point to the middle of [sksl] is not sufficient. We will see that at most229

two Bezout points have to be taken into account.

~v

~usi

sj

pj

b0

b1

b2

b3

pi

Fig. 6. This figure shows that the closest Bezout point to the middle of [sksl],

denoted by b1, is not sufficient, because there is a circle that separates b1 from sk

and sl but encloses b2, which is another Bezout point.
230
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3.4 Case of circles whose radius is finite231

For each convex part Ckl, let us consider two extra points defined as the232

points pk and pl such that pk = sk − ~u and pl = sl + ~u (Fig. 6). pk and pl are233

background points, since [sksl] is an edge of a convex hull. The circles that234

enclose [sksl] but do not enclose any background point cannot have an infinite235

radius because they must not enclose neither pk nor pl.236

Let us introduce the following new definition:237

Definition 3 (Fig. 7) The middle Bezout point(s) associated to the segment238

[sksl] is(are) defined as:239

(1) the unique Bezout point b0, if g = 1.240

(2) the Bezout point bg/2 in the special case where g > 1, g is even and241

~u.~v = 0.242

(3) the two consecutive Bezout points bq and bq+1, such that q = [g/2] (where243

[.] is the integer part), if g > 1, ~u.~v > 0 or (~u.~v = 0 and g is odd).244

Then, we state the following proposition:245

Proposition 1 A circle that encloses [sksl] but does not enclose neither the246

middle Bezout points associated to [sksl] nor the extra points pk and pl, does247

not enclose any other Bezout points.248

Because of its length, the proof is given in appendix, section A.249

As a result, for each convex part Ckl, only two background points at most250

must be kept in T . Fig. 8 shows that, thanks to this arithmetic approach,251

if Cij is convex, the number of points of T is highly reduced in comparison252
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~v

~usi

sj

b1

b2

(a)

si sj~u

~v

b2 b3

(b)

si sj~u

~v

b2

(c)

Fig. 7. (a)(b) case (3) of Def. 3 ; (c) case (2) of Def. 3.

to the naive approach where T is the set of all background points having at253

least one 4-neighbour in Cij. The order of the reduction as well as the overall254

complexity of the algorithm 1 is given below.

(a) (b)

Fig. 8. Naive (a) and arithmetic (b) approach for the choice of the points of T

(white disks).
255

Computing CH(Cij) (l.1) is done in linear time (using Melkman’s algorithm256

[44] for instance). All the background points that are 4-neighbours of a point257

of Ckl may be computing in linear time by contour tracking. Checking whether258

17



Algorithm 1 SnTComputation(C,S,T )

Input: Cij, a part of a digital boundary

Output: S,T

1: Compute CH(Cij)

2: for each part Ckl of Cij do

3: Add sl to S

4: if Ckl is convex then

5: Add the middle Bezout point(s) of [sksl] to T

6: else

7: Add all the background points that are located between the polyg-

onal line linking the digital points of Ckl and [sksl] and that are 4-

neighbours of a point of Ckl to T

8: return S,T

each part Ckl is convex or not (l.4) and performing the appropriate processing259

(l.5 and l.7) is then straightforward and also linear in time.260

Furthermore, |S| is bounded by O(n2/3) according to known results [43]. If261

Cij is convex, |T | is at most twice bigger than |S| according to Proposition 1262

and |T | is bounded by O(n) otherwise. Therefore m = |S| + |T | is bounded263

by O(n2/3) in the case of convex parts and O(n) otherwise.264

Now, we will see that circ(S, T ) is computed in O(m logm), which leads to265

an algorithm that computes the circularity measure of Cij in O(n) if Cij is266

convex and O(n log n) otherwise.267
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4 Computation of circ(S, T )268

Let us compute the minimum area annulus A(O, r1, r2) of centre O(Ox, Oy),269

inner radius r1, outer radius r2 and area π(r2
2 − r1

2), under the following270

constraints:271


∀S ∈ S, (Sx −Ox)2 + (Sy −Oy)2 ≤ r2

2

∀T ∈ T , (Tx −Ox)2 + (Ty −Oy)2 > r1
2

(6)

4.1 Linear programming problem272

Developing equation 6, we get:


∀S ∈ S,−2aSx − 2bSy + f(Sx, Sy) + c2 ≤ 0

∀T ∈ T ,−2aTx − 2bTy + f(Tx, Ty) + c1 > 0

where



a = Ox, b = Oy,

c1 = (a2 + b2 − r1
2) c2 = (a2 + b2 − r2

2)

f(x, y) = x2 + y2

(7)

Instead of characterizing a circle by its centre and its radius, we characterize273

a circle by its centre and the power of the origin with respect to the circle.274

Thanks to this change of variables, solving (6) is equivalent to solving the275

following linear program with four variables and |S|+ |T | constraints:276
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PL 4D

Minimize d where d = (c1 − c2)

subject to

−2aSx − 2bSy + f(Sx, Sy) + c2 + d ≤ 0,

−2aTx − 2bTy + f(Tx, Ty) + c2 > 0,

(8)

This kind of reformulation into a linear programming problem has been done,277

for instance, in computational geometry for the smallest enclosing circle [37]278

or the smallest separating circle [15], in discrete geometry for digital circle279

recognition [20] and in engineering for the quality control of manufactured280

parts [24].281

Many techniques are known to solve such linear programming problems: for282

instance, the well-known simplex method, the prune and search techniques283

[38], the incremental randomized techniques [39]. The simplex method has a284

worst-case time complexity very large whereas the last two methods are linear285

in time in the number of points to proceed. However, these methods have some286

drawbacks: they are not easy to implement, they are off-line, the constant is287

large and is exponential in the dimension, which is equal to 4 here.288

As an annulus is a pair of concentric circles that are characterized by three289

parameters each, we interpret equation 7 in a 3D space that we call abc-space.290

Indeed, c1 and c2, having the same meaning, are both represented in the c-291

axis. From now, in addition to the original plane, called xy-plane, containing292

the points of Z2, we work in the abc-space as well as in its dual space, called293
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xyz -space.294

4.2 abc-space vs xyz-space295

As 0 ≤ r1 ≤ r2, a
2 + b2 ≤ c, the abc-space is a copy of R3 from which the296

interior of the paraboloid of equation c = a2 + b2 has been excluded. A point297

on the paraboloid maps to a circle of null radius in the xy-plane. A point that298

is out of the paraboloid maps to a circle whose radius is equal to the vertical299

distance between the point and the paraboloid in the xyz -plane (Fig. 9.a). It300

is clear that two points with the same projection in the ab-plane corresponds301

to two concentric circles in the xy-plane. Minimizing the area of an annulus302

bounded by such a pair of concentric circles is tantamount to minimize the303

vertical distance between the two corresponding points in the abc-plane.304

However, Equation 7 involves different interpretations of the triplet (a, b, c),305

either as the coordinates of a point in the abc-space or as the coefficients306

of a plane in the xyz -space. In the xyz -space, all the points of Z2 are lifted307

along an extra axis (the z-axis) according to the bivariate function f . Let308

S ′ = {S ′(S ′x, S ′y, S ′z)} (resp. T ′ = {T ′(T ′x, T ′y, T ′z)}) be the set of points of309

S (resp. T ) that are vertically projected onto the paraboloid of equation310

z = f(x, y) = x2 + y2. The xyz -space and the abc-space are dual, according to311

the classical definition of duality in computational geometry [40,41], that is a312

point in the former space maps to a plane in the latter space and conversely.313

Any plane in the xyz -space passing through some points of S ′ or T ′ cuts the314

paraboloid. The projection on the xy-plane of the intersection between the315

plane and the paraboloid is a circle that passes through the corresponding316

points of S and T (Fig. 9.b). The intersection between the paraboloid and a317
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a

bc

(a)

x

yz

(b)

Fig. 9. (a) A point outside the paraboloid of equation c = a2 + b2 in the abc-space

corresponds to a circle in the xy-plane and conversely. (b) A plane that cuts the

paraboloid of equation z = x2 + y2 in the xyz -space corresponds to a circle in the

xy-plane and conversely.

pair of parallel planes projects to a pair of concentric circles on the xy-plane.318

Minimizing the area of an annulus bounded by such a pair of concentric circles319

is tantamount to minimize the vertical distance between the two correspond-320

ing planes in the xyz -plane. This kind of transformation is well known in321

computational geometry [40,41] and has already been used in [37] to solve the322

smallest enclosing circle or in [15,20] to solve the separating circle problem.323

The understanding of the constraints is more straightforward in the xyz -plane324

and that is why we will preferably work in this space in the following subsec-325

tion.326
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4.3 Pair of parallel planes327

We have to compute a pair of parallel planes such that the upper plane is328

above the points of S ′ and the lower plane is below the points of T ′ in order329

to solve equation 7 and derive a circularity measure.330

Obviously, S ′ and T ′ may be reduced to their convex hull denoted by CH(S ′)331

and CH(T ′). In addition, the property of convexity makes the next step that332

consists in minimizing the vertical distance between the two parallel planes of333

support more efficient.334

We do not detail the classical convex hull computation algorithm that may335

run in O(m logm), where m = |S ′|+ |T ′| [40,41].336

An elementary way to compute the pair of parallel planes of support minimiz-337

ing their vertical distance is to compute the intersection depth between the two338

polyhedra CH(S ′) and CH(T ′) denoted by h = min Height(CH(S ′), CH(T ′)).339

Height(CH(S ′), CH(T ′)) is a function that returns the distance between the340

two polyhedra computed along the z-axis for each point of the domain of the341

function. Notice that Height(CH(S ′), CH(T ′)) is not defined everywhere. In-342

deed, the domain of this function is the intersection of the projection on the343

xy-plane of CH(S ′) and CH(T ′), that is CH(S) ∩ CH(T ).344

To compute h, the brute force algorithm consists in computing the planar345

graph G∗ that is the intersection between GS and GT (Fig. 10). If |G∗| = 0,346

then CH(S)∩CH(T ) = ∅. In this degenerate case, S ′ and T ′ are separable by347

a plane that is orthogonal to the xy-plane, S and T are separable by a circle348

of infinite radius, that is a straight line, so the part of digital boundary from349
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(a) (b) (c)

Fig. 10. S (black disks) and T (white disks) are separable by straight line in (a) by

a circle in (b) and are not separable by a circle in (c). Note that G∗, which is the

intersection between GS (in dashed lines) and GT (in dotted lines), has respectively

0, 4 and 3 nodes in (a), (b) and (c).

which S and T have been computed is a digital straight segment (Fig. 10.a).350

If |G∗| > 0, it remains to compute the height function for each vertex of G∗351

and take the minimum.352

The brute force algorithm runs in O(m2) since G∗ has at most m2 vertices.353

However, it is possible to take advantage of the convexity of the height function354

to get an algorithm in O(m logm) (see [40, pages 310-315] for this algorithm).355

Since h is the signed area of the annulus A, if h ≤ 0, S and T are separable356

by a circle and circ(S, T ) = 1 but if h > 0, S and T are not separable by a357

circle and circ(S, T ) = r1
2

r2
2 , where r1

2 and r2
2 are derived from the coefficients358

of the pair of parallel planes.359

Although our algorithm is more general than a simple digital circle test, its360

complexity in O(m logm) is better than the quadratic complexity of the meth-361

ods presented in [16,17,21]. These methods cannot be efficient because they362

only deal with 2D projections of 3D polyhedrons.363

Algorithm 2 sums up the current section.364
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Algorithm 2 CircularityComputation(S,T )

Input: S and T , two sets of points

Output: circ(S, T )

1: Compute S ′ and T ′ from S and T

2: Compute CH(S ′) and CH(T ′)

3: Compute the pair of parallel planes of support

4: Derive r1 and r2 from the coefficients of the planes

5: if r1 ≤ r2 then

6: return r1
2/r2

2

7: else

8: return 1

5 Experiments365

By definition, the circularity measure that is proposed in Section ?? is on the366

one hand invariant under similarity transformations and on the other hand367

maximum and equal to 1 for any digital circle whatever its centre or its radius.368

In this section the behaviour of the measure is probed with respect to either369

synthetic images or real-world images.370

5.1 Synthetic images371

The measure is computed on different classes of objects, either noise-free ob-372

jects that are not circles, such as ellipses and regular polygons or noisy circles373

(Fig. 11) and compared with the ground truth, which is computed from the374

smallest area annulus enclosing the continuous objects.375

First, one hundred digital polygons were generated (Gauss digitization of reg-376
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ellipse regular 7-gon noisy disk noisy disk

a = 25, b = 50 p = 1325 r = 30, α = 1 r = 30, α = 15

Fig. 11. Gauss digitization of an ellipse, a regular 7-gon and two disks. The visual

size of the shapes does not reflect their true size. The amount of noise that is added

to the two latter shapes according to the degradation model of [46] depends of

parameter alpha (Eq 9). The digital curves that we are called upon to measure are

the 8-connected boundaries of these digital objects.

ular polygons of fixed perimeter). Their number of sides is ranging from 3 to377

103, whereas their perimeter p is approximatively equal to 1325 (pixels). A378

so large perimeter enables to observe light variations of circularity within a379

wide range of number of sides. Fig. 12 shows that the measure is close to the380

ground truth. As expected, the circularity increases with the number of sides381

and converges towards 1. The bigger the number of sides, the more the poly-382

gons look like a circle and the more the circularity is close to 1. Note that the383

circularity of the k-gons where 30 ≤ k < 85 is alternatively equal to 1 and to a384

value that is slightly less that 1, namely approximately 0.99. Furthermore, the385

k-gons where k ≥ 85 are digitized into a same digital object whose circularity386

is 1.387

Next, hundreds of digital ellipses (Gaussian digitization of continuous ellipses)388

were generated with various parameters : a (resp. b), small (resp. great) semi-389

axis, θ, the angle between the main axis of the ellipse and the x-coordinate390
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Fig. 12. One hundred regular polygons of perimeter approximatively equal to 1325.

Circularity is plotted against the number of sides.

axis, Ox and Oy the coordinates of the ellipse centre. Fig. 13 shows that the391

measure behaves very well and is nearly confounded to the ground truth.392

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a/b

C
irc

ul
ar

ity

Circularity of digital ellipses of increasing eccentricity (b=50)

circ(S,T)
ground truth

Fig. 13. One hundred of digital ellipses were generated according to the following

rules: O(0, 0), θ = 0, b = 50 and a is ranging from 10 to 50. Circularity is plotted

against a/b, the eccentricity of the ellipses.

Finally, hundreds of noisy circles are generated. In order to study the im-393

pact of the amount of noise onto circularity, we implemented a degradation394
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model very close to the one investigated in [46]. This model was proposed395

and validated in the context of document analysis and assume that: (i) the396

probability to flip a pixel (that is, label ‘foreground’ or ‘1’ a pixel previously397

labelled ‘background’ or ‘0’, and conversely) depends of its distance to the398

nearest pixel of the complement set and (ii) blurring may be simulated with399

a morphological closing. Thus, in practice:400

• we perform a squared Euclidean distance transform [47];401

• we process each pixel according to formula 9, which is a simplified version402

of only one parameter of the model investigated in [46]:403

p(0|1)Pij
= p(1|0)Pij

= exp (−SEDT (Pij)

α
) (9)

where SEDT (Pij) is the squared Euclidean distance that is stored at pixel404

Pij in the distance map and α is a parameter that controls the amount of405

noise;406

• we apply a morphological closing with a circular structuring element whose407

radius is 5, which makes the object connected again.408

Figure 11 gives two examples of results of the degradation algorithm applied to409

a digital disk. Figure 14 shows that the circularity decreases with the amount of410

noise, but with sawtooth because the pixels are flipped at random. The noisier411

the digital circle, the more it looks different from a digital circle. Furthermore,412

even with rather noisy digital circles (α = 15), the circularity is above 0.8,413

which approximately corresponds to the circularity of a 7-gon. Hence, the414

measure is sufficiently robust to discriminate noisy circles given by the noise415

model of [46] at α = 15, from k-gons where k < 7, such as squares or triangles.416

Note that the comparison makes sens in spite of the difference of perimeter417
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because the measure is size invariant.418
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Fig. 14. One hundred digital circles of radius 30 are generated with more and more

noise. Parameter alpha ranging from 1 to 15 controls the amount of noise (Fig. 11).

Circularity is plotted against parameter alpha.

The accuracy of the measurements on digital arcs of various length is now419

investigated. Fifty noisy circles are generated (r = 30, α = 15) (Fig. 11).420

For each circle and for each length from 20 to approximately 180 pixels, one421

digital arc is randomly extracted. The circularity measure is computed from422

these approximately 7500 digital arcs. Fig. 15 shows that from 20 to 45 pixels423

of length (90 degrees), measurements are not accurate, because the confidence424

range at 95% is wide (until more than 0.1). Though, the confidence range425

shrinks while the arc length increases and the measurements done on digital426

arcs of more than 45 pixels of length (90 degrees) may be consider accurate.427

Obviously, the smallest angle for which measurements are accurate depends428

on the noise and the size of the digital circles. The smaller α is, the smaller429

the angle is. In the special case where α = 0, measurements are perfect for430

all digital arcs. Moreover, the higher the radius is, the less the noise added by431
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the model at a given α affects the shape, the smaller the angle is.432

50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

length

ci
rc

ul
ar

ity
 a

ve
ra

ge

Circularity of noisy digital arcs (r=30, alpha=15)

Fig. 15. Fifty noisy circles were generated (r = 30, α = 15) (Fig. 11). For each circle,

for each length from 20 to approximately 180 pixels, one digital arc is randomly

extracted. The average of the circularity measure of the digital arcs (solid line) is

plotted against the length with error bars at 95%.

5.2 Real-world images433

We are currently working in collaboration with geographers. They want to434

perform a set of measurements that describes the shape of pebbles sedimented435

in river beds. The underlying assumption is that pebbles size and shape are436

determined by lithology, distance of transport, abrasion, etc. The objective is437

to reduce the subjectivity and the time spent in the field thanks to digital438

image analysis.439

The circularity measure proposed in this paper is used in order to study the440

shape of pebbles from digital images, collected in the bed of the Progo, an441

Indonesian river located on Java Island near Yogyakarta. Approximately 1300442
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pebbles were randomly sampled in the bed, with 2 photos being taken on 12443

stations located at various distances from the source. Fig. 16 shows two photos444

taken near the source.

Fig. 16. Zoom in photos taken on the first (left) and second (right) stations.
445

First, we detected pebbles with clustering methods in the HSV (hue, satura-446

tion, value) color-space. Next, we extracted the digital curves that bound each447

pebble by contour tracking. Finally, the circularity measure was computed for448

all the digital curves.449

In Fig. 17, the average of the circularity measure of the pebbles is plotted450

against the distance from the source of the stations where the pebbles have451

been collected. Circularity is valuable for geographers because experiments452

shows that it increases in the first 20 kilometres, while the pebbles get rounder453

(like a roundness index [1]), but has a complex pattern after, with no clear454

trend, which raises the possibility of a substitution of macro-scale to micro-455

scale shape changes downstream. Note that Fig. 16 shows photos taken on456

two stations that have statistically significant difference of circularity: the first457

station (Fig. 16, left) and the second one (Fig. 16, right). Obviously, other size,458

form and shape parameters, like diameter, elongation, convexity and various459

roundness indices, add to circularity to provide multidimensional data of great460
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interest for geographers.
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Fig. 17. The average of the circularity measure of the pebbles is plotted against

the distance from the source of the 12 stations where the 1300 pebbles have been

collected.
461

In the left photo of Fig. 16, two pebbles are badly detected because they touch462

each other. In such a case, it is possible to cut the digital curve in two, thanks463

to an algorithm that robustly decomposes a digital curve into convex and464

concave parts [48], and independently deal with the two open digital curves.465

As the missing part is very small, the circularity measure is very close to the466

one that could have been computed on the unknown closed digital curve.467

6 Conclusion and perspectives468

In this paper, a circularity measure has been defined for parts of digital bound-469

aries. An existing circularity measure of a set of discrete points (Section 2.2),470

which is sometimes used in computational metrology, is extended to the case471
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of a pair of sets of discrete points (Section 2.3) and then to the case of parts of472

digital boundaries (Section 3.2). Once the minimum area annulus, such that473

the outer disk contains all the points of the part of a digital boundary and the474

inner disk does not contain any background point is computed, the circular-475

ity measure is defined as the squared ratio between the inner and outer radii476

(Section 3.2).477

Because we consider two sets of points, the problem we deal with is more478

general than the usual problem of finding a minimum area annulus enclosing479

one set of points [6,23,7,8,10,11,13]. The circularity measure of these two sets480

of points is computed thanks to an algorithm in O(n log n) that only uses481

classical tools of computational geometry (Section 4.3). The method is exact482

contrary to many methods that use ad hoc heuristics [8] or meta-heuristics483

like simulated annealing [11,13]. Even if it is shown that a sophisticated ma-484

chinery coming from linear programming can provide a linear time algorithm485

(Section 4.1), its O(n log n) time complexity is better than many methods486

based on Voronoi diagrams [16,17,6,23] (Section 4.3). Moreover, the two sets487

(points of the digital boundary and background points) are cull so that the488

complexity reach linear time in the case of convex digital boundaries (Sec-489

tion 3.3).490

The measure fulfils the following properties:491

• it may be applied on digital boundaries or any part of it.492

• it is robust to rigid transformations.493

• it increases as the number of sides of a regular polygon increases (Fig. 12),494

as eccentricity decreases (Fig. 13), and as noise decreases (Fig. 14).495

• it ranges from 0 to 1 and is equal to 1 for any digital circle or arc.496
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• it provides the parameters of a circle whose digitization is the measured497

part of digital boundary if the circularity measure is 1 and the parameters498

of an approximating circle otherwise.499

The kind of measure and algorithm proposed in this paper is general enough to500

be applied in order to recognize or measure the deviation with other quadratic501

shapes like parabolas. In the case of parabolas, the extension is straightfor-502

ward: it is enough to modify function f , so that f(x, y) equals x2 (or y2),503

instead of x2 + y2. The points of the xy-plane are merely vertically projected504

onto a parabolic cylinder instead of an elliptic paraboloid and algorithm 2 does505

not change. Obviously, algorithm 1 must be modified, because it is optimised506

for circles. Adopting a naive approach, a new one may be easily sketched.507

To end, it would be quite valuable to make the algorithm on-line (without508

increasing its complexity as far as possible). The on-line property would be509

of great interest to efficiently and robustly decompose a digital boundary into510

primitives like digital arcs or pieces of digital parabolas.511

A Proof of Proposition 1512

In the sequel, we only consider the case of a circle that encloses [sksl] but nei-513

ther pl nor the closest middle Bezout point to pl. The other case is symmetric514

and the two cases will be put together to conclude the proof.515

Let us consider a circle passing through sk and pl. If such a circle encloses sl516

but does not enclose any Bezout point, then any circle passing through sk and517

intersecting [slpl] (of whatever radius) separates sl from any Bezout point too.518
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The first point b that is touched by a circle passing through sk and pl of519

decreasing radius is such that the angle between ~bsk and ~bpl is maximized. To520

maximize such an angle in the range [π/2, π] is equivalent to maximize the521

tangent of the angle that equals:522

det( ~bsk, ~bpl)

~bsk. ~bpl

However, det( ~bsk, ~bpl) is constant and equal to g + 1 = h. Then, only taking523

into account the denominator, we look for the integer q that minimizes:524

f : Z 7→ Z

f(q) = (−~v − q~u).(−~v + (h− q)~u)

Developing, we finally get:525

f(q) = q2(||~u||2) + q
(
2(~u.~v)− h(||~u||2)

)
+
(
||~v||2 − h(~u.~v)

)

The derivative is:526

f ′(q) = (2||~u||2)q + 2(~u.~v)− h(||~u||2)

Since 2||~u||2 ≥ 0, f is convex and has a global minimum at the value of q for527

which f ′(q) is closer to 0 than for the other values of q. The minimum seems528

to be reached around q = h/2 because f ′(h/2) = 2(~u.~v) ≥ 0. Since q has529

to be an integer, the parity of h involves two different cases that need to be530

independently discussed.531
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Let us consider that h is even. We show that q equals h/2 because f(h/2) ≤532

f(h/2 + 1), f(h/2) ≤ f(h/2− 1). Indeed, f ′(h/2 + 1) = 2||~u||2 + 2(~u.~v), which533

is positive and greater than 2(~u.~v). Similarly, f ′(h/2− 1) = −2||~u||2 + 2(~u.~v).534

Now, 2||~u||2 − 2(~u.~v) > 2(~u.~v)⇔ ||~u||2 > 2(~u.~v). That equation being always535

true, we can conclude that q equals h/2.536

Let us consider that h is odd. It is clear that the minimum is reached at537

h/2− 1/2 or h/2 + 1/2. On the one hand, f ′(h/2 + 1/2) = ||~u||2 + 2(~u.~v) and538

on the other hand, f ′(h/2− 1/2) = −||~u||2 + 2(~u.~v). If ~u.~v = 0, the minimum539

is reached at both h/2− 1/2 and h/2 + 1/2, but if ~u.~v > 0, it is clear that the540

minimum is only reached at h/2− 1/2.541

Finally, the first point b that is touched by the circle of decreasing radius and542

passing through sk and pl is the closest middle Bezout point to pl according to543

Def. 3. Tab. A.1 summarizes the previous results whereas Tab. A.2 gives the544

results of the symmetric case. Merging the two tables, the three cases of Def. 3545

appear and this concludes the proof of Proposition 1. The last two items of546

Def. 3 are illustrated in Fig. 7. 2

~u.~v h g q Def. 3 Fig. 7

≥ 0 even odd h/2 = g/2 + 1/2 = [g/2] + 1 (3) (b)

0 odd even h/2− 1/2 = g/2 = [g/2] (2) (c)

h/2 + 1/2 = g/2 + 1 = [g/2] + 1

> 0 odd even h/2− 1/2 = g/2 = [g/2] (3) (a)

Table A.1

Results for the case of a circle that encloses [sksl] but neither pl nor the middle

Bezout point the closest to pl (with g > 1).
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~u.~v h g q Def. 3 Fig. 7

≥ 0 even odd h/2− 1 = g/2− 1/2 = [g/2] (3) (b)

0 odd even h/2− 1/2− 1 = g/2− 1 = [g/2]− 1 (2) (c)

h/2 + 1/2− 1 = g/2 = [g/2]

> 0 odd even h/2− 1/2− 1 = g/2− 1 = [g/2]− 1 (3) (a)

Table A.2

Results for the symmetric case of a circle that encloses [sksl] but neither pk nor the

middle Bezout point the closest to pk (with g > 1).
547
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