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THE PRODUCT OF TREES IN THE LODAY-RONCO ALGEBRA THROUGH CATALAN ALTERNATIVE TABLEAUX

The aim of this note is to show how the introduction of certain tableaux, called Catalan alternative tableaux, provides a very simple and elegant description of the product in the Hopf algebra of binary trees defined by Loday and Ronco. Moreover, we use this description to introduce a new associative product on the space of binary trees.

Introduction

Loday and Ronco defined in [START_REF] Loday | Hopf algebra of the planar binary trees[END_REF] an interesting Hopf algebra structure on the linear span of rooted planar binary trees. This algebra is defined as a sub-algebra of the Malvenuto-Reutenauer Hopf algebra of permutations. Let S n be the symmetric group and k be a ground field. We denote by k[S n ] the group algebra. Malvenuto and Reutenauer construct in [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF] a Hopf algebra structure on

k[S ∞ ] = n≥0 k[S n ].
It is worth to recall here that the Malvenuto-Reutenauer algebra contains the sum of Solomon descent algebras Sol ∞ = n≥0 Sol n with Sol n of dimension 2 n-1 .

In [START_REF] Loday | Hopf algebra of the planar binary trees[END_REF], Loday and Ronco define a sub-Hopf algebra of k[S ∞ ]:

k[Y ∞ ] = n≥0 k[Y n ]
where Y n is the set of planar binary trees with n internal vertices. The aim of this work is to present a very simple presentation for the product of two trees in k[Y ∞ ] through the use of Catalan alternative tableaux. These objects were introduced by X. Viennot [START_REF] Viennot | Alternative tableaux, permutations and partially asymmetric exclusion process, Isaac Newton institute[END_REF] as a special case of alternative tableaux, which are in bijection with permutation tableaux. Permutations tableaux were introduced by E. Steingrimsson and L. Williams [START_REF] Steingrimsson | Permutation tableaux and permutation patterns[END_REF], as a subclass of Γ-diagram defined by A. Postnikov [8]. This notion was used by S. Corteel and L. Williams [START_REF] Corteel | Tableaux combinatorics for the asymmetric exclusion process[END_REF][START_REF] Corteel | Tableaux combinatorics for the asymmetric exclusion process and Askey-Wilson polynomials[END_REF] in the study of the physical model named PASEP (partially asymmetric exclusion process), see for example the seminal paper by B. Derrida and al. [START_REF] Derrida | Exact solution of a 1D asymmetric exclusion model using a matrix formulation[END_REF]. These tableaux are also related to the study of total positivity for Grassmannian [START_REF] Williams | Enumeration of totally positive Grassmann cells[END_REF]. Both permutation and alternative tableaux are in bijection with permutations, see for example P. Nadeau [START_REF] Nadeau | The structure of alternative tableaux[END_REF]. The advantage of alternative tableaux is to preserve the symmetry between rows and columns. This new interpretation of the Loday-Ronco product motivates the introduction of a new associative product, that we call the # product, on the space of binary trees. This new product is studied in [START_REF] Chapoton | Some dendriform functors[END_REF] by F. Chapoton. This article is constructed as follows: in Section 2 we recall the definition of the Loday-Ronco algebra, then we introduce in Section 3 the Catalan alternative tableaux and prove that they are in bijection with binary trees; we state and prove in Section 4 the main result of this work, and we introduce the new # product in Section 5.

The Loday-Ronco Hopf algebra

We recall the definition of the Loday-Ronco product of binary trees. Since this product is inherited from the Malvenuto-Reutenauer product of permutations, we shall first recall the definition of the product in k[S ∞ ], denoted by * . We refer to [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF] for more details and only recall briefly the definition.

Let u = u 1 u 2 . . . , u k be a k-tuple of distinct integers. We define the standardization of u and denote it by Std(u) as the unique permutation σ ∈ S k that preserves the relative order of the u i 's, i.e. Remark 1. The product * that we consider is sometimes known as the product in the dual Malvenuto-Reutenauer algebra. But it is the one used in [START_REF] Loday | Hopf algebra of the planar binary trees[END_REF] to define the Loday-Ronco algebra, that we shall now describe.

σ i < σ j ⇐⇒ u i < u j .
Let Y n denote the set of binary trees with n internal vertices. We recall that the cardinality of Y n is given by the n-th Catalan number

C n = 1 n+1 2n n .
Let Ỹn denote the set of increasing binary trees, i.e. of binary trees such that each internal vertex has a distinct label in {1, . . . , n}, and such that the labels increase along the tree.

It is well known that increasing binary trees are in bijection with permutations: to obtain the permutation from the tree, you just have to read the labels from left to right.

Below is an example of a plane binary tree with 8 internal vertices, with a increasing binary tree with the same underlying tree, and with the corresponding permutation σ ∈ S n . We denote by Ψ : S n → Y n the composition of the bijection S n ≃ Ỹn with the projection Ỹn → Y n which consists in forgetting the labels. The induced linear map We also define for any tree T the set

Ψ : k[S n ] → k[Y n ] has a linear dual Ψ * : k[Y n ] → k[S n ]
Z T = {σ ∈ S n / Ψ(σ) = T } so that Ψ * (T ) = σ∈Z T σ.
The inclusion map Ψ * gives rise to a graded linear map

Ψ * : k[Y ∞ ] → k[S ∞
] and the main result in the construction of the Loday-Ronco algebra may now be stated as (Theorem 3.1 in [START_REF] Loday | Hopf algebra of the planar binary trees[END_REF]):

Theorem 2. The image of the inclusion map

Ψ * : k[Y ∞ ] → k[S ∞ ] is a sub-Hopf algebra of k[S ∞ ]. So, k[Y ∞ ]
inherits a structure of Hopf algebra.

Trees and Catalan alternative tableaux

We now present the Catalan alternative tableaux. Let us denote by N the set of nonnegative integers. A Catalan alternative tableau in given by • a path in N × N from {0} × N to N × {0} made of (0, 1) and (1, 0) steps. The length of the path is called the size of the tableau, and the cells below the path are simply called the cells of the tableau. The path defining the tableau can be called the shape of the tableau. • a set of blue and red dots in the cells of the tableau such that:

(1) there is no dot below a red dot;

(2) there is no dot on the left of a blue dot;

(3) any cell of the tableau is either below a red dot, or on the left of a blue dot. Let us give an example of a Catalan alternative tableau of size 23.

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
It is possible to directly check that Catalan alternative tableaux are enumerated by Catalan numbers (whence their name), but we shall use the following proposition, more adapted to our context. Proposition 1. The Catalan alternative tableaux of size n -1 are in bijection with binary trees with n internal nodes.

Proof. We refer to [START_REF] Viennot | Catalan tableaux and the asymmetric exclusion process[END_REF] (algorithm 2.2) for a formal proof and give here only the idea of the construction. In fact, in that paper, the algorithm was given in term of "Catalan permutation tableaux", the subclass of permutation tableaux corresponding to Catalan alternative tableaux, and discussed in [START_REF] Steingrimsson | Permutation tableaux and permutation patterns[END_REF].

We start with Catalan alternative tableau of size n -1 and rotate it:

The thick line represents the tree under construction. Recursively, for any "Up-Down" pattern in the thick line, we operate a shift, and two cases are to be distinguished:

• if the corresponding corner in the tableau is blue:

t s u s t u
and we erase the row of the corner in the tableau;

• if the corresponding corner in the tableau is red:

s u t s t u
and we erase the column of the corner in the tableau. On the example, we obtain: = It is not difficult to verify that this construction is a bijection.

For a permutation σ ∈ S n , its Up-Down sequence (cf. [START_REF] Viennot | Up-down sequences of permutations, paths and canopy of binary trees[END_REF]) is the vector Q(σ) = (q 1 , . . . , q n-1 ) ∈ {-1, +1} n-1 such that

q i = +1 iff σ i+1 > σ i .
It is clear that for any tree T , all the σ in Z T have the same Up-Down sequence, which we may call the Up-Down sequence of T , also called canopy of the binary tree T in [START_REF] Viennot | Up-down sequences of permutations, paths and canopy of binary trees[END_REF]. Now we may view the shape of a Catalan alternative tableau of size n -1 as a vector in {-1, +1} n-1 (horizontal steps correspond to "-1" entries and vertical steps to +1 entries).

We have the following property:

Proposition 2. The shape of the tableau associated to a tree T through the bijection described in Proposition 1 is the Up-Down sequence of T , as well as the common Up-Down sequence of any permutation σ in Z T .

Now the algorithm described above may be extended to labelled trees: we may put n labels on the shape of a Catalan alternative tableau of size n -1: If we keep the labels of the nodes when we apply the algorithm to get a tree from the tableau, we obtain a labelled tree In the previous example, we may say that the tableau was labelled with the permutation 792531648. As a consequence of the bijection, we get the following property. Proposition 3. Let σ be a permutation of size n. We may label a tableau C with σ, then apply the bijective algorithm. The labelled tree that we obtain is increasing if and only if:

• the shape of C is the Up-Down sequence of σ;

• the position of the red and blue dots in C is the only one which gives the binary tree Ψ(σ).

The product of trees through Catalan alternative tableaux

Now we come to the main result of this work. where C 1 and C 2 are the Catalan alternative tableaux associated respectively to T 1 and T 2 , and the question mark (?) represent any (valid) placement of (red and blue) dots in the rectangles.

Proof. By definition of Ψ * , we have:

(1) Ψ * (T 1 * T 2 ) = Ψ * (T 1 ) * Ψ * (T 2 ) = σ 1 ∈Z T 1 * σ 2 ∈Z T 2 σ 2 = σ∈S σ.
Let σ be an element of S. By definition of the product * in the Malvenuto-Reutenauer algebra, σ is of the form: σ = τ 1 .τ 2 (concatenation) with the letters appearing in τ 1 and τ 2 form a partition of {1, . . . , n}, and

(2) Ψ(τ 1 ) = T 1 and Ψ(τ 2 ) = T 2 .
Thus if Ψ(σ) = T ,the Up-Down sequence of T Q(T ) is either Q(T 1 )UpQ(T 2 ) or Q(T 1 )DownQ(T 2 ). Hence the form of the Catalan alternative tableau C associated to T is one of the two given in the Theorem 3. We label the shape of C with the entries of σ. The red and blue dots in C have to be placed in a position such that by applying the bijective algorithm, we obtain an increasing binary tree. But if we apply the algorithm to the part of C that carries the entries of τ 1 (respectively τ 2 ), Propositions 1 and 3 imply that the (red and blue) dots of C in the corresponding subparts of C have to be placed in the same configuration than in C 1 (respectively C 2 ). Thie implies that C has the required form.

Conversely, let T be a tableau of the form described in the Theorem 3, and σ ∈ Z T . By cutting σ in two parts u 1 and u 2 of lengths the sizes of C 1 and C 2 , we may write: σ = u 1 .u 2 with Std(u 1 ) = τ 1 and Std(u 2 ) = τ 2 .

It is again a simple application of Propositions 1 and 3 that we have: Ψ(τ 1 ) = T 1 and Ψ(τ 2 ) = T 2 , which was to be proved to complete the proof of Theorem 3.

The # product of binary trees

In light of Theorem 3, it seems natural to introduce a new product on k[Y ∞ ] as follows.

Definition 4. We define the # product of two binary trees T 1 and T 2 , associated respectively to Catalan alternative tableaux C 1 and C 2 by:

T 1 # T 2 = T
where the sum is taken over the trees T associated to Catalan alternative tableaux in the set:

C 1 ? C 2
and the question mark (?) represent any (valid) placement of (red and blue) dots in the rectangles.

It is clear that this defines an associative product on k[Y ∞ ]. It is worth to note that for T 1 ∈ Y k and T 2 ∈ Y l , then the product T 1 # T 2 is in Y k+l-1 (in this case the number of internal edges is preserved). We give below an example of this product, that should be checked by the reader.

# = + +

  For example, Std(3275) = 2143. Conversely, for σ ∈ S k a permutation and A = {a 1 , a 2 , . . . , a k } a set of k (distinct) integers, we define σ |A the k-tuple with distinct entries in A such that Std(σ |A ) = σ. With this notation we may define the product * in k[S ∞ ] as follows. Let σ ∈ S k and τ ∈ S l . We set σ * τ = A⊔B={1,2,...,k+l} σ |A .τ |B where ⊔ denotes the disjoint union, and . stands for concatenation. For example : 12 * 213 = 12 435+13 425+14 325+15 324+23 415+24 315+25 314+34 215+35 214+45 213.

Theorem 3 .

 3 Let T 1 and T 2 be two binary trees. Their product in the Loday-Ronco algebraT 1 * T 2 = Tis given by taking the sum over the trees T associated to Catalan alternative tableaux in the union
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