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Abstract: Accurate numerical simulation of eddy-current
testing (ECT) experiments usually requires large computa-
tional efforts. To avoid time-consuming computations, a natu-
ral idea is to build a cheap approximation of the expensive-to-
run simulator. In this paper, a kriging-based approximation
of an ECT simulator is presented. Kriging is widely used in
other domains, but is still quite unexplored in the ECT com-
munity. The kriging approximation is built using a random
process model of the simulator and a set of simulation results
obtained for a number of different input configurations. The
resulting approximation might yield almost the same results
as those of the simulator.
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I. Introduction

Eddy-current testing is well-known for a long time and
is applied in a wide range of industrial problems. How-
ever, the accurate numerical simulation of the physical
phenomenon is still challenging. Finite element and/or in-
tegral equation methods are able to provide acceptable ac-
curacy, at a quite high price however, since these methods
are implemented using technically complex computer pro-
grams that generally necessitate advanced hardware and
long computation times. Nowadays, more and more em-
phasis is put on the emulation, or surrogate modeling of
EM phenomena [1]. This trend leads the electromagnetic
community to consider new methods based on mathemati-
cal tools from other domains.

Our paper presents an application of kriging to eddy-
current testing problems. The proposed method provides
a way to construct a cheap approximation for a specific
ECT problem. The main idea is to build a database of ECT
configurations, i.e. a set of pairs consisting of a vector of
the parameters of a defect and the corresponding output
signal, and then to use kriging to predict the output sig-
nal at any untried vector of defect parameters. Once the
database is built, one does not need the expensive simula-
tor any longer, but only a cheap kriging model.

Kriging is a prediction method appeared in the 60s in
the domain of geostatistic. By now, several variants of the
method have been developed and a comprehensive litera-
ture deals with kriging (see, e.g. [2]). For a recent review
of the topic, see [3]. Some applications in electromagnetics
are presented for instance in [4]. Also the authors have ap-
plied kriging to solve ECT inverse problems in [5]. How-
ever, the approach of [5] focuses on the kriging predic-
tion of a cost-function (to be minimized in an optimization
loop) – now the present paper deals with the use of kriging
directly on the output signal.

II. The proposed method

A. The forward prediction problem

The cheap input-output approximation will be built from
a database of computer simulations of the ECT problem.
To simplify the notation, let us suppose that a vector of
output parameters y is related to a vector of input parame-
ters x through

y = f (x) , (1)

f representing the underlying physical phenomena. For
eddy-current testing application x might be the geometri-
cal parameters describing a defect affecting a plate and y
the measured data (coil impedances at different locations
above the plate). A possible realization f is a numerical
solution of the corresponding Maxwell’s equations.

The proposed method is a two-step approach.
1) Compute some corresponding (x i, yi), i = 1, . . . , n

pairs (“samples”) using (1) and store them in a
database that one will use at the stage 2.

2) Fit a kriging interpolator to the samples stored in the
database and predict the sought y output at any arbi-
trary x input point.

B. Basics of kriging

The main idea of kriging is to model a real-valued func-
tion f by a Gaussian process, the latter being characterized
by its mean and its covariance function. The covariance
function describes the statistical dependence between two
values of the process and it is a scalar function of one pa-
rameter under the hypothesis of a stationary modeling pro-
cess. However, the covariance function is not known be-
fore f has been observed. Generally, one chooses a class of
parameterized covariance functions and tunes the parame-
ters in order to fit the modeling process to the pointwise
observations of f .

Once an appropriate covariance function is determined,
the prediction f̂ (x) of f (x) at any arbitrary x is written as a
linear combination of the observations:

f̂ (x) =
n∑

i=1

λi(x) f (xi).

The λi(x) weights are computed using the covariance func-
tion, by solving a linear system of n equations. The predic-
tion is an interpolation, since f (xk) = f̂ (xk) holds for all
k = 1, 2, . . . , n. Note that beyond the mere interpolation,
kriging provides additional information about the uncer-
tainty of the prediction as well.

C. Application to the ECT problem

In (1), the output y is a vector of size q. It is then ap-
propriate to use an extension of kriging called co-kriging



[2] to obtain a prediction model, which takes into account,
not only the statistical dependence between the inputs and
each component of the vector-valued output, but also the
dependence between the components of the output vector.
Formally, the kriging prediction is

ŷ(x) =
n∑

i=1

Λi(x)yi, (2)

with the weighting matrices Λi(x) of size q × q. The use
of n pre-computed samples (y i = y(xi), i = 1, 2, . . . , n)
leads to a linear system of n × q equations to solve which
can be computationally demanding. The hypothesis that
all entries of y have similar statistical behaviour leads to a
simpler problem of q distinct kriging models (one for each
entry of y). Due to the assumed statistical similarity of
entries, the models are the same and one can then write

ŷ∗(x) =
n∑

i=1

λi(x)yi, (3)

using the weighting scalar λi(x) obtained through the solu-
tion of a system of only n linear equations. The common
covariance (describing the behaviour of all entries of y)
can be either chosen “by hand” or fitted by maximum like-
lihood to an appropriate one-dimensional representation of
y (e.g. the first principal component).

The (3) expression is a convenient and computationally
cheap interpolator. Beyond the introduction of the method,
the main aim of our paper is to examine the validity of the
assumptions (leading from the exact (2) to the treatable (3)
predictions).

III. Illustrative ECT problem

In the studied ECT configuration, a volumetric defect
(with a σ(r) variable conductivity) takes place within a ho-
mogeneous, non-magnetic conductive plate (with σ 0 con-
ductivity). An air-cored pancake type coil (probe) scans
above the damaged zone, in a plane parallel to the plate.
The coil is driven by sinusoidal current and the variations
of its impedance at different locations are measured. These
locations are placed at the nodes of a rectangular grid, i.e. a
surface scan is performed. The defect is assumed to be
cuboid-shaped of volume Ω, thus, can be described by a
small number of geometrical parameters, such as sizes and
positions. The solution of the forward problem is obtained
by the classical volume integral approach [6]. The elec-
tric field at a position r in the plate is written as a sum of
two terms: E(r) = Ei(r) + Ed(r) where Ei is the incident
field (in a flawless plate), and Ed is the defect field, i.e. the
distortion of the field due to the flaw. The current dipole
densities P and Pi are defined by P(r) = (σ(r) − σ0) E(r)
and Pi(r) = (σ(r) − σ0) Ei(r). The interaction of the EM
field of the coil with the flaw can be described by an inte-
gral equation given by

P(r) = Pi(r) − jωμ0σ0χ(r)
∫
Ω

G(r|r′)P(r′) dV ′. (4)

The so-called defect description function χ(r) is defined as
χ(r) = [σ(r) − σ0] /σ0. G(r|r′) is nothing but the classical
dyadic Green’s function. Once (4) is solved, the variation

of the coil impedance can be expressed as

ΔZ = − 1

I2
0

∫
Ω

Ei(r) · P(r)dV, (5)

based on the reciprocity theorem. Here, I0 denotes the cur-
rent of the probe coil.

A simple case with two input parameters is chosen to il-
lustrate the method. An OD-type defect (having σ(r) = 0
everywhere in Ω) with a known position and width takes
place within the plate. The defect is characterized by its
length (L) and depth (D, given in % of plate thickness)
leading to a 2-dimensional input parameter vector x. The
surface scan of the probe coil is centered on the crack and
contains q = 841 measurement points and the correspond-
ing q ΔZ complex values (5) are stored in the output pa-
rameter vector y.

The region of interest in the input domain is 0.5 mm <
L < 3.5 mm for the lenght and 10 % < D < 90 % for
the depth, respectively. In Fig. 1, one can see the input
samples (5 × 5 regularly spaced) and the normalized error
of the prediction by (3).

The result is promisingly nice: a very small (≈ 2%) pre-
diction error, by using only n = 25 samples (which means
that the kriging prediction is made in no time).
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Figure 1. Normalized interpolation error (%) in the example. The nor-
malizing term is ||y||2 of the largest (L = 3.5 mm, D = 90%) defect.

IV. Conclusion and future work

A kriging-based approach as a cheap approximation for
ECT problems is presented. In the light of the preliminary
results, the method is promising. However, a precise ex-
amination of the validity of the simplifications is the main
task for the future.

Though no theoretical limitation restricts the method to
the domain of ECT problems, we described and formalized
our approach in the context of a given ECT configuration.
However, generality is not narrowed in this way, one can
also easily imagine other applications.
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