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Abstract 

Simulation of moving interfaces, like a fire front usually requires the resolution of a large scale 

and detailed domain. Such computing involves the use of supercomputers to process the large 

amount of data and calculations. This limitation is mainly due to the fact that large scale of space 

and time is usually split into nodes, cells or matrices, and the solving methods often require small 

time steps. This paper presents a novel method that enables the simulation of large scale/high 

resolution systems by focusing on the interface. Unlike the conventional explicit and implicit 

integration schemes, it is based on the discrete-event approach, which describes time advance in 

terms of increments of physical quantities rather than discrete time stepping. Space as well is not 

split into discrete nodes or cells, but we use polygons with real coordinates. The system is 

described by the behaviour of its interface, and evolves by computing collision events of this 

interface in the simulation. As this simulation technique is suited for a class of models that can 

explicitly provide rate of spread for a given configuration, we developed a specific radiation based 

propagation model of physical wildland fire. Simulations of a real large scale fire performed with 

an implementation of our method provide very interesting results in less than 30 seconds with a 3 

metres resolution with current personal computers. 

1 Introduction 

Simulation of a spatial phenomenon requires the description of an environment in a way that can 

be efficiently processed by a computer, and adapted to numerical manipulations. Typically, in 

forest fire the phenomenon is evolving on an area composed of non burnable roads, rivers and fuel 

breaks and burnable large patches of uniform land. One of the main problems of this spatial 

distribution is that non burnable areas have strong effects on propagation dynamics despite being 

several orders of magnitude smaller than the burnable areas.  

In order to take into account all details, most simulation techniques discretize space and time in 

more or less regular meshes, or grids, and use those mesh to solve the model. Using a mesh 

implies that before performing a simulation, a trade-off must be made between resolution and size 

of the domain, as a computer will only be able to process a limited amount of nodes or cells.  A 

large forest fire will spread over an area greater than 100 Km², at best a 2 meter of resolution is 

needed to take into account roads and fuel breaks, and thus 25 million cells are necessary which 

greatly impact simulation time and memory usage.  

There are many ways to work around those limitations, increasing computer speed and memory, 

distributing calculus when it is possible, or optimizing the algorithms is a good way to enhance 

performance. 

Nevertheless, such large fire will develop in a few hours, and require a forecast that can be 

delivered in a few minutes in order to try different fire fighting scenarios. 

The goal of the work proposed in this paper is to propose a method that is able to simulate in a few 

minutes the propagation of a large wild fire at a high resolution. 
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For that we propose to work around the limitations of current methods by using a different 

representation of the environment and the phenomenon. 

The proposed method combines discrete event simulation Zeigler (2000) and front tracking 

(Glimm et al. 1996), (Du et al. 2006), (Risebro and Holden 2002), (Risebro and Tveito 1992). 

Front tracking methods are used to study physical interface or boundary dynamics. The physical 

interface is defined here as the frontier line between two state of a system.  

For example, a model of a sea oil slick may be defined by with two states: oil is present and oil is 

absent. In a forest fire model, the two states for the vegetation are burnt and un-burnt, and the fire 

front is the interface between those two states.  

While common methods simulate the spatial evolution of the state of the system, front tracking 

methods are designed to directly simulate the spatial evolution of the frontier between those two 

states. With this view on system, the environment can be described in a different fashion because 

interfaces can be processed as a set of points or vertices with continuous coordinates. The entire 

map on which the system is evolving does not need to be discrete in order to study interface 

dynamics. Map state can be a function of the location (a hill can be described by a sine function) 

as long as it is possible to evaluate a state for a given set of coordinates.  

Front tracking has been seldom applied to forest fire simulation, in the proposed approach it is 

coupled with discrete event simulation (DES) as opposed to discrete time simulation. If discrete 

time stepping is used, the resolution of the system falls in the similar limitations as with regular 

meshes; trade-offs have to be made between temporal resolution and temporal scale of the 

simulation. Describing front models as discrete event systems permits to define time as a 

continuous value, like the other dimensions of the system and domain, simulation then becomes 

asynchronous in an approach similar to Karimabadi et al (2005). 

The following part presents a review of related work on front tracking, asynchronous simulation 

and fire spread simulation. The overall simulation method, concepts and detailed simulation 

algorithms are presented in the third part of the article. The proposed physical fire rate of spread 

model is described in the fourth section.  

The last part of the paper presents simulations and an implementation of the fire model that shows 

that the method is appropriate to simulate in a few minutes the evolution of large wildfires at high 

resolution. 

2 Background 

Topics of interest related to this study are transversal to discrete event simulation, numerical 

simulation, front tracking methods and fire propagation. The general problem that motivates the 

development of the method was to find a suitable method to perform quickly a physical simulation 

of fire spread on a wide domain.  

Fire spread models are generally classified in three families (Pastor 2003), empirical, semi-

empirical and physical. Empirical models try to capture the behaviour of a front using purely 

statistical and stochastic methods based on observation. Quasi empirical models, such as the one 

proposed by Rothermel (1972), are the most widely used and derive from a physical formulation 

of the problem, but include some parameters that are deduced (fitted) from observations. Physical 

models attempt to represents the behaviour of a wild fire with no fitted parameters; among those, 

complex multi-phasic models attempts to represents both combustion and propagation, while 

reduced physical models are focused only on propagation. 
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Advantages of physical models are that more diagnoses can be derived from the simulation, such 

as the fire intensity or emission of atmospheric pollutants. Physical models are also more generic, 

since empirical and quasi empirical models can only reproduce a fire behaviour that has already 

been observed (Pastor 2003). The interested reader will find in Sullivan (Sullivan, 2006) a 

summary of currently available forest fire models. 

Simulation results of different models, may not be directly comparable, for example, the rate of 

spread will be diagnostic (usually deduced from a fully resolved temperature field) in a complex 

physical model, while it will be prognostic (directly calculated) in a reduced physical, empirical 

and quasi-empirical models.  

Complex models are also usually more calculation intensive, and therefore restrained to either 

smaller domains or will take more time to calculate than the actual wildfire will take to propagate. 

Consequently, numerical methods adapted to simulate those models can be very different, from 

finite elements methods (Linn, 2002) to ellipse reconstruction (Finney and Andrews, 1994), front 

tracking (Mallet et al, 2007), DEVS-based cellular simulation (Ntaimo et al, 2004), (Vasconcelos 

and Guertin, 1992), (Muzy et al, 2005) or even with cellular automaton (Dunn and Milne, 2004).  

Cellular automata methods in the field of forest fire and DES has also been the field of numerous 

studies that shown interesting results but are often limited to a certain resolution in order to have 

sufficiently fast simulation time for larger domains. Moreover, the approach developed in this 

work is very different as cellular models as it does not require a regular mesh or cell. A complete 

description of the numerous cell based models of fire spread will be out of the scope of this paper. 

Most work done in the field of numerical methods of fire spread has been done with models that 

prognoses the Rate of Spread (RoS). RoS for every portion of the front is then used to reconstruct 

the shape of the fire over time from an initial solution.  

Among the reconstruction methods, the most commonly used is the method of ellipses where 

ellipses the size of a fire advance for a given time step are drawn around an initial front to 

reconstruct the front one step forward. 

We will be more interested here in the family of front tracking methods from which the proposed 

method is derived.  

Front tracking is the general denomination for any numerical scheme that calculates the movement 

of an interface between two phases of a system (burnt/unburnt, water/oil, etc…). Of those 

methods, three main approaches are relevant for the simulation of fire fronts.  

In volume of fluid method (Hirt and Nichols, 1981), the front is represented by a plane in a grid 

cell, and the volume of each phase is estimated by the amount of each grid cell in each part of the 

plane. Such methods usually represent well topological changes of the front and are adequate to 

perform a budget for any physical variable of each phase; nevertheless, as the front is 

approximated locally as a straight line parallel to the mesh, it is difficult to evaluate the norm 

vector of the front advance which is critical in fire spread models.  

For problems where performing budgets are less critical, the most common approach is the level 

set method (Mallet et al, 2007). Like volume of fluid method, a level set method requires the use 

of a grid to calculate the position of the interface, the main advantage of level set method is that it 

directly deals with topological problems (such as front merging and convergence). An application 

of the level set method to forest fire spread model can be found in Mallet et al. (2007). Some 

computationally efficient algorithms exits for the level set method but implies automatic 

refinement of the grid near the interface using memory intensive data structure and therefore may  

limit the size of the simulated domain.  
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Finally marker method are also used for the resolution of front tracking (Lallemand et al, 2007); in 

this method, the front is discretized by a set of points, at each step markers are moved according to 

a speed function. With this low-computational cost Lagrangian technique it is possible to simulate 

the evolution of an interface without an underlying grid to represents the state of the system.  

The method proposed in this paper derives from the marker method. As stated earlier, one of the 

main problems in forest fire modelling is that the phenomenon is evolving on large patches of 

uniform condition with a few small scale details that have strong effects on the propagation. Using 

this method helps overcoming this problem as large uniform patches, small roads or even large 

rocks can be represented as arbitrarily shaped polygons and no underlying matrix to represent the 

state of the system. The main problem of this method is that collision or intersection must be 

checked each time a marker is moved to take care of the topological changes.  

If all markers are moved synchronously using an explicit time step, there will be as many 

topological checks as there are markers at every step. The originality of the proposed front 

tracking markers method is to move markers asynchronously, with no global time step, by using 

discrete event simulation. 

In time driven simulation, all state changes must be performed synchronously at each time step. 

Because the time step is a spatially uniform time interval, it is conditioned by the smallest detail 

that needs to be taken into account in the simulation. This limitation is known as the Courant-

Friedrichs-Levy (CFL) conditions, where Vxt /∆<∆  where V is the fastest speed in the whole 

domain, and x∆  the size of the smallest detail, or the size of a unitary cell in a mesh.  

Specifically in markers method, the time step will be constrained by the fastest marker at each 

step. In forest fire, speed for the same front can range from a few cm.s
-1

 (back fire) to a few m.s
-1

 

(head fire), in such configuration markers are re-calculated regardless of the actual distance 

covered resulting in many unnecessary computations (at each time step the slower markers will be 

moved by a very small distance while the faster markers will be moved by the maximum 

acceptable distance given by the CFL).  

In DES, the local state change of a system is triggered by an event. Each event has an occurrence 

time which does not have to be spatially uniform. If the time advance of each marker is event 

based, markers does not have to share the same time step. With different time advances for each 

marker, the CFL condition only applies locally given the speed of individual marker. 

Computations becomes dependent of the actual distance covered, whatever the speed of the 

marker.  

 

While DES is often used to simulate agent (Urmacher, 1997) and cellular models (Wainer, 2006) 

that shares some of the goals developed in the proposed application, it has seldom been used in the 

field of computational fluid dynamics and physical simulation.  

Some recent studies are proposing DES as a numerical integration method for fluid (or field) 

dynamics models; in particular Karimabadi et al (2005) proposes a way to calculate an electrical 

field in one dimension using a DES of particles moving through cells without a global CFL 

condition. Nevertheless, as DES is a totally different way of thinking the simulation of fields or 

particle advances, every method, such as the method of markers in two dimensions, has to be re-

formalized. 

Specific formalisms exist for the specification of DES, among those DEVS (Zeigler, 2000) has 

already been applied to the study of discrete, continuous and hybrid systems. Many specialisations 

of DEVS exist for different applications; Vector-DEVS (Filippi and Bisgambiglia 2002) has been 
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developed for the specification of models with moving dynamic interfaces. In the next section 

Vector-DEVS is used to formalize the markers method. 

3 Front tracking markers method  

If using the DEVS formalism, the model has to be decomposed into basic models that represent 

atomic behaviour of a sub-part of a system, and coupled model that is managing the links between 

those basic models. One limitation of standard DEVS is that the structure of the model is static 

during simulation: it is not possible to add basic model or to change the coupling.  

 

3.1) Modelling formalism 

Moving interfaces shows a naturally dynamic behaviour, front lines expands, collides, merges and 

are dislocated, if the basic model is a portion of an interface, it will merge, collide or disappear 

during the simulation. Because of that it is necessary to use the DS-DEVS (Dynamic Structure) 

(Barros 1997) variant of DEVS, a formalism that is adapted from DEVS for the specification of 

systems with dynamic behaviour.   

In DS-DEVS, couplings are handled by another component, the executive that can trigger the 

creation, destruction and links of basic models. 

Vector-DEVS derives from DS DEVS for the specification of spatially explicit systems with 

moving interfaces. In Vector-DEVS basic models are always a portion of an interface, and called 

Geographic Agents. The connected agents that represent the interface are coupled in a shape in a 

Shape manager. 

It is not the topic of this paper to provide a complete description of Vector-DEVS, this description 

is available in (Filippi and Bisgambiglia 2002) and (Filippi, 2003), basically, the three components 

cited are to be specified in order to implement a specific simulation method such as front tracking, 

definitions of those components are: 

• The Geographic agent, basic DEVS model representing a point of the interface. A 

Geographic agent has a reference position and a displacement vector. The agent can trigger 

the generation of new agent, as well as a position change. 

• The Shape manager, classical DS-DEVS network. It is a container for all agents in charge 

of activating and structure change. The structure is a set of connection between the agents 

that represents a polygonal shape. This structure is defined in a shape manager executive. 

There is as many executives as fronts an each front may have inner fronts. 

• The Executive links all agents in a front; the set of links is defined in an internal set. A 

structure change function defines the dynamics of the shape structure by triggering the 

creation, the linking and the destructions of agents. 

 

Figure 1 presents the structural view of the Vector-DEVS Component. A shape is contained in a 

Shape Manager, containing Geographic Agents A (1, 2, 3) coupled by ports SE and SS and linked 

to the Shape Executive by ports Ie and Cs. The Shape Executive is in charge of the behaviour of 

the shape as a whole, while Agents are only in charge of their behaviour, with a limited view on 

their direct neighbours. 
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Figure 1: Structural view of the internal coupling in a shape manager (light gray), Executive being 

the shape executive of the manager, models A(1,2,3) represents the geographic agents, dark gray 

squares the ports and the lines the internal coupling of the shape 

 

In the markers method, phenomenon behaviour is usually represented by a polygon, which is the 

discrete view of the continuous system front (Glimm et al. 1996). In Vector-DEVS, this polygon is 

decomposed in geographic agents that represent angular points, the system view of the structure 

in figure 1 is the polygon presented in figure 2.  

 

 
Figure 2: System view of a front polygon. Thick grey line represents the simulated interface. 

 

Agents are evolving in an environment, for the front tracking method; each agent has a set of 2D 

coordinates, and based on this set of coordinate is able to retrieve the state of the system at its 

specific location from data maps. 

 

3.2) Data driving the simulation  

Handling of geographical data is usually performed in a geographical information system (GIS). 

There are two kinds of data formats usually available in GIS: 

• Raster maps that represent the environments in a matrix; this kind of data is very common 

because much of the data is based on satellite or aerial imagery. Moreover, most data 

obtained from simulation will be available in this form because the computation of the fields 

has been performed using matrices. The main problems of raster are resolution of the data 

(at best 50m by 50m for the applications in forest fire), and the actual data size of the raster 

that can be too large to fit in memory. Some vegetation cover, wind, and even elevation 

models are provided in raster.  
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• Vector maps that represent the environment in polygons or lines, like a highly non-uniform 

mesh; this kind of data is more and more used thanks to the use of Global Positioning 

System (GPS). There are no resolution problems with vector data as all points have real 

coordinates value, and the area covered by a vector map is virtually infinite as memory 

problems will arise only if there is too many polygons. Nevertheless, polygons can only 

provide a delimitation of homogeneous areas and not the whole state of a system as raster 

does. Some vegetation covers, road network, most land use maps, and tracking of vehicles 

are available in vector format. 

Simulation in Vector DEVS are performed using natively a vector format, the front interface is a 

polygon with agents having real coordinates. The main problem is availability of the data driving 

the simulation in this format.  

Basically, it is viewed as simulation on an arbitrary meshed map that can provide the state of the 

system at the very point location of the agent. 

Simulation on arbitrary meshed maps cannot be applied to study all 2d evolutionary systems. It 

implies that the interface have a predictable behaviour in homogeneous area. For this class of 

systems, there are four main reasons that make such simulation more efficient: 

• The space does not have to be discrete. There are no questions about mesh resolution and 

size. Some details of major importance that must be neglected with a common matrix are 

taken into account without increasing exponentially the overall simulation complexity (a 

forest fire simulation on a 10km*10km grid must have a two meter resolution to take into 

account roads, resulting in a huge matrix on a regular mesh). 

• The redundant calculus that occurs for a front with a stable speed on homogeneous front can 

be simplified. Instead of propagating a front from cell to cell in homogeneous area, if the 

front have a constant speed, the next calculation will occur when the front enter in a 

different area. 

• For the maps that are directly available in vector format in geographic information systems 

(GIS), the "rasterizing" operation becomes useless and save some information losses. 

• Different kinds of regular mesh (hexagonal cells, square calls…) often introduce an effect 

known as ghosting, resulting in a propagation that mimics the underlying grid. Vector maps 

are not affected by this problem because points do not have to be aligned.  

All data is virtually part of the state parameters of all models in Vector DEVS, in fact each model 

should have the knowledge of every state value of every point of the entire environment. 

Formally a copy of (the infinity of) points should be made available in memory for all models, but 

from an implementation point of view, availability of the data for the method is made trough a 

data broker that provide the state value for a pinpoint location. The data broker has two point data 

retrieval algorithm for raster and vector maps: 

• For raster maps, the local data is obtained by bi-cubic interpolation with the four 

neighbouring matrix values of the requested point; this method has the advantage of 

ensuring continuity for the state value over space. 

• For vector maps, the local data is obtained by a neighbourhood function that finds which 

polygon of the map is containing the requested point. As the actual simulated interface is 

also in vector format, the broker can also check if the point is contained in an area already 

covered by the same mechanism. The returned value is the state value of the polygon found.  

ha
l-0

04
38

61
9,

 v
er

si
on

 1
 - 

4 
D

ec
 2

00
9



 

The only information available to the agent is the actual map state value at its location and the 

location of its two direct neighbours. From this information each agent has to calculate how it will 

move over space and time during simulation.  

 

4)  Simulation mechanisms 
As for every discrete event simulation, agents are reacting to events that are triggering their 

advance in space and time. In addition to the structure there are two key concepts that form the 

base of the simulation in Vector-DEVS as they are generating the driving events: 

• Collision: A collision is happening when an agent is moving into a different area (from 

bushes to a fuel break, or from an un-burnt area to an already burnt area). Collisions also 

occur if an agent and its neighbour agent are separated by more than a minimum distance 

allowed during simulation: the quantum distance. Each collision will trigger a dynamic 

modification of the shape, by adding or deleting agent. 

• Quantum distance: noted q∆ , defines (in meters) the maximum distance that is allowed to be 

covered by an agent advance. The actual resolution of the simulation is limited by this 

quantum distance and details that are smaller than this quantum distance may not be taken 

into account. 

 

All of the motion and all events are generated by either a collision or by the agent planning an 

advance in space and time. Collisions trigger the activation of the Executive that will resolve the 

overall shape modification. Agents are actually moving by self-activation until they stop.  

 

4.1) Computation of the agent advance in space and time 
Unlike conventional Lagrange method for the computation of a particle advance in a flow, in DES 

resolution of an agent advance has to resolve the inverse problem, fixing a quantum distance 

instead of fixing a time step. Activation time for agents is given by time advance ( at ) that is 

computed by calculating how long it will take for the agent to travel q∆ . Figure 3 depicts a 

simplified view of how an agent advances in one dimension.  
 

q∆q∆q∆
 

Figure3: 1D computation of agent advance 

 

Set of state parameters 0S are valid during the time given by at . Set of next state and parameters is 

noted nS . 

As defined in Vector-DEVS, two states variables are attached to each state:  

• The agent coordinates, noted P ,  

• The agent propagation vector, noted V ,  
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• Next and previous agent locations ( lP  for position of the agent on the left and rP  for 

position of the agent on the right). 

And the agent current set of map parameters, noted M  that contains the local properties of the 

map at point P (like elevation, type of fuel, etc...). 

 

0),,( SMVP ooo ∈  Is valid at time ot for the duration of at  and nnnn SMVP ∈),,(  is valid at 

time aon ttt += . 

An agent is a basic DEVS model; as such it has an external transition function, an internal 

transition function, a time advance function, and an output function. In addition to those function, 

the agent has a velocity or rate of spread function, noted R . 

External transition function is reacting to external events that are used here by the shape manager 

to either:  

• Immediately stop an agent if it has to be removed from a shape. 

• Informing the agent of the next and previous agent locations in the shape if those have 

moved. 

• Informing the agent of the new map parameters nM at location nP . 

 

Output function is used to send an event to inform the shape manager of the updated location. 

Calculation of at  function is performed explicitly with at = 

o

q

v

∆
. 

Internal transition function is triggered just after the output function at time aon ttt += . This 

function updates 0S  to the values of nS and calculates the next state parameters with: 

 

oaon VtPP +=  And ),,,( lroon PPPMRV = . 

So that the agent advance is a simple Euler first order integration and the agent direction and 

speed is dependant of the velocity function. This function ),,,( lroo PPPMR  will define the 

specificity of models (fire spread, oil leak, shockwave…). In the fire propagation model, the 

direction of the propagation vector is given along the bisector of the angle formed by rol PPP ,,  as 

presented in figure 4. This definition enables to handle naturally the direction of propagation of 

the unburned area as always directed to the outside of the clockwise linked segments. 

 
Figure 4: Direction of the propagation vector for agent located at oP   in the propagation model is 

along the bisector of the local angle. Un-burnt area is in light grey, points Pl and point Pr lies 

respectively at the left and at the right of P0 depending on the linking direction of segments 

shown by the grey arrows. Propagation vector for P0 is shown in black and is always directed to 

the left of the clockwise linking direction. 
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As the front is approximated as a polygon, no normal can be defined at the singular point of the 

agent location. The bisector is used as an approximation of the normal angle because it may be 

computed efficiently. This approximation is made because transformation along the bisector 

presents the property of preserving the orthocentre of regular polygons and triangles. 

At the local scale, quantum distance is driving the numerical integration of an agent path; 

behaviour of the overall interface is handled by the shape manager that is reacting to collisions. 

 

4.2) Computation of the shape behaviour 

Each structural state change occurs anytime a collision happens between the interface and the 

environment, or the interface with an interface. Three kinds of collisions can occur: 

• An internal collision, when there is an intersection of the shape with itself or another shape, 

it triggers a front recomposition. 

• A self collision occurs if part of the interface has moved by a certain distance, or if the 

polygon has reached a critical size. It triggers a self-decomposition that refines the shape. 

• An external collision occurs when the interface collides with an element of the environment. 

It triggers a decomposition that adapts the shape to the new environment.  

 

In Vector-DEVS, those three functions (decomposition, self-decomposition and decomposition) 

must be defined for each of these collision events. 

 

The decomposition function is called by the external transition function of the executive (as it is 

inputted by an agent). This function must implement the modifications to the shape resulting of a 

collision of an agent to a different area. 

The self-decomposition function, also inputted by an agent, is triggered by internal transition 

function of the executive. The resulting shape must be a refined view of the shape.  

The recomposition function is triggered by the internal transition function of the executive, when 

the executive detects a collision between non consecutive agents. This function must resolve the 

resulting front of the different intersections. 

In the forest fire propagation model, those three functions are defined as follow: 

 

The decomposition function is activated when an agent has just entered in a different area. The 

change is detected by different state parameters that has been receives from the Shape Manager. 

After detection, the agent sends a decomposition message to the executive, triggering the 

immediate creation of two new agents located at the boundary of the new area such as described 

in Figure 5. 
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Figure 5, Decomposition of a front occurs when an agent (located at P0) just entered in a different 

area. Two new points (P1, P2) are created along the separation line between the two areas, with an 

initial propagation vector co-linear with the separation line. 

 

 

The self-decompostion, presented in figure 6, refine a shape near an agent if two agents are 

separated by more than a critical distance, or perimeter resolution, noted c∆  with qc ∆>∆ 2  to 

insure that two agents cannot cross-over. Each agent is aware of the position of the previous and 

next agent in the front in the current state, and self-decomposition is detected by the agent by 

calculating the distance between its projected location and those two neighbouring agents. If self-

decomposition is necessary a decomposition message is sent to the executive, triggering the 

immediate creation of an agent located at the median location. 

 

 
Figure 6, Self decomposition of a front occurs when two agents located at two points (P0, P1) are 

separated by mode of a critical distance c∆ . A new agent is created at the median point (P2). 

 

In Figure 6, the self-decomposition occurs when the distance ),( 10 PP  is greater than c∆ , the new 

agent is created at the median location 2P  given by )(
2

1
0112 PPPP −+= . 

 

The recomposition function is the most complex function as it must handle the deletion of agents, 

and is not detected directly by the agent itself because it requires a whole knowledge of all 

evolving fronts. The Shape Manager handles recomposition, a proximity check for collision is 

performed each time an agent has moved. For this test, the distance is calculated between the 

moving agent and all other active agents. Any distance lower than r∆ will require the deletion of 

the moving agent. The stability condition is that r∆ =
2

c∆ q∆≥ , this approximation is made 

because two agents distant of less than the perimeter resolution of the simulation ( c∆ ) can be 

considered as located at the same point. 
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If deletion is required, the new structure is not updated immediately, but after an elapsed time 

given by the at  function of the shape manager and equal to nt of the deleted agent so that the 

structure change occurs when the actual agent would have reached r∆  proximity. 

Three scenario of recomposition can occur, presented thereafter. 

The first case corresponds to an agent being distant of less than r∆ from the next or previous 

agent in the front. In this case the agent is deleted front the shape such as shown in Figure 7. For 

this case of decomposition, the Shape manager at  is set equal to at of the deleted agent,  

 

P0 r

Pl

Pr

Pl

Pr

 
Figure 7, Deletion of an agent located at P0 after a recomposition. 

 

The second case concerns a moving agent A being distant of less than r∆ from a colliding agent B 

of another front. The resulting shape is composed of the two fronts merged at the location of the 

agents such as shown in figure 8.  

 

A0

A2

A1

B0

B1

B2

r

A2

A1

B0

B1

B2

 
Figure 8. Collision of agent (A0) with a front. Previous agent (A1) is linked with the colliding 

agent (B0). Previous agent of the colliding agent (B2) is linked with the next (A2). 

 

In this case, agent A is deleted, and the previous and the next agent are re-linked respectively with 

B and the previous agent of B. All agents that composed the front containing A are reassigned to 

the network executive of the front containing B. 

 

The third and last case, shown in figure 9, involves a moving agent A being distant of less 

than r∆ from a non-successive agent of the same front B. Agent A is deleted, previous agent of A 
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is connected to the next of B and B is connected to the next of A. All agents that used to be 

between A and B are reassigned to a new front. 

 

Figure 9. Collision of agent (A0) with its own front. Previous agent (A1) is linked with the next of 

colliding agent (B1). Colliding agent (B0) is linked with the next (A2) and a new inner front is 

created. 

 

Geometrical operations are computer intensive, but only have to be done locally. If the simulation 

was synchronous, those three geometrical checks have to be done between every agent at every 

step, so that the complexity of the check is N² with N = the number of agents. Asynchronous 

simulation is reducing those checks to the very agent that has moved, so that there is N check at 

each agent advance. Overall, only two geometrical functions are required to determine the 

collision events: 

• The neighbourhood function, used to test the inclusion of every agent in environment shapes 

to determine the new state parameters and decomposition. Neighbourhood check is 

performed using a “point in polygon” method (Haines, 1994). 

• The proximity test is given for two agents located at P1 and P2 

by: dyyxx ∆<−+− 2

21

2

21 )()(  with d∆  the proximity distance to check, )( 1,1 yx  

coordinates of P1 and )( 2,2 yx  coordinates of P2. 

Next chapter presents some implementation issues and limitations due to memory and processing 

usage. 

4.3 Precision, Limitations, processing and memory usage 
 

The precision of the method is highly dependent of the quantum distance q∆  and of the perimeter 

resolution c∆ . The method is subject to two kinds of errors, integration and truncation.  

The integration error is introduced by the first order Euler method used to perform the agent 

advance, highly related to the QSS1 method (Kaufman, 2003) except that the agent path 

integration is in two dimensions. A demonstration of the precision of the method, as a quantized 

front tracking method would be out of scope of this paper and already discussed in details 
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(Kaufman, 2003) (Kaufman, 2002).   

 

As a first order quantized system, the integration error, noted ei, is linearly dependent of q∆ over 

the distance (noted D) to be travelled by an agent with a maximum (worst case) of qDei ∆= . 

This worst case could be reached in highly turbulent winds, with eddies of the same size as q∆ . In 

real case scenarios, q∆ is of a much higher resolution than wind or elevation data and thus error is 

minimal. 

The truncation error, noted et, occurs during decomposition and is induced by the deletion of 

agent’s front. This error is also linearly dependent of the perimeter resolution with a worst case of 

)(
2 q

Dcet
∆

∆=  or )(
q

Dret
∆

∆= meaning that each agent gets deleted at every move. The worst 

case would typically be reached by multiple parallel fronts colliding. In any cases truncation error 

only occurs for agent not located in a reflex angular point, so there is no truncation error in 

convex fronts. 

The overall maximum error eteie +=  is given by )(
q

rqDe
∆

∆+∆=  with minimum stability 

of qr ∆=∆  this gives )1( +∆= qDe . 

A small quantum distance is required to minimizing the error. But it will also increase the 

computational cost of the simulation. To understand these limitations, it is important to have an 

overview of the data structures used in the implementation of the method. 

A agent of the shape must memorize its current position, next position, displacement vector, 

neighbour (linked) point, a link to the shape manager, valid time, next time and a few states 

variables (dependant of the model), summing up to 128 Bytes in a 64bits computer. For each of 

this point, an activation event must be stored in a general scheduled list. An event is an activation 

time, a link to the model to activate and a state, 24 Bytes. With this count it is possible to fit an 

interface 50 km long with points every centimetre (50 M points) in a gigabyte of memory. 

In terms of processing, self-decomposition is typically the kind of collision that occur the most 

often (as the refinement critical distance is as small as the smallest detail in the point 

neighbourhood).  

A point trigger an event at least every time it moves of this quantum distance, the faster the point, 

the more events it will generate for a given period of time. If all points move at the same speed, 

discrete event is less appropriate because using a common “time step” for all points will keep the 

same level of detail while saving the handling of the scheduled event list. 

A large variation of rate of spread over the simulation area is a good indicator to select 

discrete event simulation. 

 

Optimization of the event list and event is a key issue in this application in order to keep a quick 

processing time and memory footprint. The event list is implemented as a linked list, with the first 

element being the most imminent event. As most events are generated by fast moving agents, 

most event insertion occurs at the beginning of the list and a sorted insertion starting from the 

head provides a good performance. 

In order to limit the memory footprints of the numerous events that must be generated, all events 

that are processed are not removed from memory but kept in a recycling list. New events are 

allocated in memory only if the recycling list is empty, thus the number of events ever allocated 

never exceeds the number of moving agents. 

With these simple optimization, handling the event list does not account for much of the 
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simulation time, instead, part of the calculation time is spent to search new collisions and get 

properties of the new location. With a large number of points much of the processing time needed 

for the topological checks is avoided by the proximity test to estimate the neighbourhood, 

collision and intersections.  

In addition to this minimum set of calculations, agent update also requires a new calculation from 

the rate of spread model that accounts for most of the calculation time. 

With the proposed implementation of the method, computational time and memory footprint 

grows linearly with the number of agents. As the number of agents is directly related to the 

perimeter of the fire, the calculation time is proportional to the fire perimeter. 

Most raster/cells based methods must update at least the “active” area, (Muzy et al. 2005), thus 

with raster based methods, the simulation time is dependant of the burning surface of the 

simulated shape.  

A low perimeter/surface ratio is a good indicator to select the front tracking method. 

 

We can eventually draw the conclusions on the limitations of the discrete event/front tracking 

method: 

• If the rate of spread is quite identical for every direction and location (isotropic growth), it 

is more interesting to use a discrete time step, saving the sorting of the scheduled list. 

• If the expected results are highly inhomogeneous (a lot of small shapes), the 

perimeter/surface ratio will be high and it is likely that a small discrete time step and a fine 

raster will make a better use of the processor. 

• If the level of detail required is within one or two order of magnitude of the overall 

simulation area (typically no need to take into account roads in a 1 km² area simulation), 

using raster/cells will be just as fast (small raster) and at the same time will keep track of 

the whole state of the system. 

 

As Forest Fire have a low perimeter/surface ratio and a high variability of rate of spread over a 

given (large) area, the discrete events/front tracking method is appropriate. 

Vector-DEVS method has yet only been applied in the field of forest fire simulation. To perform 

this application, we developed a physical model that can explicitly provide rate of spread in any 

given direction, the R function. The behaviour described in this section is coupled with the 

physical spread model to serve as a base for all numerical experiments. 

5 Fire spread model 
The proposed front tracking asynchronous method can be considered as a general purpose front 

tracking methods. As such it falls in the same category as the level-set, volume of fluid or 

markers method. In order to perform numerical simulation it is necessary to use an envelope rate 

of spread model. In case of forest fire, this model should provide the rate of fire spread in given 

direction and local parameters, corresponding to a formulation of the R function for fire spread. 

5.1 Physical formulation of the fire rate of spread model 

Our model is based on the description of physicochemical laws (mass, energy and momentum 

balances) that drives the flame and propagation. This approach is fully detailed in (Rossi et al., 

2006) and (Balbi et al., 2005). 
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Figure 10: Calculation of the flame angle 
 

This physical based model has been developed to provide an analytical formulation of the rate of 

spread given a slope angle, wind speed, and fuel parameters. Figure 7 presents the geometry of 

the flame, considered as a uniform radiating panel.  

It is based on the following hypothesis: 

 

• The heat transfer is due to the radiation, of the front fire, assimilated to its tangent plane. 

• The radiation factor decreases with the surface/volume ration of the flame. 

• The gas velocity in the flame is the vectorial sum of the wind velocity and upward gas 

velocity (in still air) due to buoyancy. 

 

These hypotheses lead to a simple expression of the physical laws: mass, species, moment, energy 

balances in the flame and in the fuel, providing the following model: 

 

0

0

tantan

cos1

)cossin1(
1

u

U

r

r

r
Ar

+=

+

−+
+=

αγ

γ

γγ

 

 

Where 

0R

R
r =  Reduced rate of spread 

R Rate of spread in m.s
-1

 

R0 Rate of spread without wind and spread in m.s
-1

 

γ  Tilt angle  

U Normal wind velocity in m.s
-1
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α  Local slope angle 

u0 Vertical velocity in the flame without wind and slope in m.s
-1

 

A ratio of radiated energy over ignition energy 

Using this formulation, we have to identify three parameters (R
0
, u

0
 and A) in order to characterize 

a kind of vegetation (or fuel type). 

 

With a set of fitted parameters, the model is able to provide the rate of spread in any direction and 

for any given combination of slope and wind. 

As the output of the model is directly a rate of spread given any direction of the front normal, a 

natural representation of the model output is a rate of spread polar diagram as shown in figure 11.  

This aspect is important because most other fire models provides only a maximum rate of spread 

and derives the rates of spread in all directions using an ellipse analogy (see Finney and Andrews 

(1994)). 

 
 

Figure 11: Rate of spread polar diagram of the model output for a given wind and slope vector and 

a given set of fuel parameters, the black ovoid line represents the polar view of rate of spread in all 

direction and the two arrows the wind and slope directions and intensities. 

 

Before using the rate of spread sub-model, it is necessary to check if it is able to reproduce results 

that are consistent with experiments. 

5.2 Idealized simulation cases  

 

We define as idealized tests simplified tests used to analyze the behaviour and the error of the 

simulation algorithm and model. All of these simple simulation tests can be compared with 

analytical results derived form the model formulation. Four types of tests are employed to assess 

the performance of the propagation model. The first is a spot fire in zero wind and slope condition 

to evaluate the model in an isotropic growth. The second test is a series of propagation for winds 

to verify the non-ghosting ability of the model. The third test is propagation in areas of different 

rate of spread. The fourth test is a rotating wind test where the initial conditions are two 

symmetrical ignition lines with fire break located on the rear of each line. Wind condition for the 

last case is taken as rotation around the centre of symmetry. 
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Figure 12: Spot fire case in zero wind. Circles corresponds to 1s isochronous fronts. Grey points to 

agent locations. Grid size is 10m. The speed polar diagram is in the bottom right corner. 

 

Figure 12 shows the evolution of a spot fire (represented by a square) in no-wind and no slope 

condition. Simulation is performed wit q∆ = r∆ = 1m. The speed polar diagram in this case is a 

circle, with a 1 m.s
-1

 radius to simulate an isotropic growth. Given the initial size of the spot fire (a 

10m by 10m square), the simulation well converge into a diffusive circle, while transporting the 

initial angular points of the ignition square. 

 

 

 
Figure 13: Ghosting test in North oriented (left) and North, North-East oriented light wind (7m.s

-

1
). Lines corresponds to 10s isochronous fronts. Grid size is 100m. The speed polar diagram is in 

the bottom right corner, showing a head-fire speed of 3m.s
-1

 and a back-fire speed of 1m.s
-1

. 

 

Figure 13 shows the similar evolution for two spot fires in a 7m.s
-1 

light wind. While the wind for 

the first spot fire is directed to the exact north, the wind for the second spot fire is directed in the 
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North, North-East direction, totally unaligned with the grid. Simulation is also performed with 

q∆ = r∆ = 1m. The speed polar diagram in this case is an oval with a minimum speed of 1m.s
-1

 and 

a maximum of 3m.s
-1

. We can see from this figure that the head-fire for both case is reaching the 

exact same distance of 30m, and that isochronous fronts of the first case are the exact same fronts 

as the second case with rotation. This test shows that because no underlying grid is necessary, 

there is no ghosting effect.  

 

 

 

 

 
Figure 14: Non-homogeneity test. Lines corresponds to 10s isochronous fronts. Grid size is 100m. 

Three regions have different isotropic rate of spread, bottom region with, 1m.s
-1

, top right with 

2m.s
-1

, and top left with 3m.s
-1

.  

 

Figure 14 shows a spot fires ignition in a no-wind condition, but in a non-homogeneous 

environment composed of 3 different fuels area. Simulation is also performed with q∆ = r∆ = 1m. 

Because of the different fuel parameters, the rate of spread is different in all area. We can observe 

that the rate of spread for the front in each area is preserved, and that angular points are formed at 

the boundary.  
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Figure 15: Fan case. Lines corresponds to 10s isochronous fronts. Arrows corresponds to the wind 

forcing, with the grey circle as the flow line passing by the ignition points. Black lines correspond 

to fuel breaks preventing the fire to propagate backward to the flow. 

Grid size is 10m. The speed polar diagram is in the bottom right corner, showing a head-fire speed 

of 2.2m.s
-1

 and a back-fire speed of 0.1m.s
-1

. 

 

 

Figure 15 shows two line fire ignitions located in symmetrical at the left and the right hand side of 

the centre of a circular wind flow. Wind at the location of ignition is 4m.s
-1

 resulting in a 

maximum rate of spread of 2.2m.s
-1

.Simulation is also performed with q∆ = r∆ = 1m. We can 

observe that the head fire is totally following the flow line, with termination exactly at the 

symmetrical point of ignition. Time to travel the half perimeter is about 71s, corresponding to a 

distance of 156.2m at 2.2m.s
-1

 which is in good accordance with the 157m of the theoretical half 

perimeter (50m radius). Fronts are merging at t=80s, with the creation of an inner front. 

Those tests represent a verification of the front tracking method in idealized cases. The validation 

of the fire rate of spread model and the large scale fire propagation model is presented in the next 

section. 

6 Validation 
Because the proposed simulator is a combination of a fire rate of spread model and simulation 

method, both have to be validated. The validation of the rate of spread model is performed using 

data collected in a fire tunnel. A second experiment is validating the model with the simulation 

method in a reanalysis of a large experimental fire. 
 

6.1 Fire rate of spread model validation  
Weise and Biging (1997) realized a vast number of studies in a fire tunnel with variable wind 

speed and slope configurations (collinear in each test). For a combination of parameters, the 

author observed the rate of spread and compared it with existing models. The authors eventually 
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concluded that the model from Rothermel and Albini (Albini and Baughman, 1979) provided the 

most accurate results. 

We used the experimental data of this study to verify the proposed fire spread model.  

Two measurements samples are needed and have been used to perform the regression:  

1. The rate of spread with no slope and no wind, 

2. The rate of spread with no slope and 1 m.s−1 wind speed. 

The first input of the model is the rate of fire spread expected under no-slope and no-wind 

conditions, namely R
0
, which value is 3.10−3m.s−1. For the experiments considered the upward gas 

velocity (u
0
) and the fuel parameter (A) were 1.72m.s−1 and 22, respectively. These values were 

deduced using a least square regression based on the experimental data without wind and with the 

1 m.s−1 wind speed. 

Figure 16, 17 and 18 shows the results given by the proposed model compared with experimental 

results and Rothermel and Albini model for different combinations of collinear wind and slope 

 
 

Figure 16: Rate of spread measured and calculated with a -15% slope.  

 
 

Figure 17: Rate of spread measured and calculated with no slope.  
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Figure 18: Rate of spread measured and calculated with a 15% slope.  

 

The model predictions are in good agreement with experimental data. The model also has another 

important advantage: only 3 parameters have to be set, and they all have a physical meaning that is 

easier to guess qualitatively. Rothermel model requires the adjustments of more parameters (5 and 

more depending on the revision), which makes the original parameter setup less robust. Moreover, 

the proposed model can also provides other important fire front variables such as radiant heat flux 

or flame height and tilt angle. 

This rate of spread model is also directly applicable to the cases where slope and wind are not 

collinear, but this cannot be directly verified without simulating the whole front shape evolution 

with a fire propagation model. Next section presents the comparison with real fire data at an 

higher scale. 

6.2 Comparison with a real fire data 

To verify the robustness and speed of the method in propagating 2D fire fronts, we ran the model 

to simulate a fire based on a real scenario. We selected the 2005 Lançon fire that took place in the 

south of France and burnt about 800 Ha of shrubs and forest. On the day a North Westerly wind 

of 50Kmh was blowing, providing extreme condition of propagation, fire started at 9h40 AM and 

last until 16h30.  

The wind map has been calculated as a stationary solution using mainstream computational fluid 

dynamics software (Fluent), resolution of the wind map is the same as the digital elevation model: 

50m × 50m.  

The simulation has been run with q∆ = 3 meters and c∆ of 9 meters. Because the vegetation is 

quite homogeneous, the simulation is driven by far by self-decomposition. The interested reader 

can perform the simulation directly using a java applet online http://spe.univ-

corse.fr/filippiweb/simulation/.  

The fire spread model needs three parameters (A, R0, u0) to be determined in order to take into 

account the vegetative fuel properties. As vegetation is relatively unknown, those three 

parameters are fitted so that the simulation matches the first contour (at 12AM).  

Simulation results and observations are presented in Figure 19. The simulation was started at 

9h40 at the exact same points as the estimated ignition points, and stopped at 16h30 (last known 

contour). Although no adjustments have been made on the parameters during the simulation run, 

the simulation is in good accordance with the observed fire fronts. Nevertheless, the simulation 
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results show a strong development on the right front that is not observed in the actual fire. This 

difference is due to the attack of the fire fighters that prevented the fire to develop on the right 

flank. These results indicate nevertheless that the proposed fire simulator succeeds in rendering 

the wind and slope conditions in a complex topography. 

Simulation time for these parameters is 28s on a computer capable of 3Gflops peak performance 

(Intel Pentium 4), with 2GB of main memory. It is largely possible to achieve better performance 

with larger q∆ and c∆ , and evaluation of performance of the method with different quantum size 

is the subject of ongoing research. Ultimately, the goal of simulating a large fire, at a 3meters 

resolution in under a minute is reached. 

 
 

 
 

Figure 19 : Observations (left) and simulation results(right) of the Lançons fire. Black dots 

represent ignition points (at 9h40). The contours corresponds to the fire front at 12h, 14h30 and 

16h30. 

7 Conclusion 

This paper has presented a new method, formalism, and software for the simulation of interface 

dynamics. A simulation methodology, Vector-DEVS, using front tracking method, has been 

developed to simulate fire growth.  

We showed that where front tracking can be applied, a different set of solutions can emerge from 

the system study, on a larger temporal and spatial scale. 

To take advantage of the method in forest fire simulation, we have developed a specific physics 

based propagation model of fire spread that generalize the behaviour of the fire front at any given 

point. 

Given a level of detail of 3meters necessary to take into account roads in the simulation, 

computing speed is by far faster than real-time and other method because only the very perimeter 

of the phenomenon is simulated. The main goal of this method was to be able to provide the 

evolution of a large wildfire in less than a minute of calculation time, which we show is possible 

with a validation on a large wildfire accident that took under 30s to simulate.  

The method is not tight to the simulation of forest fire spread, as it may be possible to forecast the 

shape evolution of any system that has can be derived as a rate of spread model.  
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